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Abstract This work investigates the tracking con-
trol problem for underactuated mechanical systems. To
this end, we develop an extension of the dynamic tube
Model Predictive Control (MPC) approach by combin-
ing an MPC design, an ancillary energy shaping con-
troller constructedwith the Interconnection andDamp-
ing Assignment Passivity-Based Control methodology,
and an analytical expression of the dynamic tube. In
addition, we extend the proposed approach by includ-
ing the adaptive compensation of a class of unknown
disturbances. The stability analysis is presented by
employing a Lyapunov approach. The effectiveness
of the proposed controller is demonstrated with sim-
ulations on two underactuated systems: a two-mass-
spring-damper system with uncertain damping and
either linear or nonlinear spring; an inertia-wheel-
pendulum with unmodeled disturbances.
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1 Introduction

Trajectory tracking of underactuated mechanical sys-
tems represents a challenging control problem that
has been attracting increasing attention in the research
community [8,9,35]. Flexible and soft robots are
notable examples of underactuated mechanical sys-
tems. Other examples include surface vessels and
swimming robots [34,55]. Underactuated mechanical
systems often possess an unstable internal dynamics,
that is the remaining dynamics when the output is con-
strained [15,32,47]. In general, stable inversion meth-
ods can be used for the feedforward control design. For
example, a boundary value problem can be constructed
considering suitable eigenvectors and eigenvalues for
the zero dynamics, see [12,50]. Alternatively, an opti-
mal control approach can be employed avoiding deriva-
tions and computation of eigenvectors/eigenvalues, see
[6,7,33].

In practical applications, closed-loop control is
required to ensure satisfactory performance, particu-
larly in trajectory tracking and in the presence of dis-
turbances. Model predictive control (MPC) is a feed-
back control strategy where an optimal control prob-
lem is solved for each MPC iteration [1,14,31,41].
Consequently, MPC is also known as receding hori-
zon control or moving horizon optimal control. MPC
can be employed for dynamic systems with instabil-
ity and nonlinearity; however, feasibility, stability, and
performance could be a challenge for complex dynamic
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systems. Another important aspect is related to the
computational efficiency of MPC because an online
implementation is required in practical applications.
This aspect is particularly challenging for nonlinear
systems, fast dynamic, and large-scale problems, see
[10,17,18].

The nominal MPC is suitable in case of a small
mismatch between model and plant [30]. Conversely,
robust MPC is appropriate if a significant difference
between dynamic model and plant exist [38]. This can
occur due to parametric uncertainty and external dis-
turbances. A way to approach this problem involves
considering a robust MPC related to the nominal prob-
lem [48] and applying the same strategy if a distur-
bance is present. When the dynamic system to be
controlled is nonlinear, this control strategy is called
nonlinear model predictive control (NMPC). Robust
NMPC can be employed for a wider class of systems,
including underactuated mechanical systems, although
some challenges remain. Aspects related to the robust-
ness of NMPC are discussed in [13,37]: Chen and
Shaw [13] considered a receding horizon feedback con-
trol (RHFC) for nonlinear autonomous systems, where
the horizon distance is computed as an explicit func-
tion of the state; Magni and Sepulchre [37] showed that
receding-horizon control possesses the stability mar-
gins of optimal control laws, using the nonlinear coun-
terpart of theFakeRiccati equation.Most robustNMPC
schemes that take the uncertainty/disturbance directly
into account are related to a min-max formulation such
as in [11]. A more recent control strategy called tube-
MPC can also account for model/plant discrepancies
by employing an ancillary control together with MPC.
In [40], tube-basedMPC for linear systems is extended
to achieve robust control of nonlinear systems subject
to additive disturbances, where the ancillary control is
computed usingMPC. In [39], two competing versions
of robust and stochastic tube-MPC are compared, con-
cluding that a control policy (sequence of control laws)
can be preferable to a sequence of control actions.

Tube-MPC algorithms have been applied to a wide
variety of systems, thus underscoring the general valid-
ity of this approach. A tube-MPC for a class of Lip-
schitz nonlinear systems with application to a sim-
ple example is proposed in [53]. A tube-based NMPC
for autonomous mobile robots with tire–terrain inter-
actions is presented in [45]. A tube-based MPC with
relaxed stability for smart grid is presented in [49].
A sliding-mode control (SMC) for constrained MPC

of nonlinear systems is employed in [21]. In [20,43],
tube-MPC is investigated for uncertain multiagent sys-
tems and for systems with non-additive dynamic dis-
turbances, respectively. Finally, Dong and Angeli [19]
investigated an homothetic tube-based MPC for sys-
tems with nonzero mean disturbances. In the afore-
mentioned works, the tube-MPC employs constant
tube parameters which define a fixed region of attrac-
tion. Instead, in [36] the tube geometry is treated as
a design variable and it is optimized alongside states
and control, thus improving dynamic performance and
robustness. In particular, SMC is employed as ancillary
control so that the gap between linear and nonlinear
homothetic/elastic tube-MPC is eliminated and a state-
dependent uncertainty can be compensated. However,
in order to employ this method the nonlinear dynamic
system is required to be either feedback linearizable or
minimum phase.

This work aims to extend the dynamic tube-MPC
proposed in [36] to a class of underactuatedmechanical
systems. To this end, the interconnection and damp-
ing assignment passivity-based control (IDA-PBC)
methodology is employed to compute the ancillary con-
trol instead of SMC. We have chosen the IDA-PBC
methodology since it is ideally suited to underactuated
systems [44] and it provides a physical interpretation
of the control action in terms of mechanical energy. In
addition, an adaptive observer is used to compensate
the effect of unknown disturbances and model uncer-
tainties under some realistic assumptions [24,27]. In
summary, the main contributions of this work include
the following points.

1. An analytical formulation of the ancillary con-
trol law constructed with the IDA-PBC methodol-
ogy considering the case of underactuated mechan-
ical systems with matched and bounded distur-
bances first, and then extending the results to the
case of matched and unmatched disturbances with
bounded time-derivative.

2. The design of the dynamic tube by employing an
energy-based approach resulting in a tube dynamics
representative of a first-order filter, and the study of
the stability conditions with a Lyapunov approach.

3. The integration of the ancillary control with an
MPC algorithm resulting in a new robust receding-
horizon optimization problem that accounts for the
tube parameters.
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4. Simulation results highlighting the benefits of the
proposed approach for two examples of nonlinear
underactuated mechanical systems.

The rest of the paper is organized as follows. For
completeness, Sect. 2 provides an overview of the
dynamic tube-MPC for fully actuated systems that
inspired our work. Section 3 outlines the MPC for
underactuated systems. Section 4 details the proposed
dynamic tube-MPC for underactuated mechanical sys-
tems, which represents the main methodological con-
tribution of this work. In Sect. 5, the methodology
is applied to a two-mass-spring-damper system with
parametric uncertainties and to an inertia-wheel pen-
dulum system with external disturbances. Conclusions
and directions for future work are discussed in Sect. 6.

2 Overview of dynamic tube-MPC for fully
actuated systems

For reference, this section outlines the approach pre-
sented in [36] which defines the control law π as the
sum of two terms: the MPC control input u, and the
ancillary control input usmc. The former is a standard
MPCwith additional constraints related to the dynamic
tube variables to be optimized. The latter is an SMC law
consisting of a continuous term and a switching term.
In order to formulate the optimization problem, con-
sider the system dynamics in a so-called affine form

ẋ = f (x) + u − δ, (1)

where δ is a disturbance. The dynamic tube-MPC con-
trol law [36] is

π = u + usmc, (2)

usmc = − f (x) − k1s − k2sign(s/φ), (3)

min(J )u,ν = h(x̆(t f )) +
∫ t f

ti
l(x̆, u, usmc, α, ν) dτ,

(4)

where s = ẋd − ẋ −λ(xd − x), and s = 0 is the sliding
surface, xd is the desired trajectory for the output, φ

is the dynamic tube with time derivative φ̇ = 	 −
αφ, and 	 is the maximum value of the lumped model
uncertainty,which is assumedknownandbounded, that
is |δ| < 	. The terms k1, k2 are tuning parameters, and

the MPC optimization is subject to the constraints

˙̆x = f (x̆) + u, (5)

φ̇ = 	 − αφ, (6)

α̇ = ν, (7)

in addition to the initial conditions and the final con-
ditions. The main limitation of this approach is that
it requires full actuation (see Assumption 4 in [36]).
This is a considerable restriction, and it precludes the
use of this technique for underactuatedmechanical sys-
tems. In this study, we relax the former assumption by
computing the ancillary control law with the IDA-PBC
methodology instead of using SMC. The ancillary con-
trol is then combined withMPC thus resulting in a new
control algorithm (see Sect. 4).

3 Overview of MPC for underactuated mechanical
systems

3.1 Equations of motion for mechanical systems

The equations of motion of a multibody system
expressed according to Newton’s second law and using
generalized position coordinates are

M(q)q̈ + g(q, q̇, t) = Au − δ. (8)

This is a system of ordinary differential equations
where q is the vector of n generalized coordinates in
position, M(q) is the positive definite and invertible
inertia matrix, g(q, q̇, t) is the vector of internal and
complementary inertia forces. The input matrix A dis-
tributes them control inputs u onto the directions of the
system coordinates, and δ is an external disturbance. If
the system is fully actuated, then m = n, while for
underactuated systems n > m. The equation of motion
in matrix form yields

[
q̇
v̇

]
=

[
v

−M−1g(q, v, t)

]
+

[
0

M(q)−1A

]
u −

[
0
δ

]

(9)

y = h(q, v), (10)

where (9) is a differential equation representing the
dynamics of the system, and (10) is an algebraic equa-
tion defining the output y of the system. The term v
indicates the time derivative of the generalized position
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coordinates. In particular, the matrix h(q, v)M(q)−1A
is assumed nonsingular. In general, system (9), (10)
can have relative degree 1 or 2; however, this work
focuses on systems with relative degree 2 (see exam-
ples in Sect. 5).

3.2 Time integration for underactuated mechanical
systems

In order to perform the time integration, which is
required to implement the MPC algorithm for the
system (9), the α-generalized method is employed
[16]. This method was initially designed for structural
dynamics, but was subsequently applied to multibody
systems, and it is known to provide stable conver-
gence for constrained mechanical systems [2]. In par-
ticular, further equations can be added to (8) in order
to compose a differential-algebraic equation (DAE),
e.g., to considermechanical contact. Theα-generalized
method is a generalization of the Newmark method
[42], and it can be written as

q̇(k+1) = q̇(k) + (1 − γ∗)ha(k) + γ∗ha(k+1), (11)

q(k+1) = q(k) + hq̇(k) +
(
1

2
− β∗

)
h2a(k)

+β∗h2a(k+1), (12)

a(k+1) = −αma(k) + (1 − α f )q̈(k+1) + α f q̈(k)

1 − αm
, (13)

where a is termed pseudo-acceleration, while γ∗, β∗,
αm and α f are parameters that can be tuned to com-
bine unconditional stability and second-order accuracy.
In particular γ∗, β∗, αm and α f depend on the spec-
tral radius at infinite frequencies ρ∞ ∈ [0, 1], where
ρ∞ = 0 represents the maximum numerical damping
in the integration, and ρ∞ = 1 denotes the absence of
numerical damping (see [16] for further details). The
parameter k = 1, 2, ..Ntot is the index corresponding to
the discretized time step. Equations (11–12) represent
the Newmark method, and (13) is an additional accel-
eration update law defining the α-generalized method.

3.3 Feedforward control design: numerical optimal
control

In order to define an appropriate feedforward control
for the virtual plant, we consider an inverse dynamics

problem. Differently from the direct dynamics prob-
lem that computes the output for a given dynamic sys-
tem related to a known input force/torque, the inverse
dynamics problem aims to compute the control input
related to a desired trajectory of the system’s output
(10). In general, the direct dynamics problem (e.g., ini-
tial value problem) is well known for both fully actu-
ated and underactuated systems. However, the inverse
dynamics problem can be a challenge for complex non-
linear underactuated systems. For a class of under-
actuated mechanical systems that are typically non-
minimumphase, the so-called stable inversionmethods
(e.g., optimal control) are appropriate for the trajectory
tracking problem. In such cases, pre/post-actuation is
often required to stabilize the internal dynamics; thus, a
non-causal solution can be obtained using optimal con-
trol, see [7], where the unactuated states and the control
input start before the beginning of the output trajectory
in the pre-actuation phase and continue after the end
of the output trajectory in the post-actuation phase. In
this scenario, the feedforward control is applied to the
plant in an open-loop fashion, while MPC is activated
in order to minimize the output error.

We employ the direct transcription method in our
optimal control approach to deal with nonlinearities
and instability that might occur for underactuated
mechanical systems, e.g., trajectory tracking of flex-
ible manipulators [5]. The direct transcription method
follows the rule first discretize, then optimize, and it
allows solving an optimal control problem numerically
by treating the equations of motion, the time integra-
tion, and other boundary conditions or state/control
constraints as equality constraints (i.e., binding con-
straints) in the optimization algorithm (see [4] for fur-
ther details). In addition, inequalities constraints for the
design variables can also be enforced. The discretiza-
tion in time t (k), k = 1, . . . , Ntot results in a finite
number of points Ntot. The set of design variables χ

includes at each time step the positions q, velocities
q̇, accelerations q̈, pseudo-accelerations a, and control
inputs uff. A subset of the design variables at each time
step k is defined as

χ(k) =
(
q(k) q̇(k) q̈(k) a(k) u(k)

ff

)T
. (14)

Thus, the set of design variables including all time
steps can be written as the vector χ = (χ(1) χ(2) . . .

χ(Ntot))T, and its dimension is Ntot(4n +m). After dis-
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cretization, the feedforward control design indicated as
optimization problem P1 takes the general form

P1 :

min
χ

J =
Ntot−1∑
k=1

[
(e(k)

num)TQ(e(k)
num) + (u(k)

ff )TR(uff)(k)
]
h

s.t. cmot(χ) = res(q, q̇, q̈,u)

Aintgχ − bintg = 0

y(Ntot) = yd (t (Ntot)),

where e(k)
num = yd(t (k)) − y(k) represent the output

error of the system, res(q, q̇, q̈,u) is the residual of
the dynamic equation (i.e., the numerical error related
to the dynamic equation (8) in the optimization pro-
cess, which approaches zero once a solution of the
optimization problem is found and is accounted for
with the equality constraint cmot(χ) ≈ 0), while
Aintgχ −bintg = 0 is a system of linear equations repre-
senting the time integration based on the generalized-α
method corresponding to (11–13). The bound equation
yd(t (Ntot)) = y(Ntot) is the vector of terminal constraints
related to the output at the end of the trajectory, uff
is the feedforward control, h is the time step and Q
and R are weight matrices of the objective function.
Note that P1 represents a weak form of the trajectory
tracking problem, since the system output is imposed
through the performance index. Instead a strong form
would require defining equality constraints for the out-
put. Finally note that the initial condition is not required
since the optimization algorithm computes it automat-
ically. A direct computation is employed for the sensi-
tivity analysis: the gradients ∂ J/∂χ and ∂cmot/∂χ are
computed for each variable and are combined for the
entire set. Instead, the linear constraints and the bound
constraints do not require any additional computation.

3.4 Feedback control design: model predictive control

MPC can be seen as a type of feedback control law that
predicts the dynamics of a system: this is achieved by
considering constraints for states and control input in
closed-loop and by minimizing a performance index.
MPC requires solving various optimal control prob-
lems in a receding horizon recursively, where, after
obtaining a solution at each feedback loop, just the input
command at the first time step is applied to the plant.
The subset of the design variables at each time step i

is defined as

χ(k|i) =
(
q(k|i) q̇(k|i) q̈(k|i) a(k|i) u(k|i))T , (15)

with i = 1, . . . , Ntot − k. Then, the set of design vari-
ables including all time steps is χ = (χ(1), χ(2), . . .

χ(Ntot−k))T and its dimension is (Ntot − k)(4n +m) at
each iteration. After discretization, the nonlinear pro-
gramming problem takes the general form

P2 :

min
χ

J =
Ntot−(k+1)∑

i=1

[
(e(k|i))TQ(e(k|i))

+(	u(k|i))TR(	u(k|i))
]
h

s.t. cmot(χ) = res(q, q̇, q̈,u)

Aintgχ − bintg = 0

q(k|1) = q(k)
out

y(Ntot−k) = yd(t (Ntot−k)),

where res(q, q̇, q̈,u) is the residual of the dynamic
equation (8), e(k|i) = yd(t (k|i)) − y(k|i) represents the
output error of the system, Q and R are weight matri-
ces, while 	u = u(k|i+1) − u(k|i) and h is the time
step. Differently from P1, the vector of equality con-
straints corresponding to the discretized path for P2 is
cmot(χ) = (c(1)

mot, . . . , c
(Ntot−k)
mot )T .

4 Dynamic tube-MPC for underactuated systems

The proposed dynamic tube-MPC combines two pow-
erful control methodologies, namely IDA-PBC and
MPC, resulting in a modular algorithm that can be
applied to different systems by tailoring the analyt-
ical expression of the ancillary control. In addition,
a dynamic tube equation akin to a first-order filter
is defined according to an energy-based approach.
Finally, the tube parameters are treated as new design
variables in the optimization problem, while new con-
straints and a new performance index are employed in
the tube-MPC algorithm, thus resulting in a different
optimization problem compared to P2.

To streamline the presentation, the first part of
this section provides a brief overview of IDA-PBC,
the second part considers the case of matched distur-
bances (i.e. only affecting the actuated position coor-
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dinates), while the third part considers both matched
and unmatched disturbances (i.e. affecting actuated and
unactuated coordinates). The last part summarizes the
complete dynamic tube-MPC algorithm for underactu-
ated mechanical systems.

4.1 Overview of IDA-PBC for underactuated
mechanical systems

The system dynamics (8) can be expressed in port-
controlled Hamiltonian form by defining the total
energy as

H(q,p) = 1

2
pTM−1p + V (q), (16)

where the first term is the kinetic energy and the second
is the potential energy. The system states are the posi-
tion q and the momenta p = M(q)q̇. The Hamiltonian
is positive definite and radially unbounded; thus, it is a
suitable Lyapunov candidate function. The open-loop
dynamics (8) in the presence of a physical damping
matrix D = DT > 0 characterizing the model and of
the disturbances δ is then

[
q̇
ṗ

]
=

[
0 In

−In −D

] [ ∇q H
∇pH

]
+

[
0

G(q)

]
u −

[
0
δ

]
,

(17)

y = GT (q)∇pH(q,p). (18)

The control input is u ∈ R
m , and the input matrix is

G (q) ∈ R
n×m , with rank (G) = m < n for all q ∈ R

n .
Note thatG in (17) corresponds toA in (9). The control
aim typically corresponds to stabilizing the equilibrium
(q,p) = (q∗, 0), which can be unstable in open-loop
and satisfies the condition ∇qV (q) = 0; thus, it is a
regulation problem.

In the absence of disturbances, the IDA-PBC control
law is constructed to achieve the closed-loop dynamics

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 J2 − Dd

] [∇q Hd

∇pHd

]
−

[
0
δ

]
, (19)

where Hd = 1
2p

TMd
−1p + Vd and q∗ = argmin (Vd)

corresponds to a strict minimizer of the closed-loop
potential energy Vd . The closed-loop damping in (19)
is defined as Dd = (GkvGT + DM−1Md). The term

Md = Md
T > 0 is the closed-loop inertia matrix,

J2 = −J2T is a free-parameter matrix typically defined
as a linear function of themomenta, and kv = kTv > 0 is
a constant gainmatrix. The prescribed equilibriumq∗ is
asymptotically stable provided that Dd > 0 [28]. This
condition is always met for certain classes of mechan-
ical systems, including systems with constant inertia
matrix, or in case the kinetic shaping is achieved with
Md = kTM for some kT > 0 as in [26]. Introducing the
pseudo-inverseG† = (

GTG
)−1GT, the IDA-PBCcon-

trol law that achieves the closed-loop dynamics (19) is
expressed as the sum of an energy-shaping component
ues, which assigns the closed-loop equilibrium q∗, and
of a damping-assignment component udi, which injects
damping in the system

uida-pbc = ues + udi,

ues = G†
(
∇q H − MdM−1∇q Hd + J2M

−1
d p

)
,

udi = −kvGT∇pHd . (20)

The terms Md and Vd should satisfy the following
partial-differential-equations (PDEs), where G⊥ is a
full-rank left annihilator of G, that is G⊥G = 0 and
rank

(
G⊥) = n − m:

0 = G⊥ (
∇q(pTM−1p) − MdM−1∇q(pTMd

−1p)
)

+G⊥ (
2J2Md

−1p
)

, (21)

0 = G⊥ (
∇qV − MdM−1∇qVd

)
. (22)

If (21–22) are satisfied ∀ (q,p) ∈ R
2n and if δ = 0,

then the equilibrium (q,p) = (q∗, 0) is locally stable.
If ∇qVd (q∗) = 0 and ∇2

q Vd (q∗) > 0, the equilibrium
is a strict-minimizer of Vd . Finally, asymptotic stability
is concluded if the output y = GT∇pHd is detectable
even if D = 0 [44].

A recent extension of IDA-PBC for tracking control
was presented in [51] for systems with constant inertia
matrix and constant damping matrix. Further to that, a
path-following controller that employs the Immersion
and Invariance (I&I) approach was proposed in [52].
However, the latter does not guarantee the satisfaction
of time constraints.

4.2 Ancillary control for systems with matched
disturbances

In this section, the IDA-PBCmethodology is employed
to design the ancillary control by focusing on underac-
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tuated mechanical systems with matched disturbances.
Thus, the following assumption is introduced.

Assumption 1 Thedisturbances δ arematched, bounded,
and null at equilibrium (i.e., δ = Gδ0, |δ0| < ε, where
ε is known).

Considering that Hd is globally positive definite and
radially unbounded, we define a sub-domain of attrac-
tion for the closed-loop system (19) as

�c =
{
(q,p) ∈ R

2n|Hd (q,p) < c
}

, (23)

where c is a positive scalar time-varying parameter
representing the width of the dynamic tube. Once the
system trajectory enters the sub-domain of attraction
(23), it should remain there indefinitely. To this end, the
closed-loop energy Hd should decrease at a faster rate
than the scalar c, that is Ḣd ≤ ċ. This first condition
is employed to define the time-derivative of c. Con-
versely, in case the system trajectory lies outside the
sub-domain of attraction, an additional control action
is defined to bring the system states to�c. The resulting
controller design is detailed in the following proposi-
tion, which represents the first theoretical contribution
of this work.

Proposition 1 Consider system (17) under Assump-
tion1 in closed-loop with the IDA-PBC control law

uida-pbc = ues + udi Hd (q,p) < c,

uida-pbc = ues + udi + u0 Hd (q,p) ≥ c, (24)

where ues, udi are defined in (20), kv ≥ αc, α is a
parameter, while u0 and ċ are defined as

u0 = −αc
(
GT∇pHd

)
,

ċ =
∣∣∣∇pH

T
d G

∣∣∣ ε − α
(
∇pH

T
d GGT∇pHd

)
c. (25)

Assume in addition that Dd > 0 and that q∗ =
argmin(Vd). Then, all system trajectories originating
in �c remain in �c indefinitely. In addition, all system
trajectories starting outside�c converge to�c asymp-
totically.

Proof Computing the time derivative of Hd and sub-
stituting (19) yields

Ḣd = −∇pH
T
d (Dd)∇pHd − ∇pH

T
d Gδ0. (26)

A sufficient condition for the system trajectories start-
ing in �c to remain in �c indefinitely is given by
Ḣd < ċ. Computing the former inequality while sub-
stituting (26) and Dd yields

Ḣd ≤ −∇pH
T
d

(
GkvGT + DM−1Md

)
∇pHd

+
∣∣∣∇pH

T
d G

∣∣∣ |δ0| < ċ.
(27)

Define the tube dynamics as in (25), which represents
a stable first-order filter of the disturbance bound ε and
is similar in structure to the definition of ϕ̇ in [36]. Sub-
stituting ċ from (25) into (27) and refactoring common
terms yields

Ḣd ≤ −∇pH
T
d

(
GkvGT + DM−1Md

)
∇pHd

+
∣∣∣∇pH

T
d G

∣∣∣ |δ0| < −α
(
∇pH

T
d GGT∇pHd

)
c

+
∣∣∣∇pH

T
d G

∣∣∣ ε,
(28)

which is verified for all α c ≤ kv since Dd > 0 and
|δ0| < ε by hypothesis (see Assumption 1). Thus, if
the trajectory of the closed-loop system with control
input (24) enters the sub-domain of attraction, then it
will remain there.

If instead the system trajectory is outside the sub-
domain of attraction, that is Hd > c, we define the
new Lyapunov function candidate W = Hd − c which
according to (23) is positive definite in this case. Com-
puting the time-derivative ofW and substituting ċ from
(25) yields

Ẇ ≤ −∇pH
T
d (Dd)∇pHd + ∇pH

T
d Gu0

+
∣∣∣∇pH

T
d G

∣∣∣ (|δ0| − ε)

+ α
(
∇pH

T
d GGT∇pHd

)
c.

(29)

Simplifying terms in (29) gives

Ẇ ≤ −∇pH
T
d (Dd)∇pHd + ∇pH

T
d Gu0

+ α
(
∇pH

T
d GGT∇pHd

)
c.

(30)

Substituting u0 from (25) into (30) yields finally the
expression Ẇ ≤ −∇pHT

d Dd∇pHd ≤ 0. Thus, the
storage function W converges to zero and the system
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trajectory converges to the dynamic tube asymptoti-
cally ��
Remark 1 The control law (24) is in fact a stan-
dard IDA-PBC with a discontinuous and time-varying
damping-injection term. Comparing (20) and (24)
shows that the latter could be expressed as uida-pbc =
ues+u

′
di, where u

′
di = −k

′
vG

T∇pHd and k
′
v = kv +αc

for the case Hd ≥ c. The difference from the conven-
tional damping injection is that α is part of the design
variables and is computed by the dynamic tube-MPC
algorithm. Note that, since αc > 0, then k

′
v > kv , and

provided that DM−1Md > 0, it would be possible to
set kv = 0 such that k

′
v = αc when Hd ≥ c. Thus,

the damping assignment would only occur when the
system trajectory is outside the dynamic tube.

Remark 2 The control law (24) employs a robust-
control approach (i.e., the disturbance is assumed
bounded and the dynamic tube depends on the bound
ε), which is conservative by nature. We have shown in
[24,27] that linearly parameterized disturbances can be
estimated adaptively from the open loop (17). Thus, the
control law could include the adaptive estimate of δ0
and the boundedness assumption could be relaxed. The
assumption ofmatched disturbances is relatively strong
in practice (i.e., Assumption 1). While unmatched dis-
turbances can be treated in a similar way to matched
disturbances for specific classes of mechanical sys-
tems such as flexible continuum manipulators [25,26],
this is not the case in general. In particular, extend-
ing (24) to unmatched disturbances is not trivial since
the rank-deficient term ∇pHT

d Gu0 cannot cancel the
term α

(∇pHT
d ∇pHd

)
c, which is full-rank. To address

this issue, an alternative implementation of the dynamic
tube and of the ancillary control for the case ofmatched
and unmatched disturbances is proposed in the next
sub-section.

4.3 Ancillary control for systems with matched and
unmatched disturbances

In order to investigate the case of matched and
unmatcheddisturbances, an adaptive observer is included
in the ancillary control law and Assumption 1 is
replaced in this section by the following.

Assumption 2 The disturbances include matched and
unmatched componentswhich are unknownbut bounded

(with unknown bound), and their time-derivative is
bounded, that is

∣∣δ̇∣∣ < μ |p| for some known μ > 0.

In addition, we define a new sub-domain of attrac-
tion as

�
′
c =

{
(q,p, z) ∈ R

3n|H ′
d (q,p, z) < c

}
, (31)

where c is the width of the dynamic tube. The new
storage function is H

′
d = 1

2p
TMd

−1p + V
′
d + 1

2 z
Tz,

where∇qV
′
d = ∇qVd +�(q), and the estimation error

of the adaptive observer is z = δ̂ + β (p) − δ. The
term �(q) can be interpreted as a vector of closed-
loop non-conservative forces, and it is computed from
the following set of algebraic matching equations and
strict-minimizer condition [24]

G⊥ (̃
δ − MdM−1�(q)

)
= 0,

∇qVd(q∗) + �
(
q∗) = 0. (32)

The adaptive estimate of δ is δ̃ = δ̂ + β (p), where
according to the I&I methodology [3]

˙̂δ = −∇pβ
T (−∇q H − D∇pH + Guida-pbc − δ̃

)
,

β = −γp, (33)

where γ > 0 is a tuning parameter.

Proposition 2 Consider system (17) under Assump-
tion2 in closed-loop with the IDA-PBC control law

uida-pbc = ues + udi + uadpt H
′
d (q,p, z) < c,

uida-pbc = ues + udi + uadpt + u0 H
′
d (q,p, z) ≥ c,

(34)

where kv ≥ α c and ues, udi are defined in (20). In
addition, uadpt is given as

uadpt = G†
(̃
δ − MdM−1�(q)

)
. (35)

Finally, u0 and ċ are defined as

u0 = −αc
(
GT∇pHd

)
,

ċ = μ2pTp − α
(
∇pH

T
d GGT∇pHd

)
c. (36)

Assume also that there exist some kv, γ, μ such that

γ
(
GkvGT + DM−1Md

)
− 1

4
(In + μMd)

2 > 0,

γ
(
DM−1Md

)
− 1

4
(In + μMd)

2 > 0, (37)
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and that the equilibriumq∗ = argmin(Vd) is assignable,
that is

G⊥ (∇qV (q∗) + δ
) = 0.

Then, all system trajectories originating in �
′
c remain

in �
′
c indefinitely. In addition, all system trajectories

starting outside �
′
c converge to �

′
c asymptotically.

Proof Computing the time-derivative of z while sub-
stituting (33) yields ż = −γ z − δ̇. The closed-loop
dynamics with the IDA-PBC control law (34) is then
given by

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 J2 − Dd

] [∇q Hd + �(q)

∇pHd

]
+

[
0
z

]
.

(38)

Computing the time derivative of H
′
d along the trajec-

tories of the closed-loop systemwhile substituting (38)
yields

Ḣ
′
d = −∇pH

T
d Dd∇pHd + ∇pH

T
d z − γ zTz − zTδ̇.

(39)

Substituting into (39)
∣∣δ̇∣∣ < μ |p| for some μ > 0 (see

Assumption 2) yields

Ḣ
′
d ≤ −∇pH

T
d Dd∇pHd − γ zTz

+ ∇pH
T
d (In + μMd)z,

(40)

which can be refactored as

Ḣ
′
d ≤ − [∇pHT

d zT
] [

Dd − 1
2�0

− 1
2�0 γ In

] [∇pHd

z

]
,

(41)

where �0 = (In +μMd). Employing a Schur comple-
ment argument in (41) results in the first inequality in
(37), which is a sufficient condition for local stability
within the dynamic tube.

Following the logic of Proposition 1, a sufficient
condition for the system trajectories starting in �

′
c to

remain in�
′
c indefinitely is given by Ḣ

′
d ≤ ċ. Comput-

ing the former inequality while substituting (40) and ċ

from (36) yields

− ∇pH
T
d Dd∇pHd + ∇pH

T
d (In + μMd)z

− γ zTz ≤ μ2pTp

− α
(
∇pH

T
d GGT∇pHd

)
c,

(42)

which is verified, provided that kv ≥ α c and that the
second inequality in (37) holds. Clearly, the condition
resulting from the dynamic tube is different and typi-
callymore stringent compared to the condition for local
stability in (41).

In case the system trajectory lies outside the dynamic
tube, we define the new Lyapunov function candidate
W

′ = H
′
d − c. Computing its time derivative yields

Ẇ
′ ≤ − [∇pHT

d zT
] [

Dd − 1
2�0

− 1
2�0 γ In

] [∇pHd

z

]

− μ2pTp + ∇pH
T
d Gu0

+ α
(
∇pH

T
d GGT∇pHd

)
c.

(43)

Substituting u0 from (36) into (43) yields finally Ẇ
′ ≤

0. Thus, the function W
′
converges to zero asymp-

totically and the system trajectory converges to the
dynamic tube asymptotically. Note finally that the con-
dition that ensures convergence of the system trajec-
tory to the dynamic tube corresponds to the condition
required for local stability (i.e., it is less stringent that
the condition required for the trajectory to remain in
the dynamic tube indefinitely) ��

Remark 3 Employing a different assumption for the
disturbances results in a different expression of the
dynamic tube. For comparisonpurposes, assumematched
and unmatched disturbances to be bounded and with
bounded time-derivative such that

∣∣δ̇∣∣ < ε and δ̇ = 0
in proximity of the equilibrium. Computing the time-
derivative of H

′
d and substituting theYoung’s inequality∣∣zTδ̇

∣∣ ≤ 1
4 z

2 + ε2 yields

Ḣ
′
d ≤ −∇pH

T
d Dd∇pHd + ∇pH

T
d z

−
(

γ − 1

4

)
z2 + ε2.

(44)
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Refactoring terms in (44) yields in this case

Ḣ
′
d ≤ − [∇pHT

d z
] [

Dd − 1
2 I

n

− 1
2 I

n
(
γ − 1

4

)
In

] [∇pHd

z

]
+ ε2.

(45)

Employing a Schur complement argument in (45)
results in the following sufficient conditions for ulti-
mate boundedness

Dd

(
γ − 1

4

)
− 1

4
In > 0. (46)

Defining the dynamic tube as

ċ = ε2 − α
(
∇pH

T
d GGT∇pHd

)
c, (47)

and computing the inequality Ḣ
′
d ≤ ċ yields then

− ∇pH
T
d Dd∇pHd + ∇pH

T
d z −

(
γ − 1

4

)
z2 + ε2

≤ ε2 − α
(
∇pH

T
d GGT∇pHd

)
c,

(48)

which is verified provided that kv ≥ α c and that

DM−1Md

(
γ − 1

4

)
− 1

4
I n > 0. (49)

When the system trajectory lies outside the dynamic
tube, the new Lyapunov function candidate W

′ =
H

′
d − c is defined. Computing its time derivative while

introducing the additional control action u0 yields

Ẇ
′ ≤ − [∇pHT

d z
] [

Dd − 1
2 I

n

− 1
2 I

n
(
γ − 1

4

)
In

] [∇pHd

z

]
+ ε2

− ε2 + ∇pH
T
d Gu0

+ α
(
∇pH

T
d GGT∇pHd

)
c.

(50)

Simplifying common terms in (50) and computing u0
in order to cancel the term dependent on c yields

u0 = −αcGT∇pHd ,

which is the same as in Proposition 2. Note, how-
ever, that in this hypothetical case the dynamic tube
would corresponds to a filter with input ε2, which is
always positive unless the system is at equilibrium.
Thus, differently from Proposition 2, the dynamic tube
(47) would only affect the initial transient since its
width would continue to grow indefinitely in time. This
indicates that, while different implementations of the
dynamic tube are possible, the physical implications of
the underlying assumptions should be considered at the
controller design stage. Note finally that a discrete-time
implementation of (34) can be obtained by employing
a discrete-time version of the I&I method [23] and of
IDA-PBC [22], but it is beyond the scope of this work.

4.4 Control implementation

An MPC algorithm is now constructed by including
the ancillary control and the dynamic tube equation
as additional constraints. The variables related to the
dynamic tube α, α̇, c, ċ and the auxiliary control vari-
able uaux are included in the set of design variables at
each time step i thus

χ(k|i) =
(
q(k|i) q̇(k|i) q̈(k|i) a(k|i) c(k|i) α(k|i)

ċ(k|i) α̇(k|i) u(k|i) u(k|i)
aux

)T
,

(51)

where i = 1, . . . , Ntot − k and k represent the instant
when the output error is higher than the preset tol-
erance. The total set of design variables is χ =
(χ(1) χ(2) . . . χ(Ntot−k))T and has dimension (Ntot −
k)(4n + 2m + 4). The variables c, ċ and uaux are not
independent; thus, they could be eliminated in theory.
However, preserving them results in improved robust-
ness of numerical conditioning. Thus, the nonlinear
programming problem indicated as P3 is formulated
as
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P3 :

min
χ

J =
Ntot−k+1∑

i=1

[
γobj(α

(k|i))2 + (u(k|i))TR(u(k|i))
]
h

s.t. cmot(χ) = res(q, q̇, q̈, u)

Aintgχ − bintg = 0

q(k|1) = q(k)
out

y(Ntot−k) = yd (t (Ntot−k))

ctube(χ) = −ċ(k|i) + εw1(q, q̇) − c(k|i)α(k|i)w2(q, q̇)

caux(χ) = −(u(k|i)
aux + u(k|i)) + u(k|i)

ida-pbc(q, q̇)

cα(χ) = −α̇(k|i) + 	α(k|i)/h

vα
ineq(χ) � α(k|i) > 0

vcineq(χ) � c(k|i) > 0

vkv

ineq(χ) � α(k|i)c(k|i) ≤ kv.

The term res(q, q̇, q̈,u) is the residual of the dynamic
equation considering theMPC control input u, cmot is a
set of binding constraints in the optimization problem,
and the condition cmot ≈ 0 is verifiedwhen a solution of
the optimization problem P3 is found. The initial state
at each iteration that lies outside the prescribed trajec-
tory is q(k)

out. The last six lines of P3 are related to the
discretized dynamic tube-MPC for i = 1, . . . , Ntot−k:
the constraint ctube represents the dynamic tube equa-
tion; the constraint caux is related to the ancillary con-
trol, where uida-pbc is given in (24) for matched and
bounded disturbances, and in (34) for unmatched non-
vanishing disturbances; the constraint cα is required
since α is time varying. The complete set of equality
constraints is

ceq =
(
c(1)
mot, c

(1)
tube, c

(1)
aux, c

(1)
α . . . , c(Ntot−k)

mot , c(Ntot−k)
tube ,

c(Ntot−k)
aux , c(Ntot−k)

α

)
≈ 0.

The gradient for this equality constraint is ∂ceq/∂χ .
Inequalities vα

ineq and vcineq impose positive values for

α and c, while inequality vkv

ineq imposes a bound on kv

which is a tuning parameter in (20).The complete set
of inequality constraints is

vineq =
(
vα
ineq

(1)
, vcineq

(1)
, vkv

ineq
(1)

, . . . , vα
ineq

(Ntot−k)
,

vcineq
(Ntot−k)

, vkv

ineq
(Ntot−k))

.

Fig. 1 Block diagram of the dynamic tube-MPC algorithm

The gradient for this inequality constraint is ∂vineq/∂χ .
Following the principles ofMPC, only the first element
of the design variables u, uaux, c and α at each iteration
are employed in the dynamic tube-MPC control policy

π = ufb = kmu + kauaux, (52)

which is applied to the plant when the output error
is larger than the preset tolerance. The parameters km
and ka are gains affecting the responsiveness of the
system, and km/ka defines the direction of actuation
in the control policy. The dynamic tube-MPC based on
IDA-PBC is summarized as Algorithm 1, and a block
diagram is shown in Fig. 1.

Algorithm 1: Dynamic tube-MPC for underactu-
ated mechanical systems.

i. compute offline the feedforward controluff, solving
P1, and then apply it to the plant;

ii. compute the system output y, and if e = yd − y >

tolerance, then proceed solving dynamic tube-MPC
recursively;

(a) estimate states;
(b) compute initial guess for the design variables;
(c) solve P3 for the horizon t (k|Ntot) − t (k|i);
(d) from the solution ofP3 obtain u, uaux, c, α: use

the first elements of these vectors (in time) to
compute control policy π = ufb, and apply it
to the plant;

(e) compute y for the next time step, and
if (e > tolerance)
– go to (a), in a receding horizon problem k =
k + 1 with i = 1, 2 . . . (Ntot − k + 1);
else (e < tolerance)
– go to point iii;
end

iii. continue applying the feedforward control uff(k) to
the plant.
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5 Examples and results

Two examples are presented in order to illustrate the
proposed approach: a two-mass-spring-damper system
with parametric uncertainty and a inertia-wheel pen-
dulum system with a constant but unknown external
disturbance.

5.1 Parametric uncertainty: two-mass-spring-damper

The underactuated mechanical system shown in Fig. 2
consists of twomasses connected by springs and by one
damper with parametric uncertainty. We shall initial
consider linear springs and subsequently one nonlinear
spring. The vector of the generalized position coordi-
nates is defined as q = (x1, x2)T , where x j are the rel-
ative translations of the node j = 1, 2. The state vector
is defined as x = (x1, ẋ1, x2, ẋ2)T , and the dynamic
equations for the linear case are

ẋ = Assx + Bssu, (53)

where

Ass =

⎛
⎜⎜⎜⎝

0 1 0 0
− (k1+k2)

m1
− b

m1

k2
m1

b
m1

0 0 0 1
k2
m2

b
m2

− (k2+k3)
m2

− b
m2

⎞
⎟⎟⎟⎠ ,

Bss =

⎛
⎜⎜⎝

0
1
m1

0
0

⎞
⎟⎟⎠ .

The mechanical parameters of the system are defined
as m1 = 1.0 kg, m2 = 3.0 kg, k1 = 5.0 N/m,
k2 = 3.0 N/m, k3 = 1.0 N/m and b = 7.0 N s/m.
The physical damper has a parametric uncertainty
	b = 2.0 N s/m. The plant output is simulated as a
direct dynamic problem (i.e., initial value problem);
hence, numerical errors can also be a source of uncer-
tainty. The time discretization is implemented using
120 points, the initial time t0 = 0 s, the final time
tf = 30 s, and the time step h = 0.25 s. The initial state
of the system is x = (0.5, 0.8294, 1.0,−0.0027)T.

The potential energy of the system is V = k1x21
2 +

k2(x2−x1)2

2 + k3x22
2 . The kinetic energy is T = 1

2m1 ẋ21 +

Fig. 2 Schematic of the two-mass-spring-damper system

1
2m2 ẋ22 . The damping matrix is D = b

[
1 −1

−1 1

]
. The

input matrix for the port-controlled Hamiltonian for-

mulation is G =
[
1
0

]
, and the inertia matrix M =

[
m1 0
0 m2

]
is constant. The only stable equilibrium point

of the system in open loop is x1 = x2 = 0.
The control goal corresponds to moving the sec-

ond mass to a prescribed position such that (x1, x2) =
(x∗

1 , x
∗
2 ). Since the system is underactuated, the posi-

tion x∗
1 of the first mass would depend on that of the

second mass. Thus, the two masses cannot be driven
to independent prescribed values simultaneously. We
employ an IDA-PBC design, such that the closed-loop
system has constant inertia matrix given by Md =[
a1 −a2

−a2 a3

]
, where a1 > 0, a2 > 0, a3 > 0 and

a1a3 > a22 . Since M is constant, the kinetic-energy
PDE (21) can be trivially solvedwith a constantMd and
with J2 = 0. The potential-energy PDE (22) becomes
instead

− a2
m1

∇x1Vd + a3
m2

∇x2Vd = (k2 + k3) x2 − k2x1,

and the candidate solution is chosen as

Vd =
(
m1x21

(
k2 + (a3m1(k2+k3))

a2m2

))

2a2

−
m2

1 (k2 + k3)

(
a3x21
m2

+ a2x1x2
m1

)

a22

+
m2

1m2 (k2 + k3)
(
a3x1
m2

+ a2(x2 −x∗
2)

m1

)2
2a22a3

+ m1x∗
2
2 (k2 + k3)2

2a2k2
. (54)

Typically, the minimizer conditions ∇qVd (q∗) =
0 and ∇2

q Vd (q∗) > 0 are satisfied by introducing in
Vd a term dependent on the position error (q − q∗)

123



Energy shaping dynamic tube-MPC for underactuated mechanical systems 371

multiplied by a constant tuning parameter kp . However,
in this case the expression of Vd in (54) does not contain

kp since the latter has been chosen as kp = m2
1m2(k2+k3)

a22a3

in order to verify the conditions∇x Vd = 0 and∇2
x Vd =

k2m1m2(k2 + k3)
a2a3

> 0 at (x1, x2) =
(

(k2+k3)x∗
2

k2
, x∗

2

)
, for

any x∗
2 .

The baseline IDA-PBC control law is then given by

uida-pbc = ues + udi

ues = k1x1 + k2 (x1 − x2)

+ a1
(
k2x∗

2 − k2x1 + k3x∗
2

)
a2

+ a2 (k2 + k3)
(
x2 − x∗

2

)
a3

,

udi = −kv (a3m1 ẋ1 + a2m2 ẋ2)

a1a3 − a22
, (55)

where kv, a1, a2, a3 are tuning parameters. The closed-
loop damping matrix Dd is positive definite and has
determinant kvb (a2 + a3) /m2. It must be noted that
the control input does not depend on the open-loop
damping D, which therefore can be uncertain. Since
this system does not have external disturbances, we set
uadpt = 0. The dynamic tube equation and the addi-
tional control action u0 that is included in uida-pbc in
the optimization problem P3 are given by (25)

u0 = −αc

(
a3m1 ẋ1 + a2m2 ẋ2

a1a3 − a22

)
,

ċ =
∣∣∣∣∣
a3m1 ẋ1 + a2m2 ẋ2

a1a3 − a22

∣∣∣∣∣ ε

− αc

(
a3m1 ẋ1 + a2m2 ẋ2

a1a3 − a22

)2

.

The proposed control algorithm can be readily
extended to a systemwith a nonlinear spring k1 = k10+
k11x21 . In such case, the potential energy V changes
accordingly, but the potential-energy PDE (22) is pre-
served. Thus, the candidate solution (54) remains valid
and the equations defining the dynamic tube remain
the same. However, due to the change in V , the control

input ues in (55) changes to

ues = k10x1 + 2k11x
3
1 + k2 (x1 − x2)

+ a1
(
k2x∗

2 − k2x1 + k3x∗
2

)
a2

+ a2 (k2 + k3)
(
x2 − x∗

2

)
a3

.

5.1.1 Simulation results

The IDA-PBC parameters were selected as a1 =
1, a2 = −1, a3 = 2 , ε = 1, kv = 1. The weights
of the performance index were tuned empirically as
R = βobj = 0.5 and γobj = 0.7, while ka = km = 1.
The output error tolerance was set to 0.12 m.

Figure 3a shows the relative error for the output,
which has a maximum amplitude of around 15%. Fig-
ure 3b shows the control input, the feedforward control
computed usingP1, and the feedback control computed
using P3. The dynamic tube-MPC control policy acts
to correct the output in the time interval 1.5 ≤ t ≤
3.0. Figure 3c shows the positions and a comparison
between the desired trajectory and the plant output x2.
Figure 3d shows the velocities of the masses. Figure 3e
shows the phase diagram for the untracked position x1,
while Fig. 3f, g show the independent variable α com-
puted by P3 and its time derivative α̇ to illustrate their
evolution in time. Figure 3h shows the evolution of c
during the optimization: c is constant in all iterations
for the interval 6.0 ≤ t ≤ 24.0. Figure 3i shows the
dynamic tube geometry that is obtained by using the
first values of c at each iteration of the dynamic tube-
MPC algorithm. The opposite value of c is plotted with
a dotted line for graphical purposes.

A further set of results is shown in Fig. 4 in order to
compare the dynamic tube-MPC with a tube-MPC that
employs a fixed value of α, and with a baseline MPC
(solution of P2). The dynamic tube-MPC is clearly
superior to the baselineMPC and to the tube-MPCwith
fixed tube geometry. Figure 4c, d illustrates the effect of
the ratio km/ka on the output dynamics. In particular,
varying km has only a small effect on the initial tran-
sient and a negligible effect after that. In order to further
validate the proposed approach, additional simulations
were performed: (i) considering the same parameters
and a new desired trajectory, but with the same passage
points (reference for the interpolation) and with a lin-
ear interpolation, see Fig. 5. Six iterations were needed
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Fig. 3 Simulation results: dynamic tube-MPC for the two-mass-spring-damper system

in this case (one more than the first trajectory) for the
dynamic tube-MPC to converge; (ii) considering the
same parameters and a new desired trajectory (pulse
command), see Fig. 6.

Additional results for the case of a nonlinear spring
k1 = k10 + k11x21 , where k10 = 5 Nm and k11 = 0.05
Nm, are shown in Fig. 7. Also in this case the pro-
posed control algorithm correctly achieves the track-
ing goal. Differently from the linear case, the initial
transient shows some oscillations that, however, van-
ish over time. Note that in this case the feedback con-
trol is active for a longer time than in the linear case
even though the same tuning parameters have been

employed. This is due to the higher complexity of the
nonlinear problem.

5.2 External disturbance: inertia-wheel pendulum
system

The inertia-wheel pendulum consists of an unactuated
pendulum with a balanced actuated rotor at the tip
[46] (see Fig. 8). This system is a classical example
of underactuated mechanism which exhibits nonlinear
characteristics due to its inverted pendulum structure
[29,54]. The vector of the angular position is defined
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Fig. 4 Simulation results
comparing the output for
different controllers: a, b
dynamic tube-MPC,
tube-MPC (fixed α) and
MPC; c, d different gains in
the control policy
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as q = (q1, q2)T . The pendulum angle is measured
from the vertical, while the rotor angle q2 is measured
relative to the pendulum. The equations of motion are

Mq̈ + Bn q̇ + gn sin(q) = Au − δ, (56)

where

M =
(

(a1 + a2) a2
a2 a2

)
, Bn =

(
b1 0
0 b2

)
,

gn =
(
a3 0
0 0

)
, A =

(
0
1

)
,

and a1 = mpl2c1 + mwl2 + l p, a2 = Iw and a3 =
g(mplc1 + mwl). The values of the parameters are
defined in Table 1 and correspond to [46].

The open-loop potential energy is V = a3 cos(q1),
and the inertia matrix M is constant. An unmodeled
constant external disturbance δ = [18, 0]T is acting on
the unactuated pendulum. Time discretization is imple-
mented using 120 points, the initial time t0 = 0 s, the
final time tf = 0.15 s, and the time step h = 0.0013 s.

The initial configuration for the system is defined as
q(t0) = (0, 0.01)T and q̇(t0) = (0.1874, 0.1074)T .

The control goal corresponds to following a desired
output trajectory q2 = q∗

2 . Note that the position q1
can only be stabilized at q1 = 0 and q1 = π , thus
trajectory tracking is only possible for q2. Since the
matrix M is constant, the kinetic-energy PDE (21) is
solvable with J2 = 0 and with a constant inertia matrix

Md = (
a1a2 − a22

) [
m1 m2

m2 m3

]
, wherem2 = m1a2/a1+

ψ andm1,m3, ψ are constant positive parameters. The
candidate solution of the potential-energy PDE (22) is

Vd = a3 cos (q1)
1

(m1 − m2) a2
+ kp

2
(q2 + γ0q1)

2 ,

γ0 = −m2a1 − m1a2
(m1 − m2) a2

.

(57)

The baseline IDA-PBC control law which includes the
disturbance compensation term uadpt is
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Fig. 5 Simulation results for a new prescribed trajectory with the same passage points and with a linear interpolation
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Fig. 6 Simulation results for a new prescribed trajectory (pulse command)
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Fig. 7 Simulation results for nonlinear spring with stiffness k1 = k10 + k11x21

uida-pbc = ues + udi + uadpt,

ues = γ2 sin (q1) − kpγ3
(
q2 − q∗

2 + γ0q1
)
,

udi = − kv

(
m1 p2 − m2 p1

)
(
a1a2 − a22

) (
m1m3 − m2

2

) ,

uadpt = δ̃2 − δ̃1
m2 − m3

m1 − m2
+ kpγ3γ0q

∗
1 . (58)

The disturbance estimates δ̃1 = δ̂1 + β1 and δ̃2 =
δ̂2 + β2 are computed according to (33) as

˙̂δ1 = γ (a2a3 sin(q1) − a2uida-pbc − a2δ̃1 + a2δ̃2),

˙̂δ2 = γ (−a2a3 sin(q1) + (a1 + a2)uida-pbc

+ a2δ̃1 − (a1 + a2)̃δ2),

β1 = −γ ((a1 + a2)a2 − a22)q̇1,

β2 = −γ ((a1 + a2)a2 − a22)q̇2,

(59)

where the terms kp, kv, γ > 0 are constant tuning
parameters, while the constant terms γ2, γ3 are defined
as

γ2 = a3(m2 − m3)/(m1 − m2) ,

γ3 = (εa1(m2 − m3)/(m1 − m2) − (m3a1 − m2a2)).

The dynamic tube equation and the additional control
action u0 that is included in uida-pbc in the optimization
problem P3 are given by (36) as

u0 = − αc
(
m1 p2 − m2 p1

)
(
a1a2 − a22

) (
m1m3 − m2

2

) ,

ċ =
(
p21 + p22

)
μ2

− αc

( (
m1 p2 − m2 p1

)
(
a1a2 − a22

) (
m1m3 − m2

2

)
)2

.

5.2.1 Simulation results

The IDA-PBC tuning parameters have been cho-
sen as ψ = 1.0, kv = 0.8, kp = 2.0, Md =[

0.4 �

(−0.4a2
a1+a2

+ ψ) 5

]
, and γ = 3.5. The weights R =

βobj = 5.0 and γobj = 0.7 were tuned empirically. The
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Fig. 8 Schematic of the inertia-wheel pendulum

Table 1 Mechanical parameters of the inertia-wheel-pendulum

Mass of the pendulum mp = 0.2164 kg

Total length of the
pendulum

l = 0.2346 m

Pendulum position of
the centre of mass

lc1 = 0.1173m

Moment of inertia of the
pendulum

lp = 2.233 10−3 kgm2

Mass of the wheel mw = 0.0850 kg

Moment of inertia of the
wheel

Iw = 2.495 10−3 kgm2

Gravity g = 9.81m/s2

Joints damping b1 = b2 = 0.02 Ns/rad

output error tolerance was set to 0.0015 rad and the
disturbance bound to μ = 1. The control policy was
implemented with km = 20 and ka = −4.

Figure 9a shows the output error with a maximum
amplitude of approximately 2.3%. Figure 9b shows
the control input, the feedforward control (problem
P1), and the feedback control (dynamic tube-MPC,
problem P3). The control policy corrects the output
during the time interval 0.100 ≤ t ≤ 0.111 and
0.130 ≤ t ≤ 0.139. Figure 9c shows the angular posi-
tions, where the plant output is q2, and the desired tra-
jectory. Figure 9d shows the angular velocities of the
simulated plant. Figure 9e shows the phase diagram
of the unactuated state q1, while Fig. 9f, g show the
independent variable α computed by P3 and its time

derivative α̇ to illustrate their evolution in time. Figure
9h shows that c varies in time during the optimization
process. In this case, thirteen iterations were required
for the convergence of the dynamic tube-MPC, eight of
which for the first part and five for the second. Figure 9i
shows the tube geometry corresponding to the first val-
ues of c at each iteration of the dynamic tube-MPC
algorithm. Finally, Fig. 10 shows that the dynamic tube-
MPC is superior to a tube-MPC with fixed tube geom-
etry (i.e. that employs a fixed value of α). A further set
of results that refer to larger values of q1 is shown in
Figs. 11 and 12 to better highlight the nonlinear char-
acteristics of the inertia-wheel pendulum . The control
policy has been implemented with km = 10, ka = −5
in the former and km = 2, ka = −1.2 in the latter,while
an output error tolerance of 0.0015 has been employed
in both cases. The proposed control algorithm correctly
achieves the regulation goal for q2, while q1 remains
in a nonlinear range (i.e., sin (q1) �= q1) similar to that
employed in [29]. In summary, the results indicate that
dynamic tube-MPC is effective for nonlinear underac-
tuated mechanical systems in the presence of a class of
external disturbance.

6 Conclusion

A dynamic tube-MPC for underactuated mechanical
system has been proposed. This is a robust control
method that combines MPC with an ancillary con-
trol designed with the IDA-PBC methodology result-
ing in a new nonlinear MPC algorithm. An adaptive
control law is also introduced in order to compen-
sate the effect of a class of unknown external distur-
bances under some assumptions. The proposed strat-
egy was demonstrated with simulations on two exam-
ples: a two-mass-spring-damper system with paramet-
ric uncertainty on the damper and with either a linear
or a nonlinear spring; a inertia-wheel-pendulum system
with unmodeled external disturbances. The simulation
results indicate that the proposed approach is superior
to tube-MPC with fixed tube geometry.

While the proposed approach is general in princi-
ple, practical limitations include: (i) the ability to solve
analytically the PDEs, which are required to compute
the ancillary control law using IDA-PBC; (ii) the large
amount of parameters; (iii) the possibility of numeri-
cal errors which can propagate across multiple optimal
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Fig. 9 Simulation results showing the proposed dynamic tube-MPC for the inertia-wheel-pendulum

Fig. 10 Simulation results
comparing dynamic
tube-MPC and tube-MPC
with fixed α
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Fig. 11 Simulation results showing the proposed dynamic tube-MPC for the inertia-wheel-pendulum with larger angles q1 ≥ 0.2
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Fig. 12 Simulation results showing the proposed dynamic tube-MPC for the inertia-wheel-pendulum with larger angles q1 ≥ 1

123



Energy shaping dynamic tube-MPC for underactuated mechanical systems 379

control problems and might become comparable to the
output error.

Future work aims to extend the proposed method by
further relaxing the assumptions on the external dis-
turbances. In addition, we aim to investigate the per-
formance of the proposed algorithm for a wider range
of underactuated mechanical systems and to analyze
in more detail the effect of the tuning parameters on
the performance and on the stability of the closed-loop
system.
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