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Abstract It is a challenging issue to achieve the
normal operation of control systems despite mis-
matched nonlinear uncertainties and unknown time-
varying control coefficients. Based on the signs of con-
trol coefficients rather than nominal values or approxi-
mative mathematical expressions, the paper proposes
a new active disturbance rejection control to tackle
mismatched nonlinear uncertainties and unknown val-
ues of time-varying control coefficients. The design
procedure can be concluded by three steps: determin-
ing the equivalent integrators chain form, construct-
ing the extended state observer to estimate total dis-
turbance and designing a dynamical system to gen-
erate the input approaching the desired input signal.
Then, under a mild assumption for mismatched non-
linear uncertainties and unknown time-varying control
coefficients, the paper rigorously analyzes the bounds
of tracking error, estimating error and the error between
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the actual and desired inputs. Based on the presented
error bounds, the tracking error with respect to the
desired trajectory can be close to zero during the whole
time period by suitably enlarging the observer param-
eter. The theoretical results reveal the strong robust-
ness of the proposed method to mismatched nonlin-
ear uncertainties and unknown time-varying control
coefficients. Finally, by constructing the relationship
between the observer parameter and the parameter
in dynamical input design, the adjustable controller
parameters remain observer parameter and feedback
gain, which is friendly to practitioners.

Keywords Nonlinear uncertain system · Active dis-
turbance rejection control · Mismatched uncertainty ·
Unknown time-varying control coefficient

1 Introduction

Uncertainties, including unmodeled nonlinear dynam-
ics, external disturbances and parametric perturbations,
are ubiquitous in practice. In control science and tech-
nology, it is a central issue to ensure the normal oper-
ation of control systems despite various uncertainties
[1].

Motivated by this important objective, numerous
control strategies have been substantially developed,
such as proportional-integral-derivative (PID) control
[2], adaptive control [3], fuzzy control [4,5], neural
network-based control [6–8] and disturbance rejection
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methods [9–12], just to name a few. In [2], the capabil-
ity of PID control to handle nonlinear uncertainties was
proved. The reference [3] comprehensively introduced
the design and application of adaptive control, which
can tackle a large scope of parametric uncertainties.
The design of fuzzy control for nonlinear uncertain-
ties was reviewed in [4]. More importantly, for nonlin-
ear systems with unknown control coefficients, a novel
fuzzy controller was developed in [5]. Besides, for non-
linear lower-triangular systems, neural network-based
designs were proposed in [6,7]. In addition, various
disturbance rejection designs have been proposed in
the past decades [9–12], which can online estimate and
compensate for uncertainties.

In recent years, disturbance rejection methods have
drawn lots of attention from researches due to the sim-
plicity in practical implementation and the superior per-
formance to handle nonlinear uncertainties. Active dis-
turbance rejection control (ADRC) is one of the most
popular designs among various disturbance rejection
methods, which has been successfully applied to flight
systems [13–15], motion control systems [16,17] and
process control systems [18–20], just to name a few. In
the framework of ADRC, the extended state observer
(ESO) is novelly constructed to estimate the total effect
of various uncertainties, named as “total disturbance”
[21], and then the control input is composed of the
compensation for total disturbance and the feedback of
integrators chain states.

In the last two decades, the theoretical foundation of
ADRC has been substantially established. For the ESO
which is the vital component in ADRC, the literature
[22] investigated the convergence of ESO and further
showed the bound of estimating error. The closed-loop
stability of ADRC was firstly presented in [23], where
the considered uncertainties and their derivatives with
respect to the time were assumed to be bounded. For
the linear time-invariant uncertain systems, the litera-
ture [24] theoretically illustrated the satisfied tracking
performance of ADRC despite a large scope of para-
metric variations. In [25], by assuming the existence of
the Lyapunov functions related with uncertainties, the
capability of ADRC to deal with nonlinear uncertain-
ties was proved. By assuming that the uncertainties and
their partial derivatives are bounded if the states are in
a bounded set, the references [26,27] rigorously stud-
ied the convergence and the transient performance of
ADRC-based closed-loop system. It is remarkable that
the conditions in [26,27] can depict awide class of non-

linear uncertainties in practice. By utilizing the concept
of total disturbance, the literatures [28,29] illuminated
the capability of ADRC to handle the mismatched non-
linearities in both dynamical systems andmeasurement
models. Besides, several successful modifications of
ADRC have been made for nonlinear uncertain sys-
tems with other complicated practical factors, such as
time delay [30,31] and stochastic uncertainties [32,33].

Up to now, the theoretical results have demonstrated
the effectiveness of ADRC to tackle the time-varying
disturbances and the nonlinear internal uncertainties
dependent on system states. In the conventional ADRC
design, it is remarkable that the information of the con-
trol coefficient is required to design the ESO and the
compensation term for total disturbance [12,34,35].
In practical systems, the true values of control coef-
ficients are usually unknown [24], which promotes the
development of ADRC based on the nominal values
or the approximative mathematical expressions of con-
trol coefficients. For the ADRC based on the nomi-
nal information of control coefficients, the literatures
[24,26,28] quantitatively analyzed the stability region
of uncertain control coefficients. Unfortunately, com-
pared with the capability to handle the nonlinear uncer-
tainties dependent on system states, the capability of
the conventional ADRC to deal with the uncertainties
of control coefficients is limited [36]. Besides, in some
practical systems, it is difficult to obtain the nominal
values or the approximative mathematical expressions
of control coefficients [18,19,30]. Hence, it is signifi-
cant to design a new ADRC which is featured with the
strong robustness to uncertainties and does not rely on
the nominal values or the approximative mathematical
expressions of control coefficients.

The paper studies the control problem for a class of
lower-triangular nonlinear uncertain systems. Based on
the signs of control coefficients rather than the nomi-
nal values or the approximative mathematical expres-
sions, a new ADRC design is proposed to handle the
mismatched nonlinear uncertainties and the unknown
values of control coefficients. The design procedure of
the new ADRC is separated into three parts: (1) deter-
mining the transformation from the original states to
the states of an equivalent integrators chain system, (2)
designing the ESO to estimate the total disturbance and
the states of the integrators chain system, and (3) forc-
ing the actual input to track the desired input signal
by designing a dynamical system. By rigorously ana-
lyzing the closed-loop properties, the bounds of track-
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ing error, estimating error and the error between the
actual and desired inputs are explicitly shown as the
functions of control parameters. Based on the detailed
expressions of error bounds, it is demonstrated that
the satisfied closed-loop performance can be obtained
despite a wide class of uncertainties by suitably enlarg-
ing the ESO’s parameter. Moreover, by meticulously
studying the relationship between the original states
and the integrators chain states, the paper removes the
bounded hypothesis for integrators chain states, which
is required in [21]. The main contributions of the paper
are as follows.

(1) In the conventional ADRC designs [12,26,28,34],
the nominal values or the approximativemathemat-
ical expressions of control coefficients are required.
In the paper, a newADRCbasedon the signs of con-
trol coefficients is proposed, which can deal with a
large scope of uncertain control coefficients.

(2) Compared with the mismatched bounded distur-
bances [5] and Lipschitz continuous uncertainties
[7], the paper considers the mismatched uncertain-
ties with nonlinear growth with respect to system
states. Moreover, despite a wide class of nonlinear
uncertainties, the satisfied tracking performance in
the whole time period is proved.

(3) The tuning principle of the control parameters
is provided. Especially, the relationship between
the parameter of input dynamical system and the
observer parameter is explicitly shown.

The rest of the paper has the following organization. In
Sect. 2, the problem formulation is given. In Sect. 3, the
new ADRC based on the signs of control coefficients
is proposed. In Sect. 4, the theoretical analysis of the
closed-loop system is presented. The simulation studies
are shown in Sect. 5. The conclusion is presented in
Sect. 6.

1.1 Notations

The following notations are used throughout the paper.
y(k)(t) represents the k-th order derivative of y with
respect to the variable t for k ≥ 1 and y(0)(t) � y(t).
The notations | · | and ‖ · ‖ are the absolute value of a
scalar and the 2-norm of a vector or a matrix, respec-
tively. The notation diag(a1, a2, · · · , am) represents a
diagonal matrix with the dimension m × m, whose i-
th diagonal element is ai . For a given real symmetric

matrix M , the maximal eigenvalue of M is denoted as
λmax(M) and the minimal eigenvalue of M is denoted
as λmin(M). The following useful matrices are intro-
duced.

A =
⎡
⎢⎣

0 1 ··· 0
... 0

. . .
...

...
...

. . . 1
0 0 ··· 0

⎤
⎥⎦
n×n

, B =
⎡
⎣

0
...
0
1

⎤
⎦
n×1

,

B f =
⎡
⎣

0
...
0
1

⎤
⎦

(n+1)×1

, C =
⎡
⎣

1
0
...
0

⎤
⎦
n×1

,

Ae =
[
A B
0 0

]

(n+1)×(n+1)
, Ce =

[
C
0

]

(n+1)×1
.

(1)

The function sgn(·) represents the sign function, which
satisfies

sgn(a) =

⎧⎪⎨
⎪⎩

1, if a > 0,

0, if a = 0,

− 1, if a < 0.

(2)

2 Problem formulation

Consider the following class of lower-triangular non-
linear uncertain systems with unknown control coeffi-
cients.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi (t) = θi (t)xi+1(t) + φi (x1(t), · · · , xi (t), t), 1 ≤ i ≤ n − 1,

ẋn(t) = θn(t)u(t) + φn(x1(t), · · · , xn(t), t),

ż(t) = g(z, x, t),

y(t) = x1(t), t ≥ t0,

(3)

where xi (t) ∈ R (1 ≤ i ≤ n) are the system states,
x(t) � [x1(t) · · · xn(t)]T ∈ Rn is the system state
vector, z(t) ∈ Rm is the state vector of zero dynamics,
y(t) ∈ R is themeasuredoutput to be controlled,u(t) ∈
R is the control input, g(·) represents the dynamics of
z(t), φi (·) (1 ≤ i ≤ n) represent the uncertainties
in various channels which might be mismatched, and
θi (t) (1 ≤ i ≤ n) are the unknown time-varying con-
trol coefficients. As shown in [37], the signs of the
control coefficients θi (t), i.e., sgn(θi (t)) (1 ≤ i ≤ n),
represent the control directions of the system (3). The
paper considers the situation that the control directions
sgn(θi (t)) (1 ≤ i ≤ n) are known. However, both the
approximativemathematical expressions and the nomi-
nal values of the control coefficients θi (t) are unknown.

Based on the control directions sgn(θi (t)) rather
than the nominal values or the approximative mathe-
matical expressions of control coefficients, the control

123



2380 P. Liu et al.

objective of the system (3) is to design the control input
u(t) such that the output y(t) can track the reference
signal r(t) despite themismatched nonlinear uncertain-
ties φi (·) (1 ≤ i ≤ n).

Remark 1 The system (3) can model plenty of prac-
tical processes, such as flight systems [15], motion
control systems [16] and process control systems [20].
More importantly, under the strong nonlinearity of the
unknown functions φi (·), it is challenging to achieve
the output regulation task only based on the control
directions sgn(θi (t)).

Before the detailed control design, the following
assumptions for the reference signal r(t), the mis-
matched nonlinear uncertainties φi (·) (1 ≤ i ≤ n)

and the dynamics of z(t) are introduced.

Assumption 1 There exists a positive constant Mr

such that supt≥t0 |r (i)(t)| ≤ Mr for 0 ≤ i ≤ n + 1.

Remark 2 Assumption 1 implies that the reference sig-
nal and its derivatives are bounded, which is rational in
practice [34].

Assumption 2 The functions φi (·) and θi (·) are (n +
1− i)-th order differentiable with respect to their vari-
ables for 1 ≤ i ≤ n. There exist positive constants M̄θ,i

and Mθ,i and continuous functions ψφ,i (x1, · · · , xi )
such that

supt≥t0,0≤ j≤n+1−i |θ( j)
i (t)| ≤ M̄θ,i ,

inf t≥t0 |θi (t)| ≥ Mθ,i > 0, (4)

supt≥t0

∣∣∣∣ ∂
�
i+1
k=1 jk φi (x1,··· ,xi ,t)
∂x

j1
1 ···∂x ji

i ∂t ji+1

∣∣∣∣
≤ ψφ,i (x1, · · · , xi ), (5)

for �i+1
k=1 jk ≤ n + i − 1, 1 ≤ i ≤ n and jp ≥ 0 (1 ≤

p ≤ i + 1).

Remark 3 Assumption 2 describes a large scope of
internal nonlinear uncertainties and external distur-
bances in practice, which is more general than the
assumptions in [5,7]. From (4), the control coefficients
and their derivatives are assumed to be bounded. Since
the practical systems are controllable, the control coef-
ficients θi (t) are assumed to be nonzero for t ≥ t0,
as shown in (4) [38]. Hence, (4) further implies that
the control directions sgn(θi (t)) will not change. We
remark that the assumption for θi (t) is a common one
[5,37]. As for the nonlinear uncertainties φi (·), (5)

implies that the uncertainties and their partial deriva-
tives are bounded by some continuous functionsψφ,i (·)
dependent on system states. Due to (5), the uncertain-
ties φi (·) and their partial derivatives are assumed to be
bounded if the system states are bounded, which allows
the uncertainties to grow nonlinearly with respect to
system states.

Assumption 3 There exists a radially unbounded
positive-definite function Vz(z) such that

V̇z(z(t)) = dVz
dz

g(z, x, t) ≤ 0,

∀Vz(z) ≥ rz(‖x‖), t ≥ t0, (6)

where rz(·) is a nonnegative continuous increasing
function.

Remark 4 By regarding x(t) as the input of the z-
subsystem, Assumption 3 implies that the z-subsystem
is uniformly input-state-stable [26]. For the system (3)
being a linear time-invariant system, Assumption 3 is
equivalent to that the system (3) is a minimum phase
plant.

Remark 5 As shown in the conventional ADRC design
[12,26,28,34], the nominal values or the approxima-
tive mathematical expressions of control coefficients
are required, which play important roles in the design
of ESO and compensation term. However, it is some-
times hard to acquire the nominal values or the approx-
imative mathematical expressions in practical systems
[18,19], which leads to the ruleless tuning of nominal
control coefficients. In the other hand, due to physi-
cal mechanism, the control directions, i.e., the signs
of the control coefficients, can be easily determined.
Hence, the paper aims to develop a new ADRC based
on the control directions rather than the nominal val-
ues or the approximative mathematical expressions of
control coefficients.

In the next section, an ADRC design based on the
control directions sgn(θi (t)) is proposed to achieve the
output regulation task despite multiple uncertainties.

3 ADRC based on control directions

In this section, a new ADRC based on control direc-
tions is proposed. The corresponding control diagram
is shown in Fig. 1. The rest of this section consists of
the following three parts.
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1. The equivalent integrators chain form for the system
(3) is investigated, which shows the essential rela-
tionship between the input and the output. More-
over, the output regulation task is transmitted to the
state tracking task.

2. Based on the equivalent integrators chain system,
an ESO is presented to estimate the derivatives of
output and the unknown term named as “total dis-
turbance.”

3. Via the estimations from ESO, the control input is
generated by a dynamical system, which forces the
input to track the desired input signal.

3.1 Analysis for the equivalent integrators chain form

In this subsection, the equivalent integrators chain form
for the system (3) is investigated.

Denote thenewstate vector x̃(t) = [x̃1(t) · · · x̃n(t)]T ∈
Rn as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1(t) = x1(t),

x̃i (t) = ˙̃xi−1(t)

=
(
i−1
�
j=1

θ j (t)

)
xi (t) + i−2

�
j=1

d j−1

dt j−1

⎛
⎜⎜⎝
d

(
i− j−1

�
k=1

θk(t)

)

dt
xi− j (t)

⎞
⎟⎟⎠

+ i−1
�
j=1

d j−1

dt j−1

((
i− j−1

�
k=0

θk(t)

)
φi− j (x1, · · · , xi− j , t)

)
, 2 ≤ i ≤ n,

(7)

where θ0(t) = 1 for t ≥ t0.
The following proposition illustrates the relation-

ship between the state vectors x and x̃ .

Proposition 1 Consider the transformation (7) under
Assumption 2. Then, there exist two continuous map-
pings satisfying

γ (x, t) �

⎡
⎢⎣

γ1(x, t)
...

γn+1(x, t)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

x̃1
...

x̃n
t

⎤
⎥⎥⎥⎦ ,

ϕ(x̃, t) �

⎡
⎢⎣

ϕ1(x̃, t)
...

ϕn+1(x̃, t)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

x1
...

xn
t

⎤
⎥⎥⎥⎦ , (8)

and

sup
t≥t0,‖x‖≤�x

{
|γi (x, t)|,

∥∥∥∥
∂γi (x, t)

∂x

∥∥∥∥ ,

∣∣∣∣
∂γi (x, t)

∂t

∣∣∣∣
}

≤ ψγ (�x ), ∀�x ≥ 0, ∀1 ≤ i ≤ n, (9)

sup
t≥t0,‖x̃‖≤�̃x

{
|ϕi (x̃, t)|,

∥∥∥∥
∂ϕi (x̃, t)

∂ x̃

∥∥∥∥ ,

∣∣∣∣
∂ϕi (x̃, t)

∂t

∣∣∣∣
}

≤ ψϕ(�̃x ), ∀�̃x ≥ 0, ∀1 ≤ i ≤ n, (10)

where ψγ (·) and ψϕ(·) are nonnegative continuous
increasing functions dependent on M̄θ,i , Mθ,i andψφ,i

for 1 ≤ i ≤ n.

The proof of Proposition 1 is given in Appendix.

Remark 6 In the existing studies [21,28], the bounds of
the mappings γi (·) and ϕi (·) are provided in additional
assumptions. In this paper, by rigorously analyzing the
detailed expressions of themappings γi (·) andϕi (·), we
prove that γi (·) and ϕi (·) and their partial derivatives
satisfy (9)–(10). Hence, the assumptions for the bounds
of γi (·) and ϕi (·) are removed in the paper.

Based on the transformation (7) and Proposition 1,
the system (3) can be rewritten as the following inte-
grators chain system.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃xi (t) = x̃i+1(t), 1 ≤ i ≤ n − 1,

˙̃xn(t) = b(t)u(t) + f (x̃(t), t),

ż(t) = g(z, ϕ1(x̃, t), · · · , ϕn(x̃, t), t),

y(t) = x̃1(t), t ≥ t0,

(11)

with the initial condition x̃(t0) = [γ1(x(t0), t0) · · ·
γn(x(t0), t0)]T . The control coefficient b(t) and the
uncertainty f (x̃(t), t) have the following form.
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Fig. 1 Control diagram for
the proposed ADRC

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b(t) = �n
i=1θi (t),

f (x̃, t) = �n−1
j=1

d j−1

dt j−1

⎛
⎝d

(
�

n− j
k=1θk(t)

)

dt
ϕn+1− j (x̃, t)

⎞
⎠

+ �n
j=1

d j−1

dt j−1

((
�

n− j
k=0θk(t)

)
φ̃n+1− j (x̃, t)

)
,

(12)

where φ̃i (x̃, t) = φi (ϕ1(x̃, t), · · · , ϕi (x̃, t), t) for 1 ≤
i ≤ n.

If the nominal value of the control coefficient b(t),
denoted as b̄(t), can be obtained, the conventional
ADRC can be applied to the system (11) by regard-
ing f (x̃, t) + (b(t) − b̄(t))u(t) as the total disturbance
[28,34]. However, only the sign of the control coeffi-
cient b(t) is known in the paper, rather than the nominal
value or the approximative mathematical expression.

sgn(b(t)) = �n
i=1sgn(θi (t)). (13)

Next, based on the integrators chain form (11) and the
sign of control coefficient b(t), an ADRC design will
be proposed.

3.2 ESO design

Since the nominal value of the control coefficient b(t)
is unknown, the total disturbance of the system (11) is
denoted as

ft (x̃, u, t) � b(t)u(t) + f (x̃, t). (14)

Then, the following ESO is presented to estimate x̃ and
ft .[ ˙̃̂
x(t)
˙̂ft (t)

]
= Ae

[ ˆ̃x(t)
f̂t (t)

]
+ Le

(
y(t) − CT

e

[ ˆ̃x(t)
f̂t (t)

])
,

(15)

where ˆ̃x(t) = [ ˆ̃x1(t) · · · ˆ̃xn(t)]T ∈ Rn is the estima-
tion for the state vector x̃(t) and f̂t (t) ∈ R is the estima-
tion for the total disturbance ft (x̃, u, t). In addition, the

constant vector Le ∈ R(n+1)×1 is the tunable parameter
vector of ESO such that thematrix AL � Ae−LeCT

e is
Hurwitz. Owing to [39], the following concise tuning
method of Le is presented.

Le = [
ς1ωo ς2ω

2
o · · · ςn+1ω

n+1
o

]T
,

ςi = (n + 1)!
(n + 1 − i)!i ! , ωo > 0, (16)

which ensures that all the eigenvalues of AL are set at
−ωo.

Next, a dynamical design of ADRC input based on
the estimations from ESO will be presented.

3.3 Dynamical input design

Firstly, the desired control input is introduced. For the
system (11), the desired closed-loop system satisfies
the following form.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃x∗
i (t) = x̃∗

i+1(t), 1 ≤ i ≤ n − 1,

˙̃x∗
n (t) = −KT (x̃∗(t) − r̄(t)) + r (n)(t),

ż∗(t) = g(z∗, ϕ1(x̃
∗, t), · · · , ϕn(x̃

∗, t), t),
y∗(t) = x̃∗

1 (t), t ≥ t0, x̃∗(t0) = x̃(t0),

(17)

where x̃∗(t) � [x̃∗
1 (t) · · · x̃∗

n (t)] ∈ Rn is the state
vector of the desired system, z∗(t) ∈ Rm is the state
vector of the desired zero dynamics, y∗(t) ∈ R is the
desired output, r̄(t) � [r(t) · · · r (n−1)(t)]T ∈ Rn and
the constant vector K ∈ Rn×1 is feedback gain vector
satisfying that the matrix AK � A− BKT is Hurwitz.

Remark 7 For the desired system (17), the output y∗(t)
can exponentially converge to the reference signal
r(t) with the desired convergence rate by tuning the
feedback gain vector K . Moreover, the system states
(x̃∗(t), z∗(t)) are bounded for t ≥ t0.
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By comparing the integrators chain system (11)with
the desired system (17), the desired control input can
be obtained as follows.

u∗(t) = − f (x̃, t) − KT (x̃(t) − r̄(t)) + r (n)(t)

b(t)
. (18)

Inspired by the approximative dynamic inversion
method in [40], we design the following dynamical
system to generate the actual input u(t) which can
approach the desired input signal u∗(t).

u̇(t) = −sgn(b(t))κ(ωo)( f̂t (t)

+KT ( ˆ̃x(t) − r̄(t)) − r (n)(t)), (19)

where κ(ωo) > 0 is a function to be designed.
The parameter κ(ωo) should be carefully selected

to ensure that the dynamics (19) is “slower” than the
dynamics of the ESO (15) [41]. However, the explicit
tuning law of κ(ωo) has not been provided in the
existing studies. To make the proposed method more
friendly to practitioners, the tuning law of κ(ωo) is
depicted in the following assumption.

Assumption 4 The increasing function κ(ωo) > 0 for
ωo > 0 and

lim
ωo→∞

lnωo√
κ(ωo)

= 0,

lim
ωo→∞

κ(ωo)

ωo
= 0. (20)

Assumption 4 describes the growth rate of the
increasing function κ(ωo) which grows faster than the
log function f1(ωo) = (lnωo)

2 and slower than the
linear function f2(ωo) = ωo. It is remarkable that the
function κ(ωo) = ωk

o with 0 < k < 1 can satisfy
Assumption 4.

Remark 8 This remark provides the design ideology of
the dynamical system (19). Firstly, the dynamics ofu(t)

is supposed to satisfy the following equation,which can
force u(t) to track u∗(t).

u̇(t) = −�(t)(u(t) − u∗(t)), (21)

where �(t) > 0 is a function to be designed. By sub-
stituting (18) into (21), we have

u̇(t) = −�(t)

b(t)
(b(t)u(t) + f (x̃, t)

+ KT (x̃(t) − r̄(t)) − r (n)(t))

= −�(t)

b(t)
( ft (x̃, u, t)

+ KT (x̃(t) − r̄(t)) − r (n)(t)).

(22)

Then, by substituting the estimations f̂t and ˆ̃x into (22),
the control input can be designed as follows.

u̇(t) = −�(t)

b(t)
( f̂t (t)

+KT ( ˆ̃x(t) − r̄(t)) − r (n)(t)). (23)

Finally, the dynamical system of input (19) is obtained
by designing �(t) = κ(ωo)|b(t)|.

4 Performance analysis of closed-loop system

The performance of the closed-loop system based on
the ADRC design (15) and (19) is investigated in this
section.

The following theorem shows the satisfactory tran-
sient performance of the closed-loop system based on
the proposed ADRC despite a wide class of uncertain-
ties.

Theorem 1 Consider the system (3) with Assump-
tions 1–4. Let u(t) = 0 for t ∈ [t0, tu) where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

tu = t0 + 2ncς2
max {ln (ωo�0) , 0}√

κ(ωo)
, �0 = max

2≤i≤n
|x̃i (t0) − ˆ̃xi (t0)| 1n ,

cς2 = λmax(Pς ), AT
ς Pς + Pς Aς = −I, Aς =

⎡
⎢⎢⎢⎣

−ς1 1 0 ··· 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0−ςn 0 ··· 0 1
−ςn+1 0 ··· ··· 0

⎤
⎥⎥⎥⎦ .

(24)

For t ≥ tu , u(t) is designed according to (15) and
(19). Then, there exist positive constants η∗

i (1 ≤
i ≤ 5) and ω∗ dependent on (x(t0), ˆ̃x(t0), f̂t (t0), Mr ,

123



2384 P. Liu et al.

Mθ,i , M̄θ,i , ψφi , K ) such that

sup
t≥t0

|y(t) − y∗(t)|

≤ η∗
1 max

{
lnωo√
κ(ωo)

,
κ(ωo)

ωo
,

1

κ(ωo)

}
, (25)

∥∥∥∥∥

[
x̃(t) − ˆ̃x(t)

ft (x̃, u, t) − f̂t (t)

]∥∥∥∥∥

≤ η∗
2

(
κ(ωo)

ωo
+ e−η∗

3ωo(t−tu)
)

, ∀t ≥ tu, (26)

|u(t) − u∗(t)|
≤η∗

4

(
κ(ωo)

ωo
+ 1

κ(ωo)
+e−η∗

5κ(ωo)(t−tu)
)

, ∀t ≥ tu,

(27)

for any ωo ≥ ω∗.

Theorem 1 demonstrates that the tracking error
between the actual and desired outputs, the estimat-
ing error of the ESO (15) and the error between the
actual and desired inputs are bounded. Furthermore,
(25)–(27) explicitly show the bounds of the tracking
error, estimating error and the error between the actual
and desired inputs. More importantly, as shown in (25),
the tracking error between the actual and ideal outputs
can be sufficiently small for t ≥ t0 by tuning ωo to
be suitably large, which ensures the satisfied transient
performance despite various uncertainties. In addition,
(26)–(27) imply that both the estimating error and the
error between the actual and desired inputs can con-
verge into a neighborhood with a small boundary by
suitably enlarging ωo.

Remark 9 In the proposed design (15) and (19), the
adjustable parameters are κ , K and ωo. According to
Assumption 4, the parameter κ can be designed as a
function with respect to ωo, such as κ = ωk

o for a con-
stant k satisfying 0 < k < 1. The feedback gain K
should satisfy that the matrix AK is Hurwitz, which
determines the convergence rate of the desired output
y∗ generated by the system (17). Based on Theorem 1,
the observer parameter ωo should be suitably large to
ensure the small tracking error and estimating error.

Remark 10 The design (24) is a common way to avoid
the peaking phenomenon of ESO [26,29]. Moreover,
since plenty of practical systems satisfy the initial con-
dition that x̃(t0) = [0 · · · 0]T , by designing the initial

values of ESO as ˆ̃x(t0) = [0 · · · 0]T , then it can be
obtained that tu = t0. In addition, for the initial val-
ues satisfying �0 ≥ 1

ωo
, it can be deduced from (24)

and Assumption 4 that tu can be close to t0 by suitably
enlarging ωo.

To simplify the proof of Theorem 1, Propositions 2–
3 are introduced. Proposition 2 describes the bounds
of the uncertainty f (x̃, t), the control coefficient b(t)
and their derivatives. Proposition 3 provides the closed-
loop form and the bounds of the uncertain terms in
closed-loop system. The proofs of Propositions 2–3 are
given in Appendix.

Proposition 2 Let Assumption 2 holds. For any given
positive constant �̃x , the functions b(t) and f (x̃, t) in
(12) satisfy the following equations:

sup
t≥t0

{
|(b(t))−1|, |b(t)|, |ḃ(t)|

}
≤ ψb, (28)

sup
t≥t0,‖x̃‖≤�̃x

{
| f (x̃, t)|,

∥∥∥∥
∂ f (x̃, t)

∂ x̃

∥∥∥∥ ,

∣∣∣∣
∂ f (x̃, t)

∂t

∣∣∣∣
}

≤ ψ f (�̃x ), (29)

where the positive constantψb and the non-decreasing
function ψ f (·) are dependent on M̄θ,i , Mθ,i and ψφ,i

for 1 ≤ i ≤ n.

Denote the tracking error vector, estimating error
vector and the error between the actual and desired
inputs as follows.

e(t) = x̃(t) − x̃∗(t),

ζ(t) = T−1
1

[
x̃(t) − ˆ̃x(t)

ft (x̃, u, t) − f̂t (t)

]
, δu(t) = u(t) − u∗(t),

(30)

where T1 = diag(ω−n
o , · · · , ω−1

o , 1). Then, the follow-
ing proposition presents the closed-loop system and
further analyzes the properties of the uncertain terms
in closed-loop system.

Proposition 3 LetAssumptions1–3hold.Designu(t) =
0 for t ∈ [t0, tu), and design u(t) by (15) and (19) for
t ∈ [tu,∞). Then, the closed-loop system is shown as
follow.
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė(t) = Ae(t) + B�e0(e, t),

ż(t) = g(z, ϕ1(x̃
∗ + e, t), · · · , ϕn(x̃

∗ + e, t), t),

ζ̇ (t) = ωo Aς ζ(t) + B f �ζ0(e, t),

δ̇u(t) = −|b(t)|κδu(t) + �δu0(e, ζ, ωo, κ, t),

t ∈ [t0, tu),

(31)

123



On active disturbance rejection control for lower-triangular systems 2385

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė(t) = AK e(t) + B�e1(δu , t),

ż(t) = g(z, ϕ1(x̃
∗ + e, t), · · · , ϕn(x̃

∗ + e, t), t),

ζ̇ (t) = ωo Aς ζ(t) + B f �ζ1(e, ζ, δu, ωo, κ, t),

δ̇u(t) = −|b(t)|κδu(t) + �δu1(e, ζ, δu, ωo, κ, t),

t ∈ [tu , ∞).

(32)

Moreover, the uncertain terms �e0, �ζ0, �δu0, �e1,
�ζ1 and �δu1 have the following bounds.

⎧⎪⎨
⎪⎩

|�e0| ≤ πe0(�e), |�e1| ≤ ψb|δu |,
|�ζ0| ≤ πζ0(�e), |�ζ1| ≤ πζ1(�e) + πω(ω∗

o)κ‖ζ‖ + (κ + 1)πδu (�e, �u),

|�δu0| ≤ πδu0(�e) + πω(ω∗
o)κ‖ζ‖, |�δu1| ≤ πδu1(�e, �u) + πω(ω∗

o)κ‖ζ‖,
(33)

for e ∈ {e| ‖e‖ ≤ �e}, ζ ∈ {ζ | ‖ζ‖ ≤ �ζ },
δu ∈ {δu | |δu | ≤ �u} and ωo ∈ {ωo| ωo ≥ ω∗

o} with
any given positives �e, �ζ , �u and ω∗

o. The functions
πe0(·), πζ0(·), πζ1(·), πδu (·), πδu0(·) and πδu1(·) are
non-decreasing and are dependent on K , Mr , M̄θ,i ,
Mθ,i and ψφ,i for 1 ≤ i ≤ n. The function πω(·) is
non-increasing and is dependent on M̄θ,i , Mθ,i and K .

Based on Propositions 2–3, the proof of Theorem 1
is presented as follows.

Proof of Theorem 1 With the mapping from (x, t) to
(x̃, t) presented in Proposition 1 and the discussions in
Sect. 3.1, the plant (3) can be rewritten as the integra-
tors chain system (11). Owing to Propositions 2–3, the
closed-loop system is formulated as (31)–(32).

Since the matrices AK and Aς are Hurwitz, there
exist positive definite matrices PK and Pς such that
AT
K PK + PK AK = −I and AT

ς Pς + Pς Aς = −I .
Then, the following Lyapunov functions are intro-
duced.

VK (t) = eT (t)PK e(t), Vς (t) = ζ T (t)Pς ζ(t),

Vu(t) = δ2u(t)

2
. (34)

Let ck1 and ck2 be the minimal and maximal eigen-
values of PK and denote cς1 and cς2 as the minimal
and maximal eigenvalues of Pς . Then, the following
inequalities hold.

ck1‖e(t)‖2 ≤ VK (t) ≤ ck2‖e(t)‖2,
cς1‖ζ(t)‖2 ≤ Vς (t) ≤ cς2‖ζ(t)‖2. (35)

Next, we analyze the properties of the closed-loop sys-
tem for t ∈ [t0, tu) and t ∈ [tu,∞).

Part 1: The analysis for the closed-loop system for
t ∈ [t0, tu).

Owing to (11) and (17), the initial condition satisfies
that e(t0) = 0. The dynamical systems (31)–(32) imply
the continuity of e(t). Hence, for a sufficiently small
positive constant �t , there exists a positive constant
ηe1 such that

‖e(t)‖ ≤ ηe1, ∀t ∈ [t0, t0 + �t]. (36)

According to Assumption 4, it can be verified that
limωo→∞ lnωo√

κ(ωo)
= 0. In addition, it can be verified

from (24) that limωo→∞ tu = t0. Hence, there exists
a positive constant ω1 such that tu − t0 ≤ �t for
ωo ≥ ω1. Combined with the statement (36), it can be
concluded that ‖e(t)‖ ≤ ηe1 for t ∈ [t0, tu) and ωo ≥
ω1.

Due to Proposition 1, the bound of x(t) for t ∈
[t0, tu) satisfies that supt0≤t≤tu ‖x(t)‖ ≤ nψϕ(ηe1 +
Mx∗). Combined with Assumption 3, the following
equation is satisfied.

V̇z(z(t)) ≤ 0, ∀Vz(z) ≥ rz(nψϕ(ηe1 + Mx∗)),

t0 ≤ t ≤ tu, (37)

which further implies that

sup
t0≤t≤tu

Vz(z(t)) ≤ ηVz1

� rz(nψϕ(ηe1 + Mx∗)). (38)

Based on the bound of e(t) for t ∈ [t0, tu), the
dynamics (31) implies that

sup
t0≤t≤tu

‖e(t)‖ ≤ (tu − t0) · sup
t0≤t≤tu

{‖A‖‖e(t)‖

+ ‖B‖|�e0(e, t)|}
≤ 2ncς2(‖A‖ηe1

+ πe0(ηe1))
lnωo + | ln ρ0|√

κ
.

(39)
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Due to (31) and (33), the followingdynamics of
√
Vς (t)

and
√
Vu(t) hold for t ∈ [t0, tu].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
√
Vς (t)

dt
= −ωo‖ζ‖2 + 2ζ T Pς B f �ζ0

2
√
Vς

≤ − ωo

2cς2

√
Vς (t) + ‖Pς‖πζ0(ηe1)√

cς1
,

d
√
Vu(t)

dt
= −|b|κ|δu |2 + δu�δu0

2
√
Vu

≤ −ψ−1
b κ

√
Vu(t) +

√
2πδu0(ηe1) + √

2πω(ω1)κ‖ζ(t)‖
2

,

(40)

for ωo ≥ ω1. With the help of Gronwall lemma, it can
be deduced from (40) that

√
Vς (t) has the following

bound.
√
Vς (t) ≤ 2cς2‖Pς‖πζ0(ηe1)√

cς1ωo

+√
Vς (t0)e

− ωo(t−t0)

2cς2 , t ∈ [t0, tu]. (41)

Based on Gronwall lemma and (40)–(41), the bound of√
Vu(t) is obtained as follows.

√
Vu(t) ≤

√
2πδu0(ηe1)

2ψ−1
b κ

+ √
Vu(t0)e

−ψ−1
b κ(t−t0)

+
∫ t

t0
e−ψ−1

b κ(t−s)
√
2πωκ‖ζ(s)‖ds

≤
√
2πδu0(ηe1)

2ψ−1
b κ

+ 2
√
2πωκcς2‖Pς‖πζ0(ηe1)

cς1ψ
−1
b ωo

+ √
Vu(t0)e

−ψ−1
b κ(t−t0)

+
√
2πωκ

√
Vς (t0)

√
cς1

(
ωo
2cς2

− ψ−1
b κ

)

e−ψ−1
b κ(t−t0)(1 − e

−(
ωo
2cς2

−ψ−1
b κ)(t−t0)

).

Next, the bounds of
√
Vς (tu) and

√
Vu(tu) will be

analyzed.
Based on the initial condition �0 > 1

ωo
, the initial

valueof
√
Vς satisfies that

√
Vς (t0) ≤ n

√
cς2(ω

n−1
o �n

0+
η f 0)whereη f 0 = | f̂t (t0)− ft (x̃(t0), u(t0), t0)|. Owing
to the definition of tu (24), the following inequalities
hold for ωo

κ
≥ 1 and κ ≥ max{1, 1

4ψ−2
b c2ς2

}.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
Vς (t0)e

− ωo(tu−t0)

2cς2 = √
Vς (t0)e

− nωo√
κ
ln(ωo�0)

≤ n
√
cς2

ωo
+ n

√
cς2η f 0

ωn
o�

n
0

,

e−ψ−1
b κ(tu−t0) = e−2ncς2ψ

−1
b

√
κ ln(ωo�0) ≤ 1

�n
0ω

n
o
.

(42)

Owing to (41)–(42), the following inequalities are sat-
isfied for any ωo ≥ ω2, κ ≥ κ2 and ωo

κ
≥ τ2,

where ω2 = max{κ2τ2, ω1}, κ2 = max{1, 1
4ψ−2

b c2ς2
}

and τ2 = max{1, 4ψ−1
b cς2}.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
Vς (tu) ≤ ηVς1(ω2) � 2cς2‖Pς‖πζ0(ηe1)√

cς1ω2
+ n

√
cς2

ω2
+ n

√
cς2η f 0

ωn
2�

n
0

,

√
Vu(tu) ≤ ηVu1(ω2, κ2) �

√
2πδu0(ηe1)

2ψ−1
b κ2

+ 2
√
2πω(ω2)cς2‖Pς‖πζ0(ηe1)τ2

cς1ψ
−1
b

+
√
Vu(t0)

ωn
2�

n
0

+
√
2πω(ω2)n

√
cς2√

cς1ψ
−1
b ω2

+
√
2πω(ω2)n

√
cς2η f 0√

cς1ψ
−1
b ωn

2�
n
0

.

(43)

Considering the initial condition satisfying�0 ≤ 1
ωo
,

(24) implies that tu = t0. It can be directly proved that
‖e(tu)‖, Vz(z(tu)),

√
Vς (tu) and

√
Vu(tu) are bounded

for ωo ≥ ω2. Without loss of generality, the bounds of
‖e(tu)‖, Vz(z(tu)),

√
Vς (tu) and

√
Vu(tu) can be also

denoted as ηe1, ηVz1, ηVς1 and ηVu1, respectively.
Part 2: The analysis for the closed-loop system for

t ∈ [tu,∞).
According to the control design (19) and the closed-

loop system (31)–(32), the variables e,ζ ,z and u are
continuous at tu . To simplify the mathematical expres-
sions in this part, we introduce the following notations.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηVK 2 � max{√ck2ηe1, 4‖PK ‖ψbηδu2}, ηVς 2 � ηVς 1,

ηVu2 � max{ηVu1, 2πω(ω2)ηζ2ψb},
ηVz2 � rz(nψϕ(ηe2 + Mx∗)),

ηe2 � ηVK 1√
ck1

, ηζ2 �
ηVζ 2√
cζ1

, ηδu2 �
√
2ηVu2.

(44)
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Then, we proceed to prove that there exist positive
constants (ω3, κ3, τ3) such that (e(t), z(t), ζ(t), δu(t))
stay in a bounded set �1 � {(e, z, ζ, δu) | √

VK ≤
ηVK 2,

√
Vz ≤ ηVz2,

√
Vς ≤ ηVς2,

√
Vu ≤ ηVu2} for

ωo ≥ ω3, κ ≥ κ3,
ωo
κ

≥ τ3 and t ≥ tu . The proof
consists of the following four steps:

Step 1 We assume that there exists t∗ ∈ [tu,∞)

such that
√
Vς (t∗) = ηVς2. Besides,

√
Vς (t) ≤ ηVς2,√

VK (t) ≤ ηVK 2,Vz(t) ≤ ηVz2 and
√
Vδu (t) ≤ ηVu2 for

t ∈ [tu, t∗]. Then, it can be deduced that ‖e(t)‖ ≤ ηe2,
‖ζ(t)‖ ≤ ηζ2 and |δu(t)| ≤ ηδu2 for t ∈ [tu, t∗]. Owing
to the dynamics (32) and the bound of �ζ1 (33), the
derivative of

√
Vς (t∗) satisfies

d
√
Vς (t∗)
dt

≤ −ωoηVς2

2cς2

+‖Pς‖(πζ1(ηe2) + (κ + 1)πδu (ηe2, ηδu2) + πω(ωo)κηζ2)√
cς1

. (45)

By selecting ω3 = max{ω2, 6cς2‖Pς‖(πζ1(ηe2) +
πδu (ηe2, ηδu2))/(ηVς2

√
cς1)} and τ3 = 6cς2‖Pς‖

(πω(ω2)ηζ2+πδu (ηe2, ηδu2))/(ηVς2
√
cς1), (45) directly

implies that
d
√

Vς (t∗)
dt < 0 for the (ωo, κ) satisfying

ωo ≥ ω3 and
ωo
κ

≥ τ3.

Step 2 We assume that there exists t∗ ∈ [tu,∞)

such that Vz(t∗) = ηVz2. Besides,
√
Vu(t) ≤ ηVu2,√

VK (t) ≤ ηVK 2, Vz(t) ≤ ηVz2 and
√
Vς (t) ≤ ηVς2 for

t ∈ [tu, t∗]. Proposition 1, the bound of x(t) satisfies
that

sup
tu≤t≤t∗

‖x(t)‖ ≤ nψϕ

(
sup

tu≤t≤t∗
‖x̃(t)‖

)

≤ nψϕ(ηe2 + Mx∗), ∀t ∈ [tu, t∗].
(46)

The definition of ηVz2 (44) implies that ηVz2 ≥
rz(suptu≤t≤t∗ ‖x(t)‖) ≥ rz(‖x(t∗)‖). Due to Assump-
tion 3, it can be verified that V̇z(z(t∗)) ≤ 0.

Step 3 We assume that there exists t∗ ∈ [tu,∞)

such that
√
Vu(t∗) = ηVu2. Besides,

√
Vu(t) ≤ ηVu2,√

VK (t) ≤ ηVK 2, Vz(t) ≤ ηVz2 and
√
Vς (t) ≤ ηVς2

for t ∈ [tu, t∗]. Hence, ‖e(t)‖ ≤ ηe2, ‖ζ(t)‖ ≤
ηζ2, |δu(t)| ≤ ηδu2 and |(b(t))−1| ≥ ψ−1

b for t ∈
[tu, t∗]. Based on (32)–(33), the derivative of √

Vu(t∗)
satisfies

d
√
Vu(t∗)
dt

≤ −ψ−1
b ηVu2κ

+
√
2

2
(πδu1(ηe2, ηδu2) + πωκηζ2). (47)

Owing to the definition of ηVu2 (44), it can be verified

that −ψ−1
b ηVu2
2 + πω(ωo)ηζ2 = −πω(ω2)ηζ2 ≤ 0 for

any ωo ≥ ω3. By choosing κ3 = 2
√
2πδu1(ηe2,ηδu2)

ψ−1
b ηVu2

, the

following inequality holds for κ ≥ κ3.

− ψ−1
b ηVu2

2
κ +

√
2πδu1(ηe2, ηδu2)

2
< 0. (48)

Hence, d
√
Vu(t∗)
dt < 0 for ωo ≥ ω3 and κ ≥ κ3.

Step 4 We assume that there exists t∗ ∈ [tu,∞)

such that
√
VK (t∗) = ηVK 2. Besides,

√
VK (t) ≤ ηVK 2,√

Vς (t) ≤ ηVς2, Vz(t) ≤ ηVz2 and
√
Vu(t) ≤ ηVu2 for

t ∈ [tu, t∗]. Hence, ‖e(t)‖ ≤ ηe2, ‖ζ(t)‖ ≤ ηζ2 and
|δu(t)| ≤ ηδu2 for t ∈ [tu, t∗]. According to (32), (33)
and (44), the derivative of

√
VK (t∗) satisfies

d
√
VK (t∗)
dt

≤ − ‖e(t∗)‖
2
√
VK (t∗)

(‖e(t∗)‖
−2‖PK ‖ψbηδu2) < 0. (49)

Due to Steps 1–4, it can be concluded that the vari-
ables e(t), z(t), ζ(t) and δu(t) stay in�1 for t ∈ [tu,∞)

if the parameters satisfyωo ≥ ω3, κ ≥ κ3 and
ωo
κ

≥ τ3.
Next, we will analyze the bounds of

√
VK (t),

√
Vς (t)

and
√
Vu(t) for t ≥ tu .

The analysis of the bound of
√
Vς (t). Due to (32)–

(33), for t ≥ tu , we have

d
√
Vς (t)

dt
≤ − ωo

2cς2

√
Vς (t)

+‖Pς‖(πζ1(ηe2) + (κ + 1)πδu (ηe2, ηδu2) + πω(ωo)κηζ2)√
cς1

.

(50)

Combined with Gronwall lemma,
√
Vς (t) has the fol-

lowing bound for ωo ≥ ω3, κ ≥ κ3 and
ωo
κ

≥ τ3.

√
Vς (t) ≤ ηVς2e

− ωo(t−tu )
2cς2

+θς1
1

ωo
+ θς2

κ

ωo
, ∀t ∈ [tu,∞), (51)
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where θς1 = (‖Pς‖(πζ1(ηe2) + πδu (ηe2, ηδu2))/
√
cς1

and θς2 = (‖Pς‖(πδu (ηe2, ηδu2)+πω(ω3)ηζ2))/
√
cς1.

The analysis of the bound of
√
Vu(t). Owing to

(32), (33) and (51), for t ≥ tu , there is

d
√
Vu(t)

dt
≤ −ψ−1

b κ
√
Vu(t)

+
√
2

2
(πδu1(ηe2, ηδu2) + πωκ‖ζ(t)‖)

≤ −ψ−1
b κ

√
Vu(t)

+
√
2

2

(
πδu1(ηe2, ηδu2)

+κ

πω

(
ηVς2e

− ωo
2cς2

(t−tu) + θς1
1
ωo

+ θς2
κ
ωo

)

√
cς1

⎞
⎟⎟⎠ .

Combined with Gronwall lemma, the bound of
√
Vu(t)

forωo ≥ ω3,κ ≥ κ3 and
ωo
κ

≥ τ4 � max{τ3, 4cς2ψ
−1
b }

is shown as follows.

√
Vu(t) ≤ ηVu2e

−ψ−1
b κ(t−tu) + θu1

ωo
+ θu2κ

ωo

+ θu3

κ
+ θu4

∫ t

tu
e−ψ−1

b κ(t−s)e
− ωo

2cς2
(s−tu)

ds

≤ (ηVu2 + θu4

ψ−1
b κ3

)e−ψ−1
b κ(t−tu) + θu1

1

ωo

+ θu2
κ

ωo
+ θu3

1

κ
, ∀t ∈ [tu,∞),

(52)

where θu1 =
√
2πω(ω3)θς1

2ψ−1
b

√
cς1

, θu2 =
√
2πω(ω3)θς2

2ψ−1
b

√
cς1

, θu3 =
√
2πδu1(ηe2,ηδu2)

2ψ−1
b

and θu4 =
√
2πω(ω3)ηVς 2

2ψ−1
b

√
cς1

.

The analysis of the bound of
√
VK (t). By denoting

t̃u = tu + lnωo

ψ−1
b

√
κ
, it can be deduced from (32) and (39)

that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
tu≤t≤t̃u

√
VK (t) ≤ √

ck2

(
‖e(tu)‖ + (‖AK ‖ηe2 + ψbηδu2)

lnωo

ψ−1
b

√
κ

)

≤ θe
lnωo√

κ
,

e−ψ−1
b κ(t̃u−tu ) = 1

ω
√

κ
o

≤ 1

ωo
,

(53)

for ωo ≥ ω3, κ ≥ κ4 � max{κ3, 1} and ωo
κ

≥
τ4, where θe = 2

√
ck2ncς2(‖A‖ηe1 + πe0(ηe1)) +√

ck2‖AK ‖ηe2+√
ck2ψbηδu2

ψ−1
b

. Then, the bound of
√
VK (t)

for t ≥ t̃u is analyzed. According to (32), (33) and
(52)–(53), the dynamics of

√
VK (t) satisfies the fol-

lowing equation for t ≥ t̃u .

d
√
VK (t)

dt
≤ −

√
VK (t)

2ck2
+ ‖PK ‖ψb|δu(t)|√

ck1

≤ −
√
VK (t)

2ck2
+

√
2‖PK ‖ψb√

ck1(
(ηVu2 + θu4

ψ−1
b κ

)e−ψ−1
b κ(t−tu )

+ θu1

ωo
+ θu2κ

ωo
+ θu3

κ

)

≤ −
√
VK (t)

2ck2
+

√
2‖PK ‖ψb√

ck1

(
(ηVu2

+ θu4

ψ−1
b κ

+ θu1)
1

ωo
+ θu2κ

ωo
+ θu3

κ

)

for ωo ≥ ω3, κ ≥ κ4 and ωo
κ

≥ τ4. With the help of
Gronwall lemma, we get the following bound of

√
VK

for ωo ≥ ω3, κ ≥ κ4, and
ωo
κ

≥ τ4.

sup
t≥t̃u

√
VK (t) ≤

√
VK (t̃u) + θe1

ωo
+ θe2κ

ωo
+ θe3

κ

≤ θe
lnωo√

κ
+ θe1

ωo
+ θe2κ

ωo
+ θe3

κ
,

(54)

where θe1 =
4ck2‖PK ‖ψb(ηVu2+ θu4

ψ
−1
b κ3

+θu1)

√
ck1

,

θe2 = 4ck2‖PK ‖ψbθu2√
ck1

and θe3 = 4ck2‖PK ‖ψbθu3√
ck1

.
According to Assumption 4, there exists a positive

constant ω4 ≥ ω3 such that

κ(ωo) ≥ κ4,
ωo

κ(ωo)
≥ τ4, (55)

for any ωo ≥ ω4. Notice that 1
ωo

≤ κ
ωo

for κ ≥ κ4 ≥ 1.
With the combination of the bounds of sup

t0≤t≤tu
‖e(t)‖,

√
VK (t),

√
Vς (t) and

√
Vu(t), i.e., (39), (51), (52), (53)

and (54), the equations (25)–(27) hold for ωo ≥ ω4. ��

5 Simulation

In this section, the simulation for an application exam-
ple, Chua’s circuit, is presented.

Figure 2 describes Chua’s circuit, which is fea-
tured with strong nonlinearity and can generate chaotic
response [42]. The mathematical model of Chua’s cir-
cuit is presented as follows [37,42].
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Fig. 2 Chua’s circuit

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = − 1

C1R
x1(t) + 1

C1R
x2(t) − 1

C1
fD(x1),

ẋ2(t) = − 1

C2R
x1(t) + 1

C2R
x2(t) + 1

C2
x3(t),

ẋ3(t) = 1

L
u(t) − 1

L
x2(t) − R0

L
x3(t),

(56)

where x1(t) and x2(t) represent the voltages across the
capacitor C1 and C2, x3(t) is the current through the
inductor L , u(t) is the input voltage, fD(x1) represents
the nonlinear current caused by the nonlinear resistor
D, and R and R0 are resistances. The units of voltage,
current, capacitance, inductance and resistance are volt
(V), ampere (A), farad (F), henry (H) and ohm (�),
respectively.

The control objective is to design the input voltage
u(t) such that the system states (x1(t), x2(t), x3(t)) can
track the reference signal (0, 0, 0).

In the simulation, the measurement of x1 can be
obtained, while x2 and x3 cannot bemeasured. Besides,

the detailed values of the system parameters, i.e., C1,
C2, L , R and R0, are unknown for control design,
whereas the signs of system parameters can be directly
verified by physical mechanism:

C1 > 0 (F), C2 > 0 (F), L > 0 (H),

R > 0 (�), R0 ≥ 0 (�). (57)

According to [37,42], the unknown nonlinear function
fD(x1) satisfies that fD(0) = 0.

Remark 11 The presented control objective is a classi-
cal stabilization problem [37,42]. However, the meth-
ods proposed in [37,42] require the measurements for
all states, i.e., x1, x2 and x3. In this paper, only the mea-
surement of x1 is utilized for the stabilization problem.
Moreover, the nominal values of system parameters,
i.e., C1, C2, L , R and R0, are unknown.

Next, the proposed ADRC is applied to the system
(56). Firstly, we denote the following new states.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1(t) = x1(t),

x̃2(t) = − 1

C1R
x1(t) + 1

C1R
x2(t) − 1

C1
f (x1),

x̃3(t) =
(

− 1

C1R
− 1

C1

d f (x1)

dx1

)(
− x1(t)

C1R
+ x2(t)

C1R
− f (x1)

C1

)

+ 1

C1R

(
− x1(t)

C2R
+ x2(t)

C2R
+ x3(t)

C2

)
.

(58)

Then, the integrators chain form is obtained as follows.⎧⎪⎪⎨
⎪⎪⎩

˙̃x1(t) = x̃2(t),

˙̃x2(t) = x̃3(t),

˙̃x3(t) = bu(t) + f,

(59)

where b and f satisfy the following equation.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b = 1

C1C2RL
,

f = − 1

C1

d2 fD(x1)

dx21

(
− x1(t)

C1R
+ x2(t)

C1R
− fD(x1)

C1

)2

− 1

C1C2R2

(
− x1(t)

C1R
+ x2(t)

C1R
− fD(x1)

C1

)

+ 1

C1C2R2

(
− x1(t)

C2R
+ x2(t)

C2R
+ x3(t)

C2

)
− 1

C1C2R

(
x2(t)

L
+ R0x3(t)

L

)

+
(

− 1

C1R
− 1

C1

d fD(x1)

dx1

)(
− 1

C1R
− 1

C1

d fD(x1)

dx1

)(
− x1(t)

C1R
+ x2(t)

C1R
− fD(x1)

C1

)

+ 1

C1R

(
− 1

C1R
− 1

C1

d fD(x1)

dx1

)(
− x1(t)

C2R
+ x2(t)

C2R
+ x3(t)

C2

)
.

Due to the transformation (58), it can be verified that
[x1 x2 x3] = [0 0 0] is equivalent to [x̃1 x̃2 x̃3] =
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Fig. 3 The response curves
of the state x1 for Cases 1–3
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Fig. 4 The response curves
of the state x2 for Cases 1–3
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Fig. 5 The response curves
of the state x3 for Cases 1–3
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Fig. 6 The response curves
of the input u for Cases 1–3
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Fig. 7 The estimation of
the state x2 via ESO for
Cases 1–3
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Fig. 8 The estimation of
the state x3 via ESO for
Cases 1–3
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Fig. 9 The estimation of
the total disturbance via
ESO for Cases 1–3
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[0 0 0]. Hence, the stabilization problem of the system
(56) can be reformulated as the stabilization problem
of the system (59).

Although the nominal value of b is unknown due to
the unknown system parameters C1, C2, L and R, it
can be verified by (57) that sgn(b) > 0. Based on the
sign of b, the proposed ADRC (15) and (19) with the
following controller parameters is utilized.

ωo = 100, K = [8 12 6]T , κ(ωo) = √
ωo. (60)

To investigate the capability of disturbance rejec-
tion, the following cases of uncertainties are consid-
ered, including the cubic function in [37] (Case 1).

Case 1 fD(x1) = −x1 + x31 ,

Case 2 fD(x1) = −1.3x1 + x31 ,

Case 3 fD(x1) = −x1 + x31 − sin(x1).

We consider the following system parameters and ini-
tial condition, which are provided in [37].
{
C1 = C2 = 1 (F), R0 = 0 (�), R = 1 (�), L = 2 (H),

x1(0) = 0.01 (V ), x2(0) = 0.2 (V ), x3(0) = 0.5 (A).
(61)

The simulation results of the proposed ADRC and
the following backstepping-based funnel control [37]

are presented in Figs. 3–9.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = 7r3(t) cos(πr3(t))z3(t),

z1(t) = x1(t),

z2(t) = x2(t) − 10r1(t) cos(πr1(t))z1(t),

z3(t) = x3(t) − 7r2(t) cos(πr2(t))z2(t),

ri (t) = 1

1 − (et − 1)2z2i (t)
, i = 1, 2, 3.

(62)

In addition, the integral of squared tracking error (ISE)
and the integral of squared control input (ISCI) are pre-
sented in Table 1.

For Case 1, the satisfied closed-loop performance of
the proposed ADRC and the backstepping-based fun-
nel control is shown in Figs. 3–5. From Figs. 3–5 and
ISE in Table 1, the closed-loop performance of the
backstepping-based funnel control becomes poor for
Cases 2–3. Especially for Case 3, the backstepping-
based funnel control systems becomes unstable. More-
over, Figs. 7–9 depict the estimating performance of
the proposedmethod,where the estimations for unmea-
sured integrators chain states and total disturbance are
close to the real value. The satisfied estimating per-
formance results in the highly consistent tracking per-
formance of the proposed ADRC despite mismatched
nonlinear uncertainty. Furthermore, according to the
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Table 1 Performance
indicators for proposed
ADRC and
backstepping-based funnel
control

Methods ISE ISCI

Proposed ADRC (Case 1) 6.6 × 10−4 196.4

Proposed ADRC (Case 2) 7.3 × 10−4 225.9

Proposed ADRC (Case 3) 1.0 × 10−3 359.9

Backstepping-based funnel control (Case 1) 1.2 × 10−3 532.3

Backstepping-based funnel control (Case 2) 1.5 × 10−3 17940

Backstepping-based funnel control (Case 3) 10.6 1527.9

response curves of inputs shown in Fig. 6 and ISCI in
Table 1, the control energy consumption of proposed
ADRC is much smaller.

6 Conclusion

For a class of lower-triangular nonlinear uncertain sys-
tems, the paper proposes a new ADRC based on the
control directions rather than the nominal values or
the approximative mathematical expressions of control
coefficients. The design ideology can be summarized
as the following three parts: (1) By transforming the
original states into the states of an integrators chain sys-
tem, the effects from the control input and uncertainties
to the controlled output are clearly shown; (2) Based
on the integrators chain form, the ESO is presented
to estimate the total disturbance and the integrators
chain states; (3) Inspired by the approximative dynamic
inversion method, a dynamical system is designed to
generate the input, which can approach the desired
input signal. Moreover, by associating the parameter
in dynamical input design with the ESO’s parameter,
the tuning method of the parameter in dynamical input
design is explicitly provided. With the consideration of
a large scope of mismatched nonlinear uncertainties,
the transient performance of the proposed ADRC is
theoretically investigated. Based on the presented the-
oretical results, the satisfied tracking and estimating
performance can be ensured by suitably enlarging the
ESO’s parameter.
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Appendix

Proof of Proposition 1

Part I: The analysis of the mapping ϕ. With the com-
bination of the dynamics (3) and the explicit form of
x̃i (1 ≤ i ≤ n) (7), it can be directly verified that
x̃i = ˙̃xi−1 for 2 ≤ i ≤ n. Then, for the transformation
(7), we will prove that the term

τ̃i � �i−2
j=1

d j−1

dt j−1

(
d(�

i− j−1
k=1 θk(t))

dt
xi− j

)

+�i−1
j=1

d j−1

dt j−1

(
(�

i− j−1
k=0 θk(t))φi− j

)
(63)

is a function dependent on (x1, · · · , xi−1, t) for 2 ≤
i ≤ n by mathematical induction in the following three
steps.

Step 1 (Consider the case that i = 2). It can be obtained
that

τ̃2 = θ0(t)φ1(x1, t) = φ1(x1, t). (64)

Hence, τ̃2 is a function dependent on (x1, t).

Step 2 (Consider the case that i = k (2 ≤ k ≤ n− 1)).
Suppose that τ̃k (2 ≤ k ≤ n−1) is a function dependent
on (x1, · · · , xk−1, t).

Step 3 (Consider the case that i = k + 1 (2 ≤
k ≤ n − 1)). Since τ̃k is a function dependent on
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(x1, · · · , xk−1, t), the state x̃k has the following form:

x̃k(t) = (�k−1
j=1θ j (t))xi (t) + τ̃k(x1, · · · , xk−1, t).

(65)

By taking the derivative of x̃k and utilizing the dynam-
ics (3), there is
˙̃xk(t) = x̃k+1(t)

= (�k−1
j=1θ j (t))(θk(t)xk+1(t) + φk(x1, · · · , xk, t))

+ d(�k−1
j=1θ j (t))

dt
xk(t)

+ ∂τ̃k(x1, · · · , xk−1, t)

∂t

+ �k−1
j=1

∂τ̃k(x1, · · · , xk−1, t)

∂x j

(θ j x j+1 + φ j (x1, · · · , x j , t)).

(66)

By comparing the form (66) with (7), it can be obtained
that

τ̃k+1 = (�k−1
j=1θ j (t))φk(x1, · · · , xk, t)

+ d(�k−1
j=1θ j (t))

dt
xk(t) + ∂τ̃k

∂t

+ �k−1
j=1

∂τ̃k

∂x j
(θ j x j+1 + φ j (x1, · · · , x j , t)).

(67)

Due to the supposition in Step 2, (67) illustrates that
τ̃k+1 is a function dependent on (x1, · · · , xk, t).

Based on the fact that τ̃i is a function dependent on
(x1, · · · , xi−1, t) for 2 ≤ i ≤ n, (7) can be rewritten in
the following form.
{
x̃1 = x1,

x̃i = (�i−1
j=1θ j (t))xi + τ̃i (x1, · · · , xi−1, t), 2 ≤ i ≤ n.

(68)

According to Assumption 2, the term �i−1
j=1θ j (t) is

nonzero for 2 ≤ i ≤ n. Then, the mapping from (x̃, t)
to (x, t) can be determined by the following recursive
way.

From (68), the functions ϕ1 and ϕ2 can be obtained
as follows.

ϕ1(x̃, t) = x̃1,

ϕ2(x̃, t) = x̃2 − τ̃2(x1, t)

θ1(t)
= x̃2 − τ̃2(ϕ1(x̃, t), t)

θ1(t)
.

(69)

Suppose that ϕi (x̃, t) exists for 2 ≤ i ≤ k ≤ n − 1.
Owing to (68), we can acquire the function ϕk+1(x̃, t)
as follows.

ϕk+1(x̃, t) = x̃k+1 − τ̃k+1(ϕ1(x̃, t), · · · , ϕk(x̃, t), t)

�k
j=1θ j (t)

,

2 ≤ k ≤ n − 1. (70)

Additionally, it is obvious that ϕn+1(x̃, t) = t . More-
over, the inverse of the mapping ϕ can be directly
obtained by (68).

Then, the bounds of ϕi (x̃, t) (1 ≤ i ≤ n + 1) are
analyzed. Owing to the dynamics (3), the expression of
τ̃i (63) implies that τ̃i is composed of the finite sums and
products of x j (1 ≤ j ≤ i − 1), φ j (1 ≤ j ≤ i − 1),
the partial derivatives of φ j (1 ≤ j ≤ i − 1) up to

(i − j − 1)-th order and θ
(p)
j (1 ≤ j ≤ i − 1, 0 ≤

p ≤ i − j −1). According to Assumption 2, there exist
continuous functions ψ̃τ,i (x1, · · · , xi−1) (2 ≤ i ≤ n)

such that

sup
t≥t0

|τ̃i (x1, · · · , xi−1, t)| ≤ ψ̃τ,i (x1, · · · , xi−1),

∀[x1 · · · xi−1] ∈ Ri−1, 2 ≤ i ≤ n. (71)

By introducing the non-decreasing continuous function

ψτ,i (�x ) � sup
‖[x1 ··· xi−1]‖≤�x

ψ̃τ,i (x1, · · · , xi−1)

for �x ≥ 0, (71) implies that

sup
t≥t0,‖[x1 ··· xi−1]‖≤�x

|τ̃i (x1, · · · , xi−1, t)|
≤ ψτ,i (�x ), ∀�x ≥ 0, 2 ≤ i ≤ n. (72)

Next, the bounds of ϕi are presented by recursive
method. Denote �̃x as a nonnegative constant. Based
on (69), the bounds of ϕ1 and ϕ2 are shown as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
t≥t0,‖x̃‖≤�̃x

|ϕ1(x̃, t)| ≤ sup
‖x̃‖≤�̃x

|x̃1| ≤ Mϕ,1(�̃x ) � �̃x ,

sup
t≥t0,‖x̃‖≤�̃x

|ϕ2(x̃, t)| ≤ sup
t≥t0,‖x̃‖≤�̃x

|x̃2| + |τ̃2(ϕ1(x̃, t), t)|
|θ1(t)|

≤ Mϕ,2(�̃x ) � �̃x + ψτ,2(Mϕ,1(�̃x ))

Mθ,1
.

(73)

Notice that Mϕ,1(·) and Mϕ,2(·) are increasing func-
tions. Suppose that

sup
t≥t0,‖x̃‖≤�̃x

|ϕi (x̃, t)| ≤ Mϕ,i (�̃x )
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where Mϕ,i is a continuous increasing function for 2 ≤
i ≤ k, 2 ≤ k ≤ n − 1 and �̃x ≥ 0. Then, the bound of
ϕk+1(x̃, t) can be obtained as follows.

sup
t≥t0,‖x̃‖≤�̃x

|ϕk+1(x̃, t)|

≤ sup
t≥t0,‖x̃‖≤�̃x

|x̃k+1| + |τ̃k+1(ϕ1(x̃, t), · · · , ϕk(x̃, t), t)|
|�k

j=1θ j (t)|
≤ Mϕ,k+1(�̃x )

�
�̃x + ψτ,k+1

(√
�k

j=1(Mϕ, j (�̃x ))2
)

�k
j=1Mθ, j

.

(74)

Hence, it can be concluded that there exist continu-
ous increasing functions Mϕ,i (1 ≤ i ≤ n) such that
supt≥t0,‖x̃‖≤�̃x

|ϕi (x̃, t)| ≤ Mϕ,i (�̃x ) for �̃x ≥ 0 and
1 ≤ i ≤ n.

By taking the partial derivatives of ϕi along the
dynamics (3), it can be deduced from the similar anal-
ysis (69)–(74) that there exist continuous functions
M ∂ϕ

∂ x̃ ,i and M ∂ϕ
∂t ,i such that

sup
t≥t0,‖x̃‖≤�̃x

∥∥∥∥
∂ϕi (x̃, t)

∂ x̃

∥∥∥∥
≤ M ∂ϕ

∂ x̃ ,i (�̃x ),

sup
t≥t0,‖x̃‖≤�̃x

∣∣∣∣
∂ϕi (x̃, t)

∂t

∣∣∣∣
≤ M ∂ϕ

∂t ,i (�̃x ), 1 ≤ i ≤ n. (75)

for any �̃x ≥ 0. Due to (73)–(75), (10) is proved by
defining

ψϕ(�̃x ) � max
1≤i≤n

{
Mϕ,i (�̃x ), M ∂ϕ

∂ x̃ ,i (�̃x )M ∂ϕ
∂t ,i (�̃x )

}
.

Part II: The analysis of the mapping γ . Based on the
analysis of τ̃i , themappingγ canbedirectly determined
by (68).Combinedwith the bounds of τ̃i (71)–(72), (68)
further implies that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
t≥t0,‖x‖≤�x

|γ1(x, t)| ≤|x1| ≤ Mγ,1(�x ) � �x ,

sup
t≥t0,‖x‖≤�x

|γi (x, t)| ≤ sup
t≥t0,‖x‖≤�x

(
|�i−1

j=1θ j (t)||xi | + |τ̃i |
)

≤Mγ,i (�x ) � �x� j=1M̄θ,i + ψτ,i (�x ), 2 ≤ i ≤ n,

(76)

for any given�x ≥ 0.Notice thatMγ,i (�x ) (1 ≤ i ≤ n)

are continuous increasing functions.
Similarly, by taking the partial derivatives of γi

along the dynamics (3), it can be deduced from

Assumption 2 that there exist continuous functions
M ∂γ

∂x ,i and M ∂γ
∂t ,i such that

sup
t≥t0,‖x‖≤�x

∥∥∥∥
∂γi (x, t)

∂x

∥∥∥∥ ≤ M ∂γ
∂x ,i (�x ),

sup
t≥t0,‖x‖≤�x

∣∣∣∣
∂γi (x, t)

∂t

∣∣∣∣ ≤ M ∂γ
∂t ,i (�x ), ∀ 1 ≤ i ≤ n,

(77)

for any �x ≥ 0. Based on (76)–(77) and the notation

ψγ (�x ) � max
1≤i≤n

{
Mγ,i (�x ), M ∂γ

∂x ,i (�x )M ∂γ
∂t ,i (�x )

}
,

then (9) is proved.

Proof of Proposition 2

Firstly, the bounds of b(t), (b(t))−1 and ḃ(t) are ana-
lyzed. According to the bounds of θi (t), (θi (t))−1 and
θ̇i (t) in Assumption 2, the expression of b(t) (12)
implies that
⎧⎪⎪⎨
⎪⎪⎩

|b(t)| ≤ �n
i=1M̄θ,i ,

|b−1(t)| = |�n
i=1θ

−1
i (t)| ≤ �n

i=1M
−1
θ,i ,

|ḃ(t)| = �n
j=1|θ̇ j (t)|�1≤i≤n,i 
= j |θi (t)| ≤ �n

i=1M̄θ,i .

(78)

By denotingψb = max{�n
i=1M̄θ,i ,�

n
i=1M

−1
θ,i }, (28) is

proved.
Next, the bound of f (x̃, t) is analyzed. Proposition 1

illustrates thatϕn+1− j (x̃, t) = xn+1− j for 1 ≤ j ≤ n−
1. Additionally, φ̃i (x̃, t) = φi (x1, · · · , xi , t) for 1 ≤
i ≤ n. From the expression of f (x̃, t) (12), f (x̃, t) can
be regarded as a function of (x, t), denoted as f̄ (x, t).

Owing to the dynamics (3) and the notation f̄ (x, t),
it can be verified that f̄ (x, t) is composed of the finite
sums and products of x j (1 ≤ j ≤ n), φ j (1 ≤ j ≤ n),
the partial derivatives of φ j (1 ≤ j ≤ n) up to (n− j)-

th order and θ
(p)
j (1 ≤ j ≤ n−1, 0 ≤ p ≤ n− j −1).

Due toAssumption 2, there exists a continuous function
ψ f,1(x) such that

sup
t≥t0

| f̄ (x, t)| ≤ ψ f,1(x), (79)
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which further implies that

sup
t≥t0,‖x̃‖≤�̃x

| f (x̃, t)| = sup
t≥t0,‖x̃‖≤�̃x

| f̄ (x, t)| ≤ sup
‖x̃‖≤�̃x

ψ f,1(x), ∀�̃x ≥ 0. (80)

Recalling the continuous increasing function ψγ (·) in
Proposition 1, owing to inverse function theorem, the
inverse function of ψγ (·) can be denoted as ψ−1

γ (·)
which is a continuous function in [0,∞). According to
(8)–(9) in Proposition 1, the following equation holds.

sup
‖x‖≤ψ−1

γ (�̃x /
√
n)

‖x̃‖ = sup
‖x‖≤ψ−1

γ (�̃x /
√
n)

∥∥[γ1(x, t) · · · γn(x, t)
]∥∥

≤ √
nψγ (ψ−1

γ (�̃x/
√
n)) = �̃x .

(81)

Based on (81), it can be verified that

{x̃ | ‖x̃‖ ≤ �̃x }
⊂

{
x̃ | ‖x‖ ≤ ψ−1

γ (�̃x/
√
n)

}
,

∀�̃x ≥ 0. (82)

With the combination of (80) and (82), it can be
obtained that

sup
t≥t0,‖x̃‖≤�̃x

| f (x̃, t)| ≤ sup
‖x̃‖≤�̃x

ψ f,1(x) ≤ ψ̄ f,1(�̃x )

� sup
‖x‖≤ψ−1

γ (�̃x/
√
n)

ψ f,1(x), ∀�̃x ≥ 0. (83)

Due to the continuity of ψ−1
γ (·) and ψ f,1(·), it can be

deduced that ψ̄ f,1(�̃x ) is a continuous function with
respect to the variable �̃x .

From Proposition 1, ϕn+1(x̃, t) = t and

xi = ϕi (x̃, t), 1 ≤ i ≤ n. (84)

Then, the partial derivatives of f (x̃, t) can be expressed
as follows.
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ f (x̃, t)

∂ x̃i
= ∂ f̄ (ϕ1(x̃, t), · · · , ϕn(x̃, t), t)

∂ x̃i

= �n
j=1

∂ f̄ (x1, · · · , xn, t)

∂x j

∂ϕ j (x̃, t)

∂ x̃i
, 1 ≤ i ≤ n,

∂ f (x̃, t)

∂t
= ∂ f̄ (x1, · · · , xn, t)

∂t
.

(85)

Due to Assumption 2, with the similar derivation as
(79), there exist continuous functions ψ f x, j and ψ f t

such that

sup
t≥t0

∣∣∣∣
∂ f̄ (x1, · · · , xn, t)

∂t

∣∣∣∣ ≤ ψ f t (x),

sup
t≥t0

∣∣∣∣
∂ f̄ (x1, · · · , xn, t)

∂x j

∣∣∣∣ ≤ ψ f x, j (x), 1 ≤ j ≤ n.

(86)

Based on the bounds of
∂ϕ j
∂xi

(10) and with the similar
procedure as (79)–(83), there exist continuous func-
tions ψ̄ f,2(·) and ψ̄ f,3(·) such that

sup
t≥t0,‖x̃‖≤�̃x

∥∥∥∥
∂ f (x̃, t)

∂ x̃

∥∥∥∥ ≤ ψ̄ f,2(�̃x ),

sup
t≥t0,‖x̃‖≤�̃x

∣∣∣∣
∂ f (x̃, t)

∂t

∣∣∣∣ ≤ ψ̄ f,3(�̃x ), ∀�̃x ≥ 0. (87)

By denoting ψ f (�̃x ) � max{ψ̄ f,1(�̃x ), ψ̄ f,2(�̃x ),

ψ̄ f,3(�̃x )}, (83) and (87) imply (29).

Proof of Proposition 3

For t ∈ [t0, tu), the control input satisfies that u(t) = 0.
Hence, the dynamics of x̃ in (11) can be rewritten as
follows.

˙̃x(t) = Ax̃(t) + B f (x̃, t). (88)

Combined with the dynamics of x̃∗(t) (17), the dynam-
ics of e(t) for t ∈ [t0, tu) is shown as follows.

ė(t) = Ae(t) + B�e0(e, t), t ∈ [t0, tu), (89)

where

�e0(e, t) = f (x̃∗ + e, t) + KT (x̃∗(t) − r̄(t)) − r (n)(t).

(90)

Then, consider the case that t ∈ [tu,∞). With the nota-
tion (1) and the desired input (18), the dynamics of x̃
in (11) can be reformulated as follows.

˙̃x(t) = Ax̃(t) + B(b(t)u(t) + f (x̃, t) − b(xt)u∗(t) + b(t)u∗(t))

= Ax̃(t) − BKT (x̃(t) − r̄(t)) + Br (n)(t) + Bb(t)δu(t)

= AK e(t) + Bb(t)δu(t) + ˙̃x∗(t).

(91)

Owing to the dynamics of x̃∗(t) (17), the dynamics of
e(t) for t ∈ [tu,∞) is obtained as follows.

ė(t) = AK e(t) + Bb(t)δu(t), t ∈ [tu,∞). (92)
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Before analyzing the closed-loop form of ζ(t) and
δu(t), the derivative of u∗(t) is calculated due to (18).
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇∗(t) = − ḃ(t)(− f (x̃, t) − KT (x̃ − r̄) + r (n))

b2(t)

+ − ∂ f
∂ x̃ (A(e + x̃∗) + B f (e + x̃∗, t)) − ∂ f

∂t

b(t)

+ −KT (A(e + x̃∗) + B f (e + x̃∗, t) − ˙̄r) + r (n+1)

b(t)
,

t ∈ (t0, tu),

u̇∗(t) = − ḃ(t)(− f (x̃, t) − KT (x̃ − r̄) + r (n))

b2(t)

+ − ∂ f
∂ x̃ (AK e + Bbδu + ˙̃x∗) − ∂ f

∂t

b(t)

+ −KT (AK e + Bbδu + ˙̃x∗ − ˙̄r) + r (n+1)

b(t)
,

t ∈ (tu,∞).

(93)

With the help of Remark 8, the derivative of u(t) is
shown as follows.

u̇(t) = −sgn(b(t))κ(ωo)( f̂t (t) + KT ( ˆ̃x(t)
−r̄(t)) − r (n)(t))

= −κ|b(t)| ft (x̃, u, t)+KT (x̃(t)−r̄(t))−r (n)(t)−KT
e T1ζ

b(t)

= −κ|b(t)|δu(t) + sgn(b(t))κKT
e T1ζ(t), (94)

where Ke = [KT 1]T . Since T−1
1 ALT1 = ωo Aς , the

dynamics of ζ for t ∈ [t0, tu) can be obtained from (11)
and (15):

ζ̇ (t) = ωo Aς ζ(t) + B f �ζ0(e, t), t ∈ [t0, tu), (95)

where

�ζ0(e, t) = d f (x̃, t)

dt
|along (88) = ∂ f

∂ x̃
(A(e + x̃∗)

+B f (e + x̃∗, t)) + ∂ f

∂t
. (96)

Owing to (94), the dynamics of ζ(t) for t ∈ [tu,∞) is
presented as follows.

ζ̇ (t) = ωo Aς ζ(t)

+B f �ζ1(e, ζ, δu, ωo, κ, t), t ∈ [t0, tu), (97)
where

�ζ1(e, ζ, δu , ωo, κ, t) = d(b(t)u(t) + f (x̃, t))

dt
|along (91)

= ḃδu + ḃ(− f (e + x̃∗, t)

− KT (e + x̃∗ − r̄) + r (n))/b

+ b(−κ|b|δu + sgn(b)κKT
e T1ζ )

+ ∂ f

∂ x̃
(AK e + Bbδu + ˙̃x∗) + ∂ f

∂t
.

(98)

With the combination of (93) and (94), the derivative
of δu(t) is shown as follows.
{

δ̇u(t) = −|b(t)|κδu(t) + �δu0(e, ζ, ωo, κ, t), t ∈ [t0, tu),
δ̇u(t) = −|b(t)|κδu(t) + �δu1(e, ζ, δu , ωo, κ, t), t ∈ [tu ,∞),

(99)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�δu0(e, ζ, ωo, κ, t) = sgn(b(t))κKT
e T1ζ + ḃ(t)(− f (x̃, t) − KT (e + x̃∗ − r̄) + r (n))

b2(t)

− − ∂ f
∂ x̃ (A(e + x̃∗) + B f (e + x̃∗, t)) − ∂ f

∂t − KT (A(e + x̃∗) + B f (e + x̃∗, t) − ˙̄r) + r (n+1)

b(t)
,

�δu1(e, ζ, δu, ωo, κ, t) = sgn(b(t))κKT
e T1ζ + ḃ(t)(− f (x̃, t) − KT (e + x̃∗ − r̄) + r (n))

b2(t)

− − ∂ f
∂ x̃ (AK e + Bbδu + ˙̃x∗) − ∂ f

∂t − KT (AK e + Bbδu + ˙̃x∗ − ˙̄r) + r (n+1)

b(t)
.

(100)

As for the dynamics of z(t), it can be directly
obtained from (11) that

ż(t) = g(z, ϕ1(x̃, t), · · · , ϕn(x̃, t), t), t ≥ t0. (101)

Based on the dynamics of e, ζ , δu and z, i.e., (89),
(92), (95), (97), (99) and (101), the closed-loop form
can be written as (31)–(32).

Next, we will prove that the bounds of �e0, �ζ0,
�δu0,�e1,�ζ1 and�δu1 satisfy (33) for e ∈ {e| ‖e‖ ≤
�e}, ζ ∈ {ζ | ‖ζ‖ ≤ �ζ }, δu ∈ {δu | |δu | ≤ �u} and
ωo ∈ {ωo| ωo ≥ ω∗

o} with any given positives �e,
�ζ , �u and ω∗

o . Hence, we only need to present the
detailed expressions of the functions πe0(·), πζ0(·),
πζ1(·), πδu (·), πδu0(·) and πδu1(·).

Due to Assumption 1, there is

sup
t≥t0

‖r̄(t)‖ ≤ nMr ,
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sup
t≥t0

{|r (n)(t)|, |r (n+1)(t)|} ≤ Mr . (102)

Combined with the dynamics of x̃∗ (17), there exists a
positive constant Mx∗ such that

sup
t≥t0

{‖x̃∗(t)‖, ‖ ˙̃x∗(t)‖} ≤ Mx∗ . (103)

According to the bounds of b, ḃ, b−1, f , ∂ f
∂ x̃ and ∂ f

∂t
shown in Proposition 2, (90) implies that

sup
‖e‖≤�e

|�e0(e, t)| ≤ πe0(�e)

� ψ f (�e + Mx∗) + ‖K‖(Mx∗ + nMr ) + Mr ,

∀�e ≥ 0. (104)

Due to (92), it can be directly obtained that

|�e1(δu, t)| = |b(t)δu(t)| ≤ ψb|δu |. (105)

Owing to (96) and (98), the bounds of�ζ0 and�ζ1 are
provided as follows.

sup
‖e‖≤�e

|�ζ0(e, t)| ≤ πζ0(�e)

� ψ f (�e + Mx∗ )
(
1 + ‖A‖(�e + Mx∗ ) + ψ f (�e + Mx∗ )

)
,

sup
‖e‖≤�e,|δu |≤�u ,ωo≥ω∗

o

|�ζ1(e, ζ, δu, ωo, κ, t)| ≤ πζ1(�e)

+πω(ω∗
o)κ‖ζ‖ + (κ + 1)πδu (�e, �u),

for any �e ≥ 0, �u ≥ 0 and ω∗
o ≥ 0, where πζ1(�e) =

ψ2
b (ψ f (�e + Mx∗)+‖K‖(�e + Mx∗ + nMr )+ Mr )+

ψ f (�e + Mx∗)(1 + ‖AK ‖�e + Mx∗), πω(ω∗
o) =

max{1, ψb}‖Ke‖· ‖T1(ω∗
o)‖ and πδu (�e, �u) =

max{ψ2
b�u, ψb�u(1+ψ f (�e+Mx∗))}.With the help of

Proposition 2, the following bounds of �δu1 and �δu2

are obtained from (100).

⎧⎪⎪⎨
⎪⎪⎩

sup
‖e‖≤�e

|�δu0| ≤ πδu0(�e) + πω(ω∗
o)κ‖ζ‖,

sup
‖e‖≤�e ,|δu |≤�u

|�δu1| ≤ πδu1(�e, �u ) + πω(ω∗
o)κ‖ζ‖,

∀�e ≥ 0, �u ≥ 0,

(106)

where πδu0(�e) = max{ψb, ψ
3
b }(ψ f (�e + Mx∗)(2 +

‖A‖(�e+Mx∗)+ψ f (�e+Mx∗))+‖K‖(1+‖A‖)(�e+
Mx∗+nMr+ψ f (�e+Mx∗))+2Mr ) andπδu0(�e, �u) =
πδu0(�e) + ψb(ψ f (�e + Mx∗) + ‖K‖)(‖AK ‖�e +
ψb�u + Mx∗ + nMr ).

Based on (104)–(106), (33) is proved.
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