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Abstract In this manuscript, a new approach of a
stochastic predator-prey interaction with protection
zone for the prey is developed and studied. The consid-
ered mathematical model consists of a system of two
stochastic differential equations, SDEs, describing the
interaction between the prey and predator populations
where the prey exhibits a social behavior called also
by “herd behavior.” First, according to the theory of
the SDEs, some properties of the solution are obtained,
including: the existence and uniqueness of the global
positive solution and the stochastic boundedness of the
solutions. Then, the sufficient conditions for the persis-
tence in the mean and the extinction of the species are
established, where the extinction criteria are discussed
in two different cases, namely, the firstcase is the sur-
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vival of the prey population, while the predator popu-
lation goes extinct; the second case is the extinction of
all prey and predator populations. Next, by construct-
ing a suitable stochastic Lyapunov function and under
certain parametric restrictions, it has been proved that
the system has a unique stationary distribution which
is ergodic. Finally, some numerical simulations based
on the Milstein’s higher-order scheme are performed
to illustrate the theoretical predictions.

Keywords Stochastic predator-prey model · Protec-
tion zone · Herd behavior · White noise · Brownian
motions · Persistence · Stationary distribution ·
Ergodicity · Extinction

Mathematics SubjectClassification 60H10 · 65C30 ·
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1 Introduction

In natural ecosystems, the dynamic interaction between
the predator and the prey has long been and will con-
tinue to be one of the most attractive field in mathemat-
ics due to its existence and importance in mathematical
ecology. The preservation of the balance in an ecosys-
tem is necessary for the ecologists. It depends on differ-
ent relationships between organisms in nature, which
can be divided into several forms such as competition,
symbiosis, predator-prey interactions and so on. One
of the first models describing the interaction between
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species was developed in the 1920s, independently by
the American Alfred Lotka [31] (1880–1949) and the
Italian Vito Volterra [44] (1860–1940), and is known
as Lotka–Volterra or predator-prey model. Through-
out the last century, several researchers are interested
in the mathematical ecology area [1,2,39,40,42,43].
They have proposed and studied several ecological phe-
nomena between species throughmodels of ordinary or
partial differential equations which describe the inter-
actions between these species in nature. The results of
these studies can determine and predict the behavior of
the living beings in nature which provides enough time
to ecologists to give an appropriate control strategy that
yields to avoid extinction of the living beings.

In terms of mathematical modeling, the global
dynamics of predator-prey systems can be affected by
many factors such as death rate, birth rate, time delay
and so on. One crucial component to describe the rela-
tionship between the prey and predator populations
is the predator-prey interaction (also called functional
response). This latter one can be classified into many
different types such as Holling I–IV types, Hassell–
Varley type, Crowley–Martin type, and Beddington–
DeAngelis type and so on. In savanna forests, most
domestic species live in huge groups permanently and
establish stable social relationships, such as elephants,
zebras, buffaloes, bees, deers and others. This behav-
ior gives them various advantages, where the weakest
preys will be inserted in the interior of the herd and the
strongest ones take the position in the exterior corri-
dor of the herd. This strategy may reduce the predation
rate thanks to the protection zone formed by the prey. In
addition, it increases the vigilance for the prey against
the predator, which causes confusion for the predator
and distracts the predator from his target. Furthermore,
the social behavior improves the method of locating
food, and also it contributes to the process of promot-
ing feeding to different herds through the exchange of
information regarding the location of food or how to get
it. The first mathematical approach of the social behav-
ior has been offered by Venturino et al. [1], where they
have supposed that the interaction between the prey
population and the predator population is done only
on the outermost of the herd formed by the prey. It
is equivalent to say that the number of the captured
prey by a successful predator attack will be propor-
tional to the density which is on the boundary of the
herd. This latter leads to a new functional response in
terms of square root of the prey density. Later, Braza

[2] takes in the account the average time for the preda-
tor to process the hunted prey, where he investigate
with a new interaction functional with a square root by
using an approximation of a classical Holling II func-
tional response. The phenomenon of the herds for the
animals tempted many researchers, which enriched the
environmental and ecological field. We refer the read-
ers to papers [3,4,39–43,47].

Besides, the prey herd’s shape changes from one
species to another depending on the physiological and
sociological characteristics that control the behaviors
of living beings. However, the way at which the ani-
mals interact with their environment, the number of
their individuals as well as their individual efficiency,
all of these factors and more will determine how the
prey form their herd. The concept of herd shape for
animals was modeled and introduced for the first time
by Venturino et al. [43], where they generalized the
interaction between the prey and the predator in both
cases 2D and 3D of herd’s forms with a new functional
response in terms of a new parameter which models
the shape of the herd. For better explanation, we con-
sider the following deterministic model that has been
introduced in [43]
⎧
⎪⎨

⎪⎩

d

dt
u(t) = ρu(t)

(

1 − u(t)

k

)

− δuα(t)v(t),

d

dt
v(t) = −ηv(t) + eδuα(t)v(t),

(1.1)

where u(t) and v(t) stand for prey and predator den-
sity at time t , respectively. ρ is the intrinsic growth rate.
k is the environment carrying capacity for the prey. η

represents the natural mortality rate for the predators.
δ stands for the predation rate of the prey population. e
is the conversion rate of the prey density to a predator
density, and 0 < α < 1 represents the rate of the prey
herd’s shape. For the biological relevance of the param-
eter α, we consider a simple example for the case of
2D herd shape. We assume that the prey form a group
inR2 with some regular shape such as the circles or the
squares, and we find that the number of the captured
preys by the predator will be proportional to the square
root of the prey population density (i.e., α = 1/2).
We consider of course the interaction between the two
species that affects mainly the prey individuals which
are in the boundary of the herd. Clearly, the regular
forms do not only exist in the case of 2D, however, in
the case of 3D such as birds or sardines, where the
prey forms a regular form (cube, sphere andso on).
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Fig. 1 Impact of the prey herd’s shape rate α on the quantity of
the captured prey by one predator for different values of α where
δ = 0.5, th = 1

Then, the consumed prey by a predator will be pro-
portional to u2/3. Obviously, for α = 1, model (1.1)
turns into the classical predator-prey model of Lotka
and Volterra [31,44]. In these last years, model (1.1)
is widely studied by several researchers. In [47], the
authors obtained the global dynamics of model (1.1).
They discussed the singularity near the original equilib-
rium point. Further, the dynamical behavior of model
(1.1) has been investigated in the presence of spatial
diffusion in [14]. More recently, the author in [13] has
proposed a new approach of system (1.1) with Holling
II functional response as follows
⎧
⎪⎪⎨

⎪⎪⎩

d

dt
u(t) = ρu(t)

(

1 − u(t)

k

)

− δuα(t)v(t)

1 + δthuα(t)
,

d

dt
v(t) = −ηv(t) + eδuα(t)v(t)

1 + δthuα(t)
,

(1.2)

We mention that the parameters of model (1.1) remain
the same for model (1.2) and the new parameter th rep-
resents the time spent by predator in handling with the
prey (please see [2,13]). The main interest in [13] is to
study the impact of the herd shape rate α on the global
dynamics of model (1.2) with the presence of the time
delay. In addition, the author has proved that the time
delay plays an important role on the stability of the
equilibria which gives a rich dynamics such as Hopf
bifurcation and transcritical bifurcation (Fig. 1).

In the real-life situations, all ecological processes
are inevitably affected by environmental noise which
represents an important parameter in an ecosystem;
however, themathematicalmodeling of ecological phe-
nomena by a deterministic approach gives limitations
in terms of results, which leads to difficulties in fitting
of data and predicting the future dynamics of the sys-

tem precisely. Up to now, a large number of researchers
have introduced a stochastic environmental variation
using theBrownianmotion into parameters in the deter-
ministic model to construct a stochastic predator-prey
models, which has been considered as a stochastic fluc-
tuations. For more details on the stochastic predator-
prey models, May [34] emphasizes out that due to con-
tinuous environmental fluctuation, the parameters in
a systems such as the birth rates, carrying capacity,
death rates and so on exhibited random fluctuations to
a great or lesser extent. Zhang et al. [49] considered
a stochastic predator-prey model with hyperbolic mor-
tality and Holling type II functional response in which
they founded sufficient conditions for the existence and
uniqueness of an ergodic stationary distribution and
derived sufficient conditions for extinction of the preda-
tor populations. Jingliang and Wang [20] have deeply
discussed the persistence, permanent and extinction
of a stochastic model of a predator-prey system with
Holling-type II functional response. Sengupta et al.
[38] examined a stochastic nonautonomous predator-
prey system with Holling-type III functional response
and predator’s intra-specific competition where they
obtained the stochastic permanence. Liu and Bai [25]
established the sufficient and necessary criteria for the
existence of optimal harvesting strategy for a stochas-
tic predator-prey model. In the literature, the kind of
stochastic predator-prey interaction was widely used,
and we refer the readers to [5,8,9,11,12,17–19,26–
30,33,45,46,48–50].

Motivated by the above-referred works and inspired
by the work in [13], we introduce a random fluctua-
tion to system (1.2). Our principal topic is to prove
that the random fluctuations can completely change the
dynamics generated by model (1.2), where in this case
the extinction of both species occurs. There are many
methods to establish the stochastic fluctuations into
dynamical systems. One of themost used approachwas
adopted in [20,28,30,37].We suppose that the intrinsic
growth rate of prey and the death rate of predator are
mainly affected by environmental noise such that

ρ −→ ρ + βdW1(t), −η −→ −η + γ dW2(t),

where Wi (t)(i = 1, 2) are the mutually indepen-
dent standard Brownian motions with Wi (0) = 0. β

and γ are positive and represent the intensities of the
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white noise. The stochastic predator-prey version cor-
responding to model (1.2) takes the following form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du(t) =
[

ρu(t)

(

1 − u(t)

k

)

− δuα(t)v(t)

1 + δthuα(t)

]

dt + βu(t)dW1(t),

dv(t) =
[

−ηv(t) + eδuα(t)v(t)

1 + δthuα(t)

]

dt + γ v(t)dW2(t).

(1.3)

For our best of knowledge, the dynamics of stochas-
tic predator-prey model (1.3) has never been studied.
The present paper is organized as follows. In Sect. 2,
some results on the stochastic differential equations
have devoted which have been used in the rest of sec-
tions. In Sect. 3, the properties of stochastic predator-
prey model (1.3) have been established including: the
global existence and uniqueness for stochastic bound-
edness of positive solution by using the Itô’s formula
and the comparison theorem of stochastic equations.
The persistence and extinction criteria of the species
are discussed in Sect. 4, where the sufficient conditions
for extinction in two case as well as the persistence of
the species have been obtained. In Sect. 5, the existence
and uniqueness of an ergodic stationary distribution of
the positive solutions for system (1.3) have been proved
under certain parametric restrictions. Several numeri-
cal simulations are offered in Sect. 6 to support the
theoretical results. Finally, conclusions and discussions
ended this paper in Sect. 7.

2 Preliminaries

For the purpose of simplicity, it is necessary to give
some concepts and basic theory on the stochastic differ-
ential equations which are inspired from [32] and then
used in the rest of this paper. Let (�,F , {Ft }t>0,P) be
a complete probability space with a filtration {Ft }t>0

satisfying the usual conditions (i.e., it is increasing and
right continuous, while F0 contains all P−null sets).
Also we let Wi (t) be a mutually independent standard
Brownian motions defined on the complete probabil-
ity space (�,F , {Ft }t>0,P) for i = 1, 2. Define the
following n-dimensional Euclidean space

R
n+ = {U = (u1, . . . , un) ∈ R

n : u j > 0, 1 ≤ j ≤ n},
and

R
n
+ = {U = (u1, . . . , un) ∈ R

n : u j ≥ 0, 1 ≤ j ≤ n}.

Lemma 2.1 (Itô’s formula [32])

Consider the n-dimensional Markov process take the
following stochastic differential equation

dU (t) = f (U (t))dt + g(U (t))dW (t), for t > t0,

(2.1)

where U (0) = U0 ∈ R
n is the initial value and

W (t) represents the n-dimensional standard Brown-
ian motion defined on the complete probability space
(�,F , {Ft }t>0,P). f ∈ L2(R+;Rn), g ∈
L2(R+;Rn×m) are measurable functions. Denote by
C2(Rn;R+) the family of all nonnegative functions
V (U (t), t) defined on R

n such that they are contin-
uously twice differentiable in U. Then V (U (t), t) is
again an Itô’s process with the stochastic differential
equation given as

dV (U (t), t) = LV (U (t), t)dt

+VU (U (t), t)g(U (t)dW (t), for t > t0, (2.2)

where L is the differential operator of Eq. (2.1) defined
in [32] as

L =
n∑

i=1

fi (U, t)
∂

∂Ui

+1

2

n∑

i, j=1

[
gT (U, t)g(U, t)

]

i, j

∂2

∂Ui∂u j
. (2.3)

Then, we have

LV (U (t), t) = Vt (U (t), t) + VU (U (t), t) f (U )

+1

2
trace

[
gT (U )VUU (U (t), t)g(U )

]
,

(2.4)

where

Vt (U, t) = ∂V (U, t)

∂t
, VU (U, t)

=
(

∂V (U, t)

∂U1
, . . . ,

∂V (U, t)

∂Un

)

, VUU (U, t)

=
(

∂2V (U, t)

∂Ui∂U j

)

n×n

.

Definition 2.2 [15] The transition probability func-
tion P(υ, y, t, N )) is said to be time-homogeneous
(and the corresponding Markov process is called time-
homogeneous) if the functionP(υ, y, t +υ, N ) is inde-
pendent of the variable υ, where 0 ≤ υ ≤ t, y ∈ R

n

and N ∈ B with B is the σ -algebra of Borel sets in
R

n .
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Putting

dZ(t) = f (Z(t), t)dt +
k∑

ς=1

gς (Z(t), t)dWς (t)dW (t),

(2.5)

where Z(t) is a regular time-homogeneous Markov
process in R

n .
The diffusion matrix associated with the process

Z(t) is given as

A(z) = (bi, j (z)), bi, j (z) =
k∑

ς=1

gi
ς g j

ς . (2.6)

Lemma 2.3 [15] We said that the Markov process Z(t)
has a unique ergodic stationary distribution χ(.) if
there is a bounded domain E ⊂ R

n with regular bound-
ary � and the following properties hold:

(P1) : There exists a positive number c̃ such that

n∑

i, j=1

bi, j (z)ξiξ j

≥ c̃|ξ |2, z ∈ E, ξ ∈ R
n .

(P2) : There is a nonnegative C2−function denoted
by V such that LV is negative for any R

n+ \ E.

3 Properties of the solution

In this section, according to the best result in [18], we
prove that model (1.3) is well-posed in the sense that
for any pair of positive initial value (u(0), v(0)), sys-
tem (1.3) has a unique global solution which remains
positive and bounded. By using the Lyapunov analysis
method [6–8,26], we show that the solution is global.
Next, we analyze the boundedness of the state variables
u and v.

3.1 Existence and uniqueness of the global positive
solution

Since u(t) and v(t) denote the population densities of
the prey and the predator, respectively, then, we are
only interested in the positive solutions. Thus, we have
the following theorem.

Theorem 3.1 For each initial values (u(0), v(0)) ∈
R
2+, there exists a unique positive local solution

(u(t), v(t)) of system (1.3) for all t ∈ [0; τe) almost
surely (a.s.), and the solution remains in R

2+ with prob-
ability 1 where τe is the explosion time.

Proof Putting
X (t) = ln u(t), Y (t) = ln v(t),
then from the Itô’s formula [32], system (1.3) can

be written as

⎧
⎪⎪⎨

⎪⎪⎩

dX (t) =
[

X (t)
(
ρ − β2

2 − eX (t)

k

)
− δeαX (t)

1+δtheαX (t) eY (t)
]
dt + βdW1(t),

dY (t) =
[
−ηeY (t) − γ 2

2 + eδeαX (t)

1+δtheαX (t)

]
dt + γ dW2(t),

(3.1)

with the initial values X (0) = ln u(0), Y (0) = ln v(0).
It is easy to see that the right-hand side of the above
system satisfies the local Lipschitz condition; then, for
any given initial values X (0) > 0, Y (0) > 0 there is a
unique maximal local solution (X (t), Y (t)) for all t ∈
[0; τe) where τe is the explosion time of the solution.
Now, using the Itô’s formula [32], we obtain u(t) =
eX (t) and v(t) = eY (t) as the positive local solution of
system (1.3) with the initial value u(0) > 0, v(0) > 0.
The proof is completed. ��

Now, we focus on proving the global existence of
the solution for our proposed model (1.3). For this task,
we only need to prove that τe goes to the infinity (i.e.,
τe = ∞); then, we have the following theorem

Theorem 3.2 For each (u(0), v(0)) ∈ R
2+, there

exists a unique positive global solution (u(t), v(t)) of
system (1.3) for all t > 0 almost surely (a.s.), and the
solution remains in R

2+ with probability 1.

Proof Let m0 be a sufficiently large nonnegative inte-
ger number, such that u(0) and v(0) lie inside in the

interval [ 1

m0
, m0]. For any integer m > m0, we can

define the following stopping times as [32]

τm = inf

{

t ∈ [0; τe) : u(t) /∈
(
1

m
, m

)

or
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v(t) /∈
(
1

m
, m

)}

. (3.2)

Obviously, τm increases when m −→ ∞. Set τ∞ =
lim

m→+∞ τm , with τ∞ < τe a.s.. Next, we only need to

prove that τ∞ = ∞, then τe = ∞ for which we obtain
(u(t), v(t)) ∈ R

2+ a.s. for all t ≥ 0. If this statement is
not verified, then there exist T > 0 and ε ∈ (0, 1) such
that

P(τ∞ ≤ T ) > ε. (3.3)

Consequently, there is an integer m1 > m0 such that

P(τm ≤ T ) > ε, for all m ≥ m1. (3.4)

Now, let

V (u, v) = u − 1 − ln u + 1

e
(v − 1 − ln v) (3.5)

be a C2 function. It is not difficult to prove that
V (u, v) ≥ 0 for all (u, v) ∈ R

2+. This statement comes
from the following inequality

u − 1 − ln u ≥ 0, ∀u > 0. (3.6)

Using the Itô’s formula [32] yields

dV (u, v) = LV (u, v)dt + β(u − 1)dW1(t)

+γ
1

e
(v − 1)dW2(t), (3.7)

from the definition of the operator L given in Sect. 2,
a straightforward calculation gives

LV = ρu − ρ

k
u2 − ρ + ρ

k
u + δuαv

1 + δthuα

− δv

u1−α(1 + δthuα)
− η

e
v + η

e

− δuαv

1 + δthuα
+ δuα

1 + δthuα

+1

2
β2 + 1

2e
γ 2,

≤ ρ(k + 1)

k
u − ρ

k
u2 + δuα

1 + δthuα

+η

e
+ 1

2
β2 + 1

2e
γ 2,

≤ ρ(k + 1)

k
u − ρ

k
u2 + 1

th

+η

e
+ 1

2
β2 + 1

2e
γ 2,

≤ ρ(k + 1)2

4k
+ 1

th

+η

e
+ 1

2
β2 + 1

2e
γ 2,

≤ M,

where

ρ(k + 1)2

4k
= sup

u∈R+
{

ρ(k + 1)

k
u − ρ

k
u2

}

,

and M is a positive constant. Then we have

dV (u, v) ≤ Mdt + β(u − 1)dW1(t)

+γ (v − 1)dW2(t). (3.8)

Now, integrating both sides of the above inequality
from 0 to τm ∧ T and take the expectation on both
sides leads to

EV (u(τm ∧ T ), V (τm ∧ T ))

≤ V (u(0), v(0)) + ME(τm ∧ T ), (3.9)

which gives

EV (u(τm ∧ T ), V (τm ∧ T ))≤V (u(0), v(0)) + MT,

(3.10)

where τm ∧ T = min{τm, T }. Taking �m = {τm ≤ T }
form ≥ m1 and from (3.4) we obtainP(�m) ≥ ε. Note
that for any ω ∈ �m there exists u(τm, ω) or v(τm, ω)

equals either m or 1
m . Hence V (u(τm, ω), v(τm, ω)) is

no less than

min

{

m − 1 − lnm ,
1

m
− 1 − ln

1

m

}

. (3.11)

Therefore

V (u(τm, ω), v(τm, ω))

≥ (m − 1 − lnm) ∧
(
1

m
− 1 − ln

1

m

)

. (3.12)

So, using inequality (3.2), we obtain

V (u(0), v(0)) + MT ≥ E[I�m (ω)V (u(τm , ω), v(τm , ω))]
≥ ε(m − 1 − lnm) ∧

(
1

m
− 1 − ln

1

m

)

, (3.13)

where I�m represents the indicator functionof�m . Tak-
ing m −→ ∞, we get

∞ > V (u(0), v(0)) + MT = ∞, (3.14)

which gives a contradiction. Hence, we must have
τ∞ = ∞ and consequently the solution of system (1.3)
exists for all t ≥ 0. This completes the proof of Theo-
rem 3.2. ��
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3.2 Stochastic boundedness

Biological validity of a mathematical model is decided
by its boundedness. The nonexplosion property in a
population dynamical system is often not sufficient.
However, the ultimate boundedness property is more
desired. Now, we establish the theorem which gives us
almost sure eventual boundedness of the solutions. To
this end, we first give the definition of stochastic ulti-
mate boundedness which is one of the most important
topics in population dynamics

Definition 3.3 (see [23]) The solution U (t) = (u(t),
v(t)) of system (1.3) is said to be stochastically ulti-
mately bounded, if for all a ∈ (0; 1), there exists a
positive constant λ = λ(a), such that for each initial
value U (0) ∈ R

2+, the solution U (t) satisfying the fol-
lowing property

lim
t→∞ supP{|U (t)| > λ} < a. (3.15)

Theorem 3.4 For all initial value (u(0), v(0)) ∈ R
2+,

the solutions of system (1.3) are stochastically ulti-
mately bounded.

Proof Let (u(t), v(t)) be any solution of system
(1.3). From Theorem 3.2, we know that the solution
(u(t), v(t)) will remain in R

2+ for all t ≥ 0, a.s.. Now
define the two Lyapunov functions

F(u, v) = et u p, G(u, v) = etv p, with

(u, v) ∈ R
2+ and p > 0. (3.16)

From the Itô’s formula [32] and system (1.3), one can
obtain

d(et u p) = et u pdt + pet u p−1du

+ p(1 − p)et u p−1

2
(du)2,

= et u pdt + pet u p−1

[

ρ − ρu

k
− δuα−1v

1 + δthuα

]

dt

+1

2
p(p − 1)et u pβ2dt + pet u pβdW1(t),

= et u p
{
1 + p

[
ρ − ρu

k

− δuα−1v

1 + δthuα

]

+ p(p − 1)

2
β2

}

dt + pet u pβdW1(t),

with a similarly calculation, we get

d(etv p) = etv p
{

1 + p

[

−η + eδuαv

1 + δthuα

]

+ p(p − 1)

2
γ 2

}

dt + petv pγ dW2(t).

Then, we have

L F = et uq
{

1 + p

[

ρ − ρu

k
− δuα−1v

1 + δthuα

]

+ p(p − 1)

2
β2

}

≤ M1et ,

and

LG = etvq
{

1 + p

[

−η + eδuαv

1 + δthuα

]

+ p(p − 1)

2
γ 2

}

≤ M2et ,

where

M1 =
(

k

ρ

)p

⎛

⎜
⎝

1 + ρp + t−α
h + 1

2
p(p − 1)β2

p + 1

⎞

⎟
⎠

p+1

,

M2 =
(
1

m

)p

⎛

⎜
⎜
⎝

1 + ρp +
(

e

th

)α

+ 1

2
p(p − 1)β2

p + 1

⎞

⎟
⎟
⎠

p+1

.

Hence, we have

et
E[u p] − E[u p(0)] ≤ M1et and et

E[v p]
−E[v p(0)] ≤ M2et .

This leads to

lim
t→∞ supE[u p] ≤ M1 < ∞,

lim
t→∞ supE[v p] ≤ M2 < ∞.

Now, for U (t) = (u(t), v(t)) ∈ R
2+, we have

|U (t)|p ≤ 2p/2(u p + v p) which gives

lim
t→∞ supE[|U (t)|p] ≤ M3 < ∞,

where M3 = 2p/2(M1 + M2).

For any a > 0, taking λ(a) =
(

M3
a

)1/p
and apply-

ing the Chebyshev inequality yield

P{|U (t)| > λ}
≤ E[|U (t)|q ]

λp(a)
.

Thus

lim
t→∞P{|U (t)| > λ}

≤ M3

λp(a)
= a.

This leads to required assertion (3.15). The proof of
Theorem 3.4 is completed. ��
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4 Discussion on the persistence and extinction
criteria

In this section, we shall discuss the case of the per-
sistence and the extinction of the two population (the
prey and the predator) for our proposed model (1.3),
where we shall try to give the sufficient conditions
which determines the extinction and the persistence of
stochastic predator-prey model (1.3). Firstly, we study
the extinction scenario in two situations, the first case
is the prey population survival where the predator pop-
ulation goes to extinction, the second case is all the
two species will die out. Before proceeding with the
analysis, we give the following definitions.

Definition 4.1 [49]

(i) If lim
t→∞ u(t) = 0, a.s., then the prey density u(t) is

said to be extinctive almost surely.
(ii) If lim

t→∞ v(t) = 0, a.s., then the predator density

v(t) is said to be extinctive almost surely.

Now, we give the fundamental lemma which will be
used in the following

Lemma 4.2 [17,18] Define the following one-dimensional
stochastic differential equation

dU (t) = ρU (t)

(

1 − U (t)

k

)

dt + βU (t)dW1(t),(4.1)

where ρ, k and β are positive, and W1(t) is standard
Brownian motion. Then we have the following asser-
tions

• if ρ <
β2

2
, then we have lim

t→∞ U (t) = 0.

• if ρ >
β2

2 , then we have

lim
t→∞

lnU (t)

t
= 0, a.s.,

lim
t→∞

1

t

∫ t

0
U (s) ds = k − kβ2

2ρ
.

Theorem 4.3 Assuming that

(H) : ρ >
β2

2
,

and let (u(t), v(t)) be a positive solution of system (1.3)
with the initial condition (u(0), v(0)) ∈ R

2+.
Putting

A = −η − γ 2

2
+ eδ

∫ ∞

0

uα

1 + δthuα
χ(u) du.

If A < 0, then we have

lim
t→∞ v(t) = 0, a.s.,

which means that the predator density goes to extinc-
tion with probability one. In addition, the distribution
of u(t) converges weakly a.s. to the measure which has
the density

χ(u) = �

β2 u
−2+ 2ρ

β2 e
− 2ρ

kβ2 , u ∈ (0;∞),

where

� =
⎡

⎣
1

β2

(
kβ2

2ρ

) 2ρ
β2

−1

�

(
2ρ

β2 − 1

)]−1

,

is a constant satisfying
∫ ∞

0
χ(u) du = 1 and � is the

gamma function.

Proof Consider the following 1-dimensional stochas-
tic differential equation
{
dU (t) = ρU (t)

(
1 − U (t)

k

)
dt + βU (t)dW1(t),

U (0) = u(0).

(4.2)

Putting

g(u) = ρu
(
1 − u

k

)
, β(u) = βu, u ∈ (0;∞).

By a straightforward calculation we get:
∫

g(s)

β(s)2
ds =

∫ (
ρ

sβ2 − ρ

kβ2

)

ds

= ρ

β2 ln s − ρ

kβ2 + �.

Therefore,

e

∫
g(s)
β(s)2

ds

= e

(

�s
ρ

β2

)

e

(

− ρ

kβ2 s

)

.

Then, from Theorem 1.16 in [22] it follows that Eq.
(4.2) has the ergodic property and the invariant density
is given as

χ(u) = �

β2 u
−2+ 2ρ

β2
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e

(

− 2ρ
kβ2

)

, u ∈ (0;∞), (4.3)

where

� =
⎡

⎣
1

β2

(
kβ2

2ρ

) 2ρ
β2

−1

�

(
2ρ

β2 − 1

)]−1

,

satisfying
∫ ∞

0
χ(x) dx = 1,

with

1

t

∫ t

0
u(s) ds

=
∫ ∞

0
uχ(u) du, a.s. (4.4)

Using the comparison theoremof1-dimensional stochas-
tic differential equation [36], we obtain

u(t) ≤ U (t), ∀t > 0, a.s. (4.5)

Now, applying the Itô’s formula [32] to ln v(t) for the
second equation of system (1.3) and using (4.5), then
we obtain

d ln v(t) =
(

−η − γ 2

2
+ eδuα(t)

1 + δthuα(t)

)

dt

+γ dW2(t)

≤
(

−η − γ 2

2
+ eδUα(t)

1 + δthUα(t)

)

dt

+γ dW2(t).

For both sides, integrating the above equation from 0
to t and dividing by t gives

ln v(t) − ln v(0)

t
≤ −η

−γ 2

2

+eδ
1

t

∫ t

0

Uα(s)

1 + δthUα(s)
ds + N2(t)

t
, (4.6)

where N2(t) =
∫ t

0
γ dW2(s) ds is a real-valued con-

tinuous local martingales. According to [24], we have
lim

t→∞
N2(t)

t = 0, a.s.. Next, taking the superior limit on

both sides of (4.6) and using Lemma 4.2 together with
(4.4), we obtain

lim
t→∞ sup

ln v(t)

t

≤ −η − γ 2

2
+ lim

t→∞ sup eδ

1

t

∫ t

0

Uα(s)

1 + δthUα(s)
ds,

≤ −η − γ 2

2
+ eδ

∫ ∞

0

uα

1 + δthuα
χ(u) du,

= A < 0, a.s.,

which leads to the extinction of the predator species,
i.e., lim

t→∞ v(t) = 0, a.s..

Now, for a sufficiently small ε1 > 0 there exists t̃
and a set �ε1 ⊂ � such that P(�ε1) > 1 − ε and

δuαv

1 + δthuα
≤ δuαv

≤ δε1uα, for t

≥ t̃ and ω ∈ �ε1 .

From
[
ρu

(
1 − u

k

)
− δε1uα

]
dt

+βudW1(t) ≤ du ≤ ρu
(
1 − u

k

)
dt + βudW1(t),

we obtain that the distribution of the process u(t) con-
verges weakly to the measure with the density μ. The
proof is complete. ��
Theorem 4.4 Assume that ρ <

β2

2 and eδ <
γ 2

2 hold.
Then for any initial condition (u(0), v(0)) ∈ R

2+ the
two species die out, where the solution (u(t), v(t)) of
system (1.3) will be extinct exponentially with proba-
bility one.

Proof Applying the Itô’s formula [32] to the first equa-
tion of system (1.3), implies that

d ln u(t) =
[

−β2

2
+ ρ

(

1 − u(t)

k

)

−δuα−1(t)v(t)

1 + δthuα(t)

]

dt + βdW1(t). (4.7)

Integrating the above equation from 0 to t and dividing
by t on both sides of (4.7), we obtain

ln u(t) − ln u(0)

t
= ρ
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−β2

2
− ρ

k

1

t

∫ t

0
u(s) ds

−δ
1

t

∫ t

0

uα−1(s)v(s)

1 + δthuα(s)
ds + β

W1(t)

t
. (4.8)

Using the strong law of large numbers for local mar-
tingales [24], we get

lim
t→∞

W1(t)

t
= 0, a.s..

Taking the superior limit on both sides of equation (4.9)
gives

lim
t→∞ sup

ln u(t)

t
≤ ρ − β2

2
< 0, a.s.,

which leads to

lim
t→∞ u(t) = 0, a.s.

Application of Itô’s formula [32] to ln v(t) yields

d ln v(t) =
[

−η − γ 2

2

+ eδuα(t)

1 + δthuα(t)

]

dt

+γ dW2(t). (4.9)

From lim
t→∞ u(t) = 0, a.s., there exists T0 > 0 such

that u(t) < ε for t > T0. Hence, we get

d ln v(t) ≤
[

−γ 2

2

+ eδεα

1 + δthεα

]

dt

+γ dW2(t),

≤
(

−γ 2

2
+ eδ

)

dt + γ dW2(t).

Integrating the above inequality from0 to t anddividing
by t on both sides, we obtain

ln v(t) − ln v(0)

t
= −γ 2

2

+eδ + γ
W2(t)

t
. (4.10)

Applying the strong law of large numbers for localmar-
tingales [24], we obtain

lim
t→∞

W2(t)

t
= 0, a.s.

Taking the superior limit on both sides of (4.10), then
we have

lim
t→∞ sup

ln v(t)

t

≤ −γ 2

2
+ eδ < 0, a.s.,

which gives

lim
t→∞ v(t) = 0, a.s.

This completes the proof of Theorem 4.4. ��
Remark 4.5 (i) According to Theorem 4.3, one can

easily show that A is the critical value between
the extinction and the persistence in the mean for
the predator specie. Moreover, from Lemme 4.2, if
A < 0, we obtain

lim
t→∞ v(t) = 0, a.s., lim

t→∞
1

t

∫ t

0
u(s) ds = k − kβ2

2ρ
, a.s..

(ii) Theorem 4.4 shows that if the white noise inten-
sities take a big values, then all both species are
die out. On the other hand, stochastic predator-prey
model (1.3) will be persistent if the white noise
disturbances are small enough. This assertion can
easily be seen from Theorems 4.3 to 4.3.

5 Existence of ergodic stationary distribution

In this part, according to the theory of Has’minskii
[15] and using the Lyapunov function method we try to
prove that under certain sufficient conditions, stochas-
tic predator-prey model (1.3) has a unique stationary
distribution which is ergodic

Theorem 5.1 Suppose that

β2

2
+ γ 2

2
< ρ − η, and ρ > η,

then for any initial condition (u(0), v(0)) ∈ R
2+, sys-

tem (1.3) has a unique stationary distribution χ(.)

which has the ergodic property.

Proof In order to prove Theorem 5.1, we only need
to verify the two assumption (P1) and (P2) in Lemma
2.3. We first begin by proving the validation of the first
condition; then, the diffusion matrix of system (1.3) is

B =
(

β2u2 0
0 γ 2v2

)

.
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It is not difficult to see that there exists a positive con-
stant b̃, c̃ such that

2∑

i, j=1

b̃i, j (z)ξiξ j

= β2u2ξ21 + γ 2v2ξ22

≥ c̃|ξ |2, (u, v) ∈ D, ξ = (ξ1, ξ2) ∈ R
2+,

that is to say that B is a positive definite matrix for
any compact subset of R2+. Thus the assertion (P1) of
Lemma2.3 holds.Now, focusing on proving the second
assertion in Lemma 2.3. From system (1.3), we get

L (− ln u) = −1

u

(
ρu

(
1 − u

k

)

− δuαv

1 + δthuα

)

+ β2

2

= −
(

ρ − β2

2

)

+ ρ
u

k

+ δuα−1v

1 + δthuα
(5.1)

and

L (− ln v) = η − eδuα

1 + δthuα

+γ 2

2
≤ η + γ 2

2
. (5.2)

Define

V1(u, v) = − ln u − ln v,

then, from (5.1) and (5.2), we have

LV1 = −
(

ρ − η − β2

2
− γ 2

2

)

+ρ
u

k
+ δuα−1v

1 + δthuα
. (5.3)

Now, we denote

V ∗(u, v) = �V1(u, v) + v−τ + u + v

e
,

where 0 < τ < 1 is a sufficiently small constant satis-
fying the following assertion

ρ − η >
τ + 1

2
(β2 + γ 2),

with

� = 2
(
ρ − η − β2

2 − γ 2

2

) max
(u,v)∈R2+

{
2,− ρ

2k
u2 − τv−τ

(

−η − 1 + τ

2
γ 2

)

+ ρu + τv−τ−1 − η

e
v

}

.

We claim that V ∗(u, v) is not only continuous, but also
tends to∞ as (u, v) approaches the boundaryofR2+ and
as ||(u, v)|| → ∞, where ||.|| is the Euclidean norm
of a point in R

2+. Therefore, it must be lower bounded
and achieve this lower bound at a point (u(0), v(0)) in
the interior of R2+. Thus, we can define a nonnegative
C2-function V : R2+ → R+ ∪ {0} as
V (u, v) = �V1(u, v) + V2(v) + V3(u, v),

where

V2(v) = v−τ , V3(u, v) = u + v

e
− V ∗(u(0), v(0)).

By applying the Itô’s formula [32] to V2(v) and
V3(u, v), we obtain

LV2 = −τv−τ−1
(

−ηv + eδuαv

1 + δthuα

)

+τ(1 + τ)

2
γ 2v−τ ≤

−τv−τ

(

−η − 1 + τ

2
γ 2

)

+ τv−τ−1, (5.4)

and

LV3 = ρu
(
1 − u

k

)

−η

e
v = −ρ

k
u2 + ρu − η

e
v. (5.5)

Then, according to (5.4) and (5.5), we get

LV ≤ �

{

−
(

ρ − η − β2

2
− γ 2

2

)

+ρ
u

k
+ δuα−1v

1 + δthuα

}

−τv−τ

(

−η − 1 + τ

2
γ 2

)

+τv−τ−1 − ρ

k
u2 + ρu − η

e
v. (5.6)

To complete the prove, we need to construct a bounded
open domain Eε for which the assumption p2 of
Lemma 2.3 holds. Let us define the following bounded
open set

Eε =
{
(u, v) ∈ R

2+ : ε < u <

1

ε
, ε < v <

1

ε

}

,
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where 0 < ε < 1 is a sufficiently small number which
satisfies the following conditions in R

2+ \ Eε

ε ≤
⎛

⎝
�

(
ρ − η − β2

2 − γ 2

2

)

4δ

⎞

⎠

1
1−α

, (5.7)

ε ≤ ρ

2k�δ
, (5.8)

ε ≤ 1

4δ

(

ρ − η − β2

2
− γ 2

2

)

, (5.9)

−�

(

ρ − η − β2

2
− γ 2

2

)

+ ρ

2kε2
+ �1 ≤ −1, (5.10)

−�

(

ρ − η − β2

2
− γ 2

2

)

+ �2. (5.11)

Now, we divide the set R2+ \ Eε into four subsets
defined as

E1
ε =

{
(u, v) ∈ R

2+ : u ≤ ε
}

, E2
ε

=
{
(u, v) ∈ R

2+ : v ≤ ε
}

E3
ε =

{

(u, v) ∈ R
2+ : u ≥ 1

ε

}

, E4
ε

=
{

(u, v) ∈ R
2+ : v ≥ 1

ε

}

.

clearly, Eε = E1
ε ∪ E2

ε ∪ E3
ε ∪ E4

ε . Our objective in the
next is to prove that LV (u, v) ≤ −1 for any (u, v) ∈
Ei

ε, i ∈ {1, 2, 3, 4}.
Case 1 : If (u, v) ∈ E1

ε and from u1−α ≤ ε1−α , we
have

u1−αv ≤ ε1−α(1 + v2).

Then, it follows that

LV (u, v) ≤ −�

4

(

ρ − η − β2

2

−γ 2

2

)

+
[

−�

4

(

ρ − η − β2

2
− γ 2

2

)

+δ�ε1−α
]

− ρ

2k
u2 − δ�ε1−αv2

+
[

−�

2

(

ρ − η − β2

2
− γ 2

2

)

− ρ

2k
u2 − δε1−αv2 − τv−τ

(

−η − 1 + τ

2
γ 2

)

+ρu + τv−τ−1 − η

e
v
]
,

≤ −�

4

(

ρ − η − β2

2
− γ 2

2

)

+
[

−�

4

(

ρ − η − β2

2
− γ 2

2

)

+ε1−αδ
]

− ρ

2k
u2 − δ�ε1−αv2

+
[

−�

2

(

ρ − η − β2

2
− γ 2

2

)

+ sup
(u,v)∈R2+

{

− ρ

2k
u2 − τv−τ

(

−η − 1 + τ

2
γ 2

)

+ρu + τv−τ−1 − η

e
v
}]

.

Since

� = 2
(
ρ − η − β2

2 − γ 2

2

) max
(u,v)∈R2+

{
2,− ρ

2k
u2 − τv−τ

(

−η − 1 + τ

2
γ 2

)

+ ρu + τv−τ−1 − η

e
v

}

,

we obtain that

�

(

ρ − η − β2

2
− γ 2

2

)

≤ −�

4

(

ρ − η − β2

2
− γ 2

2

)

≤ −1. (5.12)

Hence

LV (u, v) ≤ −�

4

(

ρ − η − β2

2

−γ 2

2

)

− ρ

2k
u2 − δ�ε1−αv2

≤ −�

4

(

ρ − η − β2

2
− γ 2

2

)

≤ −1.

From (5.7), we have

LV (u, v) ≤ −1, ∀(u, v) ∈ E1
ε . (5.13)

Case 2 : If (u, v) ∈ E2
ε , we have v ≤ ε. Since

u1−αv ≤ ε(1 + u2),

we obtain

LV (u, v) ≤ −�

4

(

ρ − η − β2

2
− γ 2

2

)

+
[

−�

4

(

ρ − η − β2

2
− γ 2

2

)

+�δε] +
(
�δε − ρ

2k

)
u2

+
[

−�

2

(

ρ − η − β2

2
− γ 2

2

)
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− ρ

2k
u2 − τv−τ

(

−η − 1 + τ

2
γ 2

)

+ρu + τv−τ−1 − η

e
v
]
,

≤ −�

4

(

ρ − η − β2

2
− γ 2

2

)

+
[

−�

4

(

ρ − η − β2

2
− γ 2

2

)

+ �δε

]

−
(
�δε − ρ

2k

)
u2

+
[

−�

2

(

ρ − η − β2

2
− γ 2

2

)

+ sup
(u,v)∈R2+

{

− ρ

2k
u2 − τv−τ

(

−η − 1 + τ

2
γ 2

)

+ρu + τv−τ−1 − η

e
v
}]

.

According to (5.8) and (5.9), it follows that

LV (u, v) ≤ −�

4

(

ρ − η − β2

2
− γ 2

2

)

≤ −1, for any (u, v) ∈ E2
ε . (5.14)

Case 3 : If (u, v) ∈ E3
ε , we get u ≤ 1

ε
. Then we

have

LV (u, v) ≤ −�

(

ρ − η − β2

2
− γ 2

2

)

− ρ

2k
u2 +

{

−τv−τ

(

−η − 1 + τ

2
γ 2

)

+τv−τ−1 − ρ

2k
u2 + ρu − η

e
v + �

(
ρ

u

k

+ δuα−1v

1 + δthuα

)}

,

≤ −�

(

ρ − η − β2

2
− γ 2

2

)

− ρ

2k
u2 + �1,

≤ −�

(

ρ − η − β2

2
− γ 2

2

)

− ρ

2kε2
+ �1.

Using (5.10) and (5.12), then we obtain

LV (u, v) ≤ −1, for any (u, v) ∈ E3
ε , (5.15)

where

�1 = sup
(u,v)∈R2+

{

−τv−τ

(

−η − 1 + τ

2
γ 2

)

+τv−τ−1 − ρ

2k
u2 + ρu − η

e
v

+�

(

ρ
u

k
+ δuα−1v

1 + δthuα

)}

.

Case 4 : If (u, v) ∈ E4
ε , we have v ≤ 1

ε
. Which

gives

LV (u, v) ≤ −�

(

ρ − η − β2

2
− γ 2

2

)

+
{

−τv−τ

(

−η − 1 + τ

2
γ 2

)

+ τv−τ−1 − ρ

k
u2

+ρu − η

e
v + �

(

ρ
u

k
+ δuα−1v

1 + δthuα

)}

,

≤ −�

(

ρ − η − β2

2
− γ 2

2

)

+ �2,

≤ −�

(

ρ − η − β2

2
− γ 2

2

)

+ �2.

Therefore, from (5.11) and (5.12) we get

LV (u, v) ≤ −1, for any (u, v) ∈ E4
ε , (5.16)

with

�2 = sup
(u,v)∈R2+

{

−τv−τ

(

−η − 1 + τ

2
γ 2

)

+τv−τ−1 − ρ

k
u2

+ρu − η

e
v + �

(

ρ
u

k
+ δuα−1v

1 + δthuα

)}

.

Thus, if we combine results (5.13), (5.14), (5.15)
and (5.16), we can deduce that for a sufficiently small
ε we have

LV (u, v) ≤ −1, for any (u, v) ∈ R
2+ \ Eε . (5.17)

Hence, the assertion (P2) of Lemma 2.3 holds. Con-
sequently, stochastic predator-prey model (1.3) has a
unique stationary distribution. The proof is completed.

��
Remark 5.2 Theorem 5.1 shows that when the noises
are small enough, thenmodel (1.3) has a unique station-
ary distribution which is ergodic. The presence of the
fractal term “uα” in our proposed model (1.3) makes
the difficulties when we prove Theorem 5.1. Here we
construct a new Lyapunov function and a rectangu-
lar set which do not depend on the equilibrium point
(u∗, v∗)of deterministicmodel (1.2). The ergodic prop-
erty in Theorem 5.1 means that the solution of stochas-
tic predator-prey model (1.3) tends to a fixed positive
point in the sense of time average with probability one,
which implies that system (1.3) is permanent.
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Fig. 2 Numerical simulation of deterministic system (1.2) with the parameter values ρ = 0.5, k = 1, δ = 0.5, th = 2, e = 0.4, α =
0.8 and different value of the parameter η. In a, we take η = 0.9. In b, we have η = 0.1 and for c, we put η = 0.04

6 Numerical simulations

In order to substantiate the analytical findings, we
give somenumerical examples.Using the semi-implicit
Milstein’s higher-order method described in [16], then
we obtain the following discretization system as

⎧
⎪⎪⎨

⎪⎪⎩

ui+1 = ui +
[
ρui

(
1 − ui

k

) − δuα
i vi

1+δthuα
i

]
�t + βui ai

√
�t + β2

2 ui (a2
i − 1)�t,

vi+1 =
[
−ηvi + eδuα

i vi

1+δthuα
i

]
�t + γ vi bi

√
�t + γ 2

2 vi (b2i − 1)�t.

(6.1)

where the time increments �t > 0, ai and bi are
N (0, 1) independent Gaussian random variables.

In Fig. 2, we show the numerical simulation of
deterministic system (1.2) with the parameter values
ρ = 0.5, k = 1, δ = 0.5, th = 2, e = 0.4, α = 0.8
and different value of the parameter η. For (A), we
choose η = 0.9; then, we obtain the extinction of the
predator specie. In (B), we put η = 0.1, which gives the
coexistence of all both species. Next, we fix η = 0.04;
then, the system transits to an oscillatory regime where
a limit cycle appears.

In Fig. 3, we display the graphical representation
of the impact of the intrinsic growth rate ρ on both
prey and predator densities equilibrium for the same
values of the fixed parameters in Fig. 2 and multival-
ues of ρ. In (A), we choose ρ = 0.09 which gives
(u∗, v∗) = (0.343, 0.221). In (B), we take ρ = 0.4
implies that (u∗, v∗) = (0.233, 1.621). Finally, in (C)

we set ρ = 0.9, yielding (u∗, v∗) = (0.389, 4.489).
Here, we denote that (u∗, v∗) represents the positive
equilibrium associated with deterministic system (1.2)
such that

u∗ =
[

η

δ(e − thη)

] 1
α

, v∗

= eρ

η

(

1 − u∗

k

)

, e > thη and 0 < u∗ < k.

Clearly, one can see the massive impact of the
parameters η and ρ on the dynamical behavior of deter-
ministic system (1.2), especially on the predator den-
sity equilibrium. The large value of the death rate of the
predator population ηmay result in the extinction of the
predator specie. On the other hand, as the parameter ρ

increases, the predator density increases with a con-
siderable values. This means that ρ has a positive and
significant impact on the predator density. Biologically
speaking, the increase in the number of prey individ-
uals within the herd may result a high rate of infec-
tion with various diseases, as well as conflicts between
males for mating; all of this leads to herd destabiliza-
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Fig. 3 Numerical simulation of deterministic system (1.2) with the parameter values δ = 0.5, k = 1, th = 2, e = 0.4, α = 0.8, η =
0.1 and multivalues of ρ. In a, we take ρ = 0.09. In b, we have ρ = 0.4 and for c, we put ρ = 0.9

tion, which reduces the defensive effectiveness of the
pack and thus facilitates the predator’s task during the
hunting process.

In order to verify the result obtained in Theorem 5.1,
we choose the parameter values β2/2 = 0.2, γ 2/2 =
0.168 and the other parameter values are pointed out in
Table 1. Then we obtain β2/2 + γ 2/2 = 0.368 <

ρ − η = 0.46, and according to Theorem 5.1, we
can conclude that stochastic predator-prey system (1.3)
has a unique ergodic stationary distribution χ(.) and
ergodic propertywhichmeans that both prey and preda-
tor are persistent a.s. This result is depicted in Fig. 4.

In Fig. 5 our aim is to examine the case of the extinc-
tion of the predator population. To this end, we take
β2/2 = 0.14 < ρ = 0.55 which means that the con-
dition (H) of Theorem 4.3 is satisfied. Recall that the
second condition of Theorem 4.3 is that A < 0 where

A = −η − γ 2

2
+ eδ

∫ ∞

0

uα

1 + δthuα
χ(u) du.

Using the parameters given in Table 1 and a simple
integral, we obtain

eδ
∫ ∞

0

uα

1 + δthuα
χ(u) du ≈ 0.312.

Now, from Fig. 5 we have tree cases. In (A), we
choose γ 2/2 = 0.223; then, we obtain immediately
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Fig. 4 Numerical simulation of stochastic predator-prey system
(1.3) for the parameter values ρ = 0.55, k = 1, δ = 0.26, th =
0.71, η = 0.09, e = 0.39, α = 1/3 and the noise intensities
β2/2 = 0.2, γ 2/2 = 0.168. Here the initial data are u(0) =
0.1, v(0) = 0.25

A = −0.001 < 0. Next, in (B) we put γ 2/2 = 0.322
which gives A = −0.1 < 0. In the last case (C), we
take γ 2/2 = 0.655, and it follows that A = −0.433 <

0. By comparing the three cases in Fig. 5, one can eas-
ily observe that the predator population goes more and
more toward extinction, while the prey population per-
sist, which means that the noise associated with the
predator population can change the properties of the
model greatly.More precisely, comparing Fig. 5a, c, we
can easily see that with the increase of γ 2 the density
of the predator population v(t) tends to the extinction,
while the prey population u(t) persist in mean.
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Fig. 5 Numerical simulation of stochastic predator-prey system
(1.3) for the parameter values ρ = 0.55, k = 1, δ = 0.26, th =
0.71, η = 0.09, e = 0.39, α = 1/3. In a, we choose β2/ =

0.14, γ 2/2 = 0.223. In b, we haveβ2/2 = 0.14, γ 2/2 = 0.322
and for the last case c, we put β2/2 = 0.14, γ 2/2 = 0.655. The
initial data are u(0) = 0.2, v(0) = 0.25
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Fig. 6 Numerical simulation of stochastic predator-prey system
(1.3) for the parameter values ρ = 0.55, k = 1, δ = 0.26, th =
0.71, η = 0.09, e = 0.39, α = 1/3. In a, we choose β2/2 =

0.54, γ 2/2 = 0.09. In b, we take β2/2 = 0.551, γ 2/2 = 0.11
and for the last case c, we put β2/2 = 0.81, γ 2/2 = 0.52. Here
the initial value u(0) = 0.2, v(0) = 0.25

InFig. 6,weexaminenumerically the result obtained
in Theorem 4.4. For the first case (A) in Fig. 6, we
choose β2/2 = 0.54 and γ 2/2 = 0.09, then ρ =
0.55 > β2/2 = 0.54 and eδ = 0.10 > γ 2/2 = 0.09.
Next, in (B) we choose β2/2 = 0.551 and γ 2/2 =
0.11, and we obtain ρ = 0.55 < β2/2 = 0.551 and
eδ = 0.10 < γ 2/2 = 0.11. In the last case (C), we
take β2/2 = 0.81 and γ 2/2 = 0.52; then, we have ρ =

0.55 < β2/2 = 0.81 and eδ = 0.10 < γ 2/2 = 0.52.
Other values of the system parameters can be seen from
Table 1. For the two last cases, we can easily see that
the conditions of Theorem 4.4 hold, which explains the
extinction of both populations u and v (please see Fig.
6b, c). In other words, if the noise intensities β2 and γ 2

increase, the prey and the predator populations die out
exponentially with probability one.
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Table 1 Lists of parameters
used in the simulations of
Figs. 4, 5, 6 and 7

Parameters Description Values Source

ρ The intrinsic growth rate of the prey 0.55 [2,13]

k The carrying capacity for the prey 1 [2,13]

δ The search efficiency of the predator for the prey 0.26 [2,13]

th The average handling time for the prey by the predator 0.71 [2,13]

η The death rate of the predator in the absence of prey 0.09 [2,13]

e The biomass conversion or consumption 0.39 [2,13]

α The prey herd’s shape rate 1/3 [2,13]
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Fig. 7 Impact of the herd shape rate α on the numerical
ergodic stationary distribution associated with system (1.3) for
the parameter values ρ = 0.55, k = 1, δ = 0.26, th =

0.71, η = 0.09, e = 0.39, β2 = 0.3, γ 2 = 0.2 and different
values of the parameter α

Figure 7 represents the impact of the prey herd’s
shape rate α on the ergodic stationary distribution asso-
ciated with stochastic predator-prey model (1.3). We
choose β2/2 = 0.3 and γ 2/2 = 0.2; then, we obtain
β2/2+γ 2/2 = 0.4 < ρ −η = 0.46. The other param-
eter values are given in detail in Table 1.

7 Discussion

In order to understand the dynamics induced by envi-
ronmental driving forces, we explain the effect of the
environmental noises on the predator-prey interaction
in the presence of social behavior for the prey and
multiplicative noise. A new approach of a stochastic
predator-prey model is obtained. In the great savanna,
many living beings gather to together in huge herds.

This provides a protection zone and a useful strategy
for defending against predators. On the other hand, as
it has been mentioned in introduction section, the prey
population can form several shape of herd, and this kind
of phenomena has been modeled in [43] and widely
studied in the literature. Consequently, a new func-
tional response has been introduced into the interface
which are modeled by using a new parameter α repre-
senting the prey’s herd shape rate. Further, the real-life
situations are often subject to environmental noises.
This gives the necessary and the importance of study-
ing the environmental fluctuations impact on the pop-
ulation systems in ecology. In this work, we consider
predator-prey model (1.2) of [13] subject to environ-
mental noises. Our aim is to study how the intensities
of environmental noises affect stochastic predator-prey
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model (1.3) by revealing the relationships between the
coefficients of the population model and the intensi-
ties of environmental noise. From the stochastic model
analysis, a rich properties have been deduced. First,
the existence of the global positive solution as well
as the stochastic uniform boundedness of the solution
has been successfully confirmed by using conventional
methods. Next, the sufficient conditions for the extinc-
tion and persistence of the predator and the prey popu-
lations have been established where the extinction cri-
teria are discussed in two cases: the first case is the prey
population survival where the predator population die
out; the second case is both the prey and predator pop-
ulations extinction. Moreover, by constructing a suit-
able stochastic Lyapunov function, it has been proved
that stochastic predator-prey model (1.3) has a unique
stationary distribution which is ergodic. Theorem 5.1
shows that the stationary distribution exists if the white
noise is small. But the large-amplitude environmen-
tal fluctuations may destabilize the stochastic system
and consequently no stationary distribution can exist.
Mathematically speaking, the ergodic stationary dis-
tribution can be considered as a stability of system in
weak sense that appears as a solution fluctuating near
the positive equilibrium of corresponding determinis-
tic system (1.2). From an biological point of view, this
means that both prey and predator populations coexist
in the long run, which leads to said that the system is
permanent.

By comparing the stochastic predator-prey system
with corresponding deterministic system (1.2) which
has been studied in [13], two interesting facts have been
revealed, and the first one is the high environmental
noise intensity could drive two species to extinct. In
our model, this can be seen in two different cases; the
first case is the prey population persist, while the preda-
tor extinct. This situation is graphically represented in
Fig. 5. The second case is both the two species die out
(please see Fig. 6). Here, it has been remarked that A
which defined in Theorem 4.3 is the crucial parameter
for the persistence in the mean and extinction of model
(1.3). The second fact is that the term of herd behavior
cannot avoid the extinction of the prey populationwhen
the nature presents significant environmental fluctua-
tions although the prey herd’s shape has a significant
impact on the solution of stochastic system (1.3) (please
see Fig. 7). In deterministic model (1.2), the situation
of the extinction of both species is absolutely impos-
sible Fig. 2). Consequently, we can conclude that the

survival of living beings is related to the environmental
fluctuations more than the nature of their behaviors.

Finally, we would like to mention that some mean-
ingful problems deserve further investigation. For one
side, one can propose somemore realistic models, such
as considering the effects of the prey herd aggressive-
ness on the predator population, nonlocal prey com-
petition or the harvesting on the populations and so
on. On the other side, it is interesting to introduce
the telegraph noise in our model, such as continuous-
time Markov chain. The motivation for investigating
this is that the living beings suffer from unexpected
environmental changes such as global warming, tem-
perature increase, humidity, precipitation changes and
so on. It has been confirmed that animals have specific
responses to climate changes. All living beings respond
to climate change either through migration or adapta-
tion. But they extinct if they do not reach one of the two
options. So, it is interesting to study the impact of all
these factors on the predator-prey interaction in order
to improve the condition of living beings and avoid the
extinction of species to keep the ecosystem balanced.
In the next works, we will try to consider more realistic
situations in terms of mathematical modeling.
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