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Abstract Stochastic resonance (SR), as a noise-

enhanced signal processing tool, has been extensively

investigated and widely applied to mechanical fault

detection. However, mechanical degradation process

is continuous where the current value of a mechanical

state variable, e.g., vibration, is highly dependent on

its previous values, and the widely used SRmethods in

mechanical fault detection, mainly focusing on inte-

ger-order SR, neglect the dependence among the

values of the mechanical state variable and are unable

to utilize such a dependence to enhance weak fault

characteristics embedded in a signal that records the

values of the mechanical state variable as time varies.

Inspired by fractional-order derivative that character-

izes memory-dependent properties and reflects the

high dependence between current and previous values

of the state variable of a system, a second-order SR

method enhanced by fractional-order derivative is

developed to enhance weak fault characteristics for

mechanical fault detection by using strong back-

ground noise, which is able to utilize the dependence

among the values of a mechanical state variable to

enhance weak fault characteristics embedded in a

signal. Numerical analyses show that output signal-to-

noise ratio (SNR) versus fractional order in the

second-order bistable SR system induced by frac-

tional-order derivative depicts a typical feature of SR.

Even the second-order bistable SR system induced by

fractional-order derivative is similar to the optimal

moving filter by fine-tuning the system parameters and

scaling factor. Experimental data including a bearing

with slight flaking on the outer race and a gear with

scuffing from wind turbine drivetrain are used to

validate the feasibility of the proposed method. The

experimental results indicate that the proposed method

is able to not only suppress multiscale noise embedded

in a signal but also enhance the benefits of noise to

mechanical fault detection. In addition, the compar-

ison with other advanced signal processing methods

demonstrates that the proposed method outperforms

the integer-order SR methods, even kurtogram and

maximum correlated kurtosis deconvolution in
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extracting weak fault characteristics of machinery

overwhelmed by strong background noise.

Keywords Weak signal detection � The benefits of
noise � Fractional-order derivative � Fault
characteristic enhancement � Mechanical fault

detection

1 Introduction

Weak fault characteristic extraction, as a challenge in

mechanical fault detection, has attracted sustaining

attention. Up to now, adopting effective signal

processing methods to extract weak fault characteris-

tics embedded in signals has become a widely used

strategy in mechanical fault detection [1, 2]. To do

this, lots of the advanced signal processing methods

have been proposed by the scholars in the field of

signal processing and mechanical fault diagnosis, such

as singular value decomposition [3], wavelet denois-

ing [4], kurtogram [5] and maximum correlated

kurtosis deconvolution [6]. However, most of them

aim to cancel or suppress rather than utilize the noise

imbedded in a signal for extracting weak fault

characteristics. Thus, there are two drawbacks for

them: (1) weak fault characteristics would be inevi-

tably damaged more or less in the denoising process

due to the intrinsic properties of noise cancellation or

suppression-based signal processing methods; (2)

strong background noise may reduce the reliability

and robustness of noise cancellation or suppression-

based signal processing methods in weak fault char-

acteristic extraction.

Different from noise cancellation or suppression-

based signal processing methods, stochastic resonance

(SR) [7, 8] is able to harvest the energy of noise for

enhancing weak fault characteristics embedded in

signals [9–12]. Therefore, it has been extensively

investigated and widely applied to mechanical fault

detection [13–15], and some significant achievements

have been achieved [16–18]. To date, the methodolo-

gies applied SR to mechanical fault detection almost

can be categorized into integer-order SR methods

including first-order and second-order ones.

Among them, since the second-order SR charac-

terizes nonlinear band-pass filtering property instead

of the low-pass one of first-order SR [19], it can utilize

the multiscale noise located at the different frequency

bands to enhance weak fault characteristics and is

superior to first-order SR in mechanical fault detec-

tion. For example, Li et al. [20] proposed a noise-

controlled second-order SR method for wind turbine

drivetrain fault diagnosis. Qin et al. [21] used second-

order SR with different frequency-scale ratios to

separate different components embedded in a vibra-

tion signal for extracting rotor fault characteristics.

Rebolledo-Herrera and Espinosa FV [22] developed a

second-order tuning SR method to enhance weak

characteristics embedded in signals. Lei et al. [23]

proposed a second-order SR method with stable-state

matching to diagnose incipient faults of train wheel

bearings. López et al. [24] developed a second-order

SR method with a FitzHugh–Nagumo potential to

detect rolling element bearing defects. Elhattab et al.

[25] employed frequency-independent second-order

SRmethod with pinning potentials for drive-by-bridge

inspection under operational roadway speeds. How-

ever, the second-order SR and even integer-order SR

neglect high dependence among the values of a

mechanical state variable and are unable to utilize

such a dependence to enhance weak fault character-

istics embedded in a signal that records the values of a

mechanical state variable as time varies.

As we all know, mechanical degradation process is

continuous where mechanical current value of a state

variable, e.g., vibration, is highly dependent on its

previous values. Assuming that SR is able to utilize the

dependence among the values of the mechanical state

variable to enhance weak fault characteristics, the

potential of SR in mechanical fault detection would be

further improved to outperform integer-order SR.

Inspired by fractional-order derivative that character-

izes memory-dependent property and reflects the high

dependence between current and previous values of

the state variable of a system [26, 27], the fractional-

order derivative [28] would be incorporated into a

second-order SR model to improve the capability of

SR for weak fault characteristic extraction. Numerical

simulation and experimental results demonstrate that

the proposedmethod outperforms the integer-order SR

methods, even kurtogram and maximum correlated

kurtosis deconvolution in extracting weak fault char-

acteristics of machinery overwhelmed by strong

background noise.

The remainder of this paper is organized as follows:

Section 2 builds an improved second-order SR model
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induced by fractional-order derivative and further

proposes a second-order SR method enhanced by

fractional-order derivative to extract weak fault char-

acteristics embedded in signals for mechanical fault

detection. In Sect. 3, numerical simulations are per-

formed to illustrate the superiority of both the

improved second-order SR model and the proposed

method. In Sect. 4, two experiments including a

bearing with slight flaking on the outer race and a

gear with scuffing from wind turbine drivetrain are

performed to validate the effectiveness of the pro-

posed method. Conclusions are drawn in Sect. 5.

2 A second-order SR method enhanced

by fractional-order derivative

First, an improved second-order SR model is built by

incorporating fractional-order derivative into a sec-

ond-order bistable SRmodel.Moreover, the numerical

solution method for the improved second-order SR

model is given. Second, based on the improved

second-order SR model, a second-order SR method

enhanced by fractional-order derivative is proposed

for mechanical fault detection, and its detailed proce-

dures and flowchart are provided.

2.1 An improved second-order SR model

As a widely used SR model, the second-order SR

model with the classical bistable potential can be

described as:

d2x tð Þ
�
dt2 ¼ �cdx tð Þ=dt � oU xð Þ=ox

þ A cos Xt þ uð Þ þ n tð Þ; ð1Þ

where c denotes the damping ratio and c[ 0, n tð Þ is
the stochastic noise with zero mean and variance D

and U xð Þ is the classical bistable potential

U xð Þ ¼ �ax2
�
2þ bx4

�
4; ð2Þ

where a[ 0 and b[ 0 are the potential parameters.

In the absence of the weak characteristic

A cos Xt þ uð Þ with amplitude A, characteristic fre-

quency X and phase u, the noise-induced particle

hopping rate between double potential wells can be

quantified as [13]

rK DU; xm; D; cð Þ ¼ 2
ffiffiffi
2

p
DU exp �DU=Dð Þ

.
pcx2m
� �

;

ð3Þ

where DU¼a2
�
4bð Þ is the barrier height of classical

bistable potential and xm ¼ �
ffiffiffiffiffiffiffiffi
a=b

p
are the bottoms of

potential wells that determine the potential-well

width, i.e., 2xm. In parameter-induced second-order

SR, therefore, the potential-well width xm and barrier

height DU in classical bistable potential jointly decide

the time-scale matching condition to trigger SR for

amplifying the weak characteristic embedded in a

noisy signal

TX ¼ 2p=X ¼ 2TK ¼ 2=rK : ð4Þ

Considering the effect of potential-well width xm
and barrier height DU on the time-scale matching

condition in Eq. (4), the classical bistable potential in

Eq. (2) is rewritten as:

U xð Þ ¼ �DU 2 x=xmð Þ2� x=xmð Þ4
h i

: ð5Þ

Hence, Eq. (1) can be transformed into the following

equivalent equation

d2x tð Þ
�
dt2 ¼ �cdx tð Þ=dt

þ 4DU x tð Þ
�
x2m � x3 tð Þ

�
x4m

� �

þ A cos Xt þ uð Þ þ n tð Þ: ð6Þ

According to Eq. (6), one can adjust the potential-

well width xm and barrier height DU to trigger SR for

enhancing the weak characteristic A cos Xt þ uð Þ
embedded in the noisy signal A cos Xt þ uð Þ þ n tð Þ.
Although second-order SR is able to utilize the

multiscale noise located at different frequency bands

to amplify the weak characteristic, it neglects the

dependence among the values of the mechanical state

variable and is unable to utilize the dependence to

enhance the weak characteristic.

Inspired by fractional-order derivative that charac-

terizes memory-dependent property and reflects the

high dependence between current and previous values

of the state variable of a system [29, 30], an improved

second-order SRmodel is established by incorporating

the fractional-order derivative into the second-order

bistable SR model in Eq. (6)
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d2x tð Þ
�
dt2 ¼ �cdax tð Þ=dta

þ 4DU x tð Þ
�
x2m � x3 tð Þ

�
x4m

� �

þ A cos Xt þ uð Þ þ n tð Þ; ð7Þ

where a denotes the fractional order and a 2 0; 2ð �. To
discretize the above equation for numerical solution,

Eq. (7) can be rewritten as the following equivalent

equation

dax tð Þ=dta ¼ y tð Þ:
d2x tð Þ

�
dt2 ¼ dby tð Þ

�
dtb; b¼ 2�a:

dby tð Þ
�
dtb ¼ �cy tð Þ þ 4DU x tð Þ

�
x2m � x3 tð Þ

�
x4m

� �

þA cos Xt þ uð Þ þ n tð Þ:

8
>><

>>:

ð8Þ

Among many definitions of fractional-order deriva-

tives including Riemann–Liouville definition, Grün-

wald–Letnikov definition and Caputo definition, the

widely used Grünwald–Letnikov definition is

employed to discretize Eq.(8) for solving it numeri-

cally. The Grünwald–Letnikov fractional-order

derivative of x tð Þ is defined as [31]:

dax tð Þ
dta

t¼khj ¼ lim
h!0

1

ha

Xk

j¼0

�1ð Þ j a
j

� 	
x kh� jhð Þ; ð9Þ

where h stands for the time step and
a
j

� 	
is a

binomial coefficient and can be written as:

a
j

� 	
¼ C aþ 1ð Þ

C jþ 1ð ÞC a� jþ 1ð Þ ; ð10Þ

where CðÞ denotes the Gamma function. Here, if

�1ð Þ j a
j

� 	
is notated as xa

j , Eq. (8) can be obtained

xa
0¼1; xa

k ¼ 1� aþ 1ð Þ=k½ �xa
k�1; k ¼ 1; 2; . . .; n:

ð11Þ

where n is the length of the noisy signal

A cos Xt þ uð Þ þ n tð Þ. Substituting Eq. (11) into

Eq. (9), one can obtain

dax tð Þ
dta

t¼khj ¼ lim
h!0

1

ha
x khð Þ þ

Xk�1

j¼1

xa
j x kh� jhð Þ

" #

:

ð12Þ

According to Euler formula, substituting Eq. (12)

into Eq. (8), under zero initial conditions one can

obtain

lim
h!0

1

ha
x kð Þ þ

Xk�1

j¼1

xa
j x k � jð Þ

" #

¼ y k � 1ð Þ;

lim
h!0

1

hb
y kð Þ þ

Xk�1

j¼1

xb
j y k � jð Þ

" #

¼ �cy k � 1ð Þ

þ4DU
x k � 1ð Þ

x2m
� x3 k � 1ð Þ

x4m


 �
þ F k � 1ð Þ;

8
>>>>>>>>><

>>>>>>>>>:

ð13Þ

where F tð Þ ¼ A cos Xt þ uð Þ þ n tð Þ. For a small time

step h, the limitation operator of Eq. (13) can be

reduced and Eq. (13) can be rewritten as:

x kð Þ¼�
Pk�1

j¼1

xa
j x k� jð Þþhay k�1ð Þ:

y kð Þ¼�
Pk�1

j¼1

xb
j y k� jð Þ

þhb �cy k�1ð Þþ4DU
x k�1ð Þ

x2m
�x3 k�1ð Þ

x4m

� 	


þF k�1ð Þ
i
:

8
>>>>>>>>>><

>>>>>>>>>>:

ð14Þ

Here, x kð Þ, y kð Þ and F kð Þ are the corresponding

discrete signals to continuous signal x tð Þ, y tð Þ and

F tð Þ. Therefore, one can use Eq. (14) to numerically

solve the response x kð Þ of the improved second-order

SR model in Eq. (7). It can be seen from Eq. (14) that

the response of the improved second-order SR model

closely depends on the fractional order a, barrier

height DU, potential-well width xm and damping ratio

c. The optimal combination of these parameters would

make the improved second-order SR model produce

the optimal response where the weak characteristic

embedded in the noisy signal can be enhanced

optimally and the noise embedded in the signal can

be eliminated largely.

2.2 The proposed method

Based on the improved model in Sect. 2.1, a second-

order bistable SR method enhanced by fractional-

order derivative is proposed to enhance weak charac-

teristic extraction for mechanical fault detection,

where quantum genetic algorithms (QGAs) are

employed to optimize its parameters because QGAs

are derived from the fusion of both genetic algorithms

and quantum computation and are superior to genetic

algorithms [32, 33]. Even other scholars would

attempt to employ the better intelligent algorithm to

optimize these parameters in the future, e.g., deep

learning. The flowchart of the proposed method is
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Fig. 1 The flowchart of a second-order SR method enhanced by fractional-order derivative for fault detection
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shown in Fig. 1, and its detailed procedures are

described as follows.

2.2.1 Parameter initialization

As we all know, when the time-scale matching

condition between the weak fault characteristic

embedded in the noisy signal F tð Þ with both the

length K and the sampling frequency fs and the noise-

induced particle hopping rate rK is satisfied, SR would

be triggered to harvest the energy of noise for

amplifying the weak fault characteristic. However,

potential-well width xm, barrier height DU, damping

ratio c and fractional order a jointly decide the

magnitude of the noise-induced particle hopping rate

rK . Therefore, QGAs are employed to optimize these

parameters (a; c; DU; xm) for obtaining the optimal

time-scale matching between the weak fault charac-

teristic and the noise-induced particle hopping rate rK ,

amplifying the weak fault characteristic embedded in

the signal F tð Þ. Here, the population size N, the length
of each binary variable L and the terminal or maximal

generation size Gmax of QGAs are initialized as 40, 20

and 50, respectively [23], where the objective function

is the output SNR [13]. Potential-well width xm,

barrier heightDU, damping ratio c and fractional order
a of the improved second-order SR model are

initialized as xm 2 0; 100ð �, DU 2 0; 10ð �, c 2
0; 10ð � and a 2 0; 2ð � , respectively [22], to obtain as

optimal as possible detection result.

2.2.2 Discretization and numerical solution

The acquired signal F tð Þ is fed into the improved

second-order SR model

d2x tð Þ
�
dt2 ¼ �cdax tð Þ=dta

þ 4DU x tð Þ
�
x2m � x3 tð Þ

�
x4m

� �
þ F tð Þ:

ð15Þ

Then, Eq. (15) can be discretized and solved numer-

ically by using Eq. (16) under zero initial conditions

x kð Þ¼�
Pk�1

j¼1

xa
j x k� jð Þþhay k�1ð Þ;

y kð Þ¼�
Pk�1

j¼1

xb
j y k� jð Þþhb �cy k�1ð Þ½

þ4DU x k�1ð Þ
�
x2m�x3 k�1ð Þ

�
x4m

� �
þF k�1ð Þ

�
;

8
>>>>><

>>>>>:

ð16Þ

where h ¼ R=fs with the scaling factor R and

k ¼ 2; 3;. . .; K. When k ¼ 1, x kð Þ and y kð Þ are

initialized as zero. The scaling factor R should be

slightly larger than the fault characteristic frequency to

be detected for rescaling it into a small frequency that

satisfies the detection range of SR, but it would make

the response x kð Þ of the improved second-order SR

model divergent if R is too large. Therefore, a

moderate R should be given artificially according to

the magnitude of fault characteristic frequency to be

detected and generally satisfies the condition

0\R\fs.

2.2.3 Response quantification

The SNR of the response x kð Þ of the improved second-

order SR model is calculated as the objective function

of QGAs for guiding to optimize the parameters

(a; c; DU; xm). The expression of SNR is written as

[13]:

SNR ¼ 10 log10 Ad

,
XK=2

i¼1

Ai � Ad

 !" #

; ð17Þ

where Ad is the amplitude at the fault characteristic

frequency in the power spectrum of the response x kð Þ,
and

PK=2
i¼1 Ai � Ad denotes the sum of noise power at

each spectrum line in the power spectrum of the

response x kð Þ. A higher SNR indicates a better

enhancement result.

2.2.4 Terminal condition judgment

If the generation size G satisfies the condition

G\Gmax, then update the parameters (a; c; DU; xm)

in their initialization ranges and go back to the step (3)

in sect. 2.2.3, else output the maximum of SNR and the

optimal parameters (aopt; copt; DUopt; x
opt
m ).

2.2.5 Fault characteristic extraction and fault

recognition

The optimal parameters (aopt; copt; DUopt; x
opt
m ) are

used to set the improved second-order SR model in

Eq. (15) for obtaining the optimal improved second-

order SR model. Then, Eq. (16) is employed to

discretize the optimal improved second-order SR

model in Eq. (15) and numerically solve its response

123

712 Z. Qiao et al.



x kð Þ. Finally, the spectrum analysis is performed on

the response x kð Þ to extract weak fault characteristics

for recognizing fault locations.

3 Numerical simulations

In this section, two simulations are conducted to

illustrate the superiority of the improved second-order

SR model and to demonstrate the effectiveness of the

proposed method based on the improved model,

respectively.

3.1 Numerical illustration of improved second-

order SR model

A sinusoidal signal with both the characteristic

frequency fd ¼ 0:1 Hz and the amplitude A ¼ 1 plus

stochastic noise with intensity D ¼ 1 is fed into the

improved second-order SR model in Eq. (15). The

sampling frequency is fs ¼ 10 Hz and the sampling

time is t ¼ 200 s. The response of the improved

second-order SR model can be obtained by using

Eq. (16) where the time step is h ¼ 0:1. Its output SNR

as a function of fractional order a is shown in Fig. 2

where DU ¼ 0:5 and xm ¼ 10. It is seen from Fig. 2

that when c¼1:2 and c¼0:5 , respectively, output SNR

starts to increase and then decreases as fractional order

a increases gradually, which is a typical feature of SR

induced by fractional-order derivative. Such a behav-

ior is first observed in a second-order bistable system

induced by fractional-order derivative. Moreover, the

maximum of output SNR is obtained at non-integer of

a, suggesting that the fractional-order derivative is

able to improve the potential of SR for weak

characteristic extraction. Compared Fig. 2a with

Fig. 2b, it is found that the SR induced by different

damping ratios has a different capability to enhance

the weak characteristic, e.g., two different maxima of

output SNR in Fig. 2, indicating that there is an

optimal damping ratio to maximize output SNR of the

response of the improved second-order SR model for a

given signal.

To observe the response of the improved second-

order SR model induced by the pure sinusoidal

signal plus stochastic noise, Fig. 3 shows the input

signal and the corresponding responses of the

improved second-order SR model to the maxima

of output SNR in Fig. 2a, b, respectively. One can

see from Fig. 3b, c that the noise embedded in the

raw signal of Fig. 3a has been harvested by SR to

enhance the periodic sinusoidal signal, where its

amplitude is much larger than that of original pure

sinusoidal signal. Moreover, the SR induced by

different damping ratios would produce different

detection results, e.g., Figure 3b where c¼1:2 and

Fig. 3c where c¼0:5. Therefore, a suitable damping

ratio is vital to extract the weak characteristic from the

raw noisy signal.

In addition, Fig. 4 illustrates the frequency

response properties of the improved second-order SR

model induced by the stochastic noise with intensity

D¼1, where the sampling frequency is 10 kHz and the

sampling time is 2 s. One can see from Fig. 4b that the

spectrum lines of stochastic noise completely cover

the whole frequency band in the range of 0; fs=2½ �.
However, when the stochastic noise is input into the

improved second-order SR model, the main energy of

its response is aggregated into a narrow frequency

band, as shown in Fig. 4c. Moreover, the narrow

Fig. 2 Output SNR versus

fractional order a of the

improved second-order SR

model with different

damping ratios c: (a) c ¼ 1:2
and (b) c ¼ 0.5
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frequency band is shifted from low-frequency band to

high-frequency band as the scaling factor R amplifies.

Such a behavior indicates that the improved second-

order SRmodel inherits the advantage of second-order

SR that characterizes the nonlinear band-pass filtering

property. Therefore, the improved second-order SR

model is able to not only suppress the multiscale noise

but also use the fractional-order derivative to enhance

second-order SR for extracting weak characteristics

embedded in the signal. Even weak characteristics

located at different frequency bands can be enhanced

and extracted by tuning the scaling factor.

3.2 Simulation demonstration of proposed method

Here, a series of transients is generated according to

the following simulation model

F tð Þ ¼ B tð Þ
X

q

v t � q=f0ð Þ þ nband tð Þ þ n tð Þ; ð18Þ

where B(t) is the amplitude of the repetitive transients

and B tð Þ ¼ 1, q stands for the number of the transients,

f0 is the fault characteristic frequency and f0 = 56 Hz,

nband tð Þ is the band-limited noise for overwhelming the

resonant frequency band of transients, n tð Þ is the

Fig. 3 a A noisy signal,

b the corresponding

response of improved

second-order SR model to

the maximum of SNR in

Fig. 2a, c the corresponding
response of the improved

second-order SR model to

the maximum of SNR in

Fig. 2b

Fig. 4 a A stochastic noise,

b its frequency spectrum and

c the frequency spectrum of

the response of the improved

second-order SR model

solely induced by the

stochastic noise under

different scaling factors R
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stochastic noise for polluting the whole frequency

band of transients, and vðtÞ is the periodic impulse

response function given by

v tð Þ ¼ exp �bwtð Þ sin 2pfretð Þ; t[ 0;
0; t� 0;

�
ð19Þ

where bw is the structural damping ratio and

bw ¼ 666:67 Hz, and fre is the resonance frequency

and fre ¼ 1683:4 Hz. In this simulated case, the

sampling frequency fs ¼ 12 kHz and the sampling

time is 1 s.

The simulated repetitive transients are shown in

Fig. 5a and its impulsive interval is equal to the

reciprocal of fault characteristic frequency. The

stochastic noise and band-limited noise are added into

the pure repetitive transients, and then, the transients

with noise are obtained, as shown in Fig. 5b. More-

over, the corresponding frequency spectrum and

zoomed envelope spectrum are depicted in Fig. 5c,

d, respectively. It can be seen from Fig. 5c that the

resonant frequency band excited by transients is

polluted by noise, especially band-limited noise, and

the whole frequency band contains lots of interfer-

ences from noise. In the zoomed envelope spectrum of

Fig. 5d, one can observe weak fault characteristic

frequency and its obvious third harmonic.

Since the weak fault characteristics of rolling

element bearings are generally modulated into the

resonant frequency band, the Hilbert demodulation

technique is initially used to obtain the envelope of the

corresponding transients with noise. Then, the pro-

posed method is used to process the envelope, and the

detected results are shown in Fig. 6, where

c ¼ 0:1508, R¼1000, a¼0:05664, DU¼9:3231 and

xm ¼ 49:8072. One can clearly see from Fig. 6b that

the fault characteristic frequency 56 Hz is dominant in

the whole frequency spectrum, which keeps consistent

with the value of the simulated fault characteristic

frequency, demonstrating the effectiveness of the

proposed method for mechanical fault detection.

Moreover, the optimal fractional order is

a¼0:05664, suggesting that the benefits of noise to

mechanical fault detection are able to be enhanced by

the fractional-order derivative and the SR induced by

the fractional-order derivative outperforms that

induced by integer-order derivative for weak charac-

teristic extraction.

Kurtogram and maximum correlated kurtosis

deconvolution are two advanced signal processing

methods and have been widely applied to mechanical

fault detection. For comparison, Figs. 7 and 8 show the

detected results for a simulated signal using kurtogram

and maximum correlated kurtosis deconvolution,

respectively. One cannot observe the obvious spectral

peaks at the fault characteristic frequency and its

harmonics from the zoomed envelope spectrum in

Fig. 7c and kurtogram fails to detect weak fault

characteristics because it is difficult to exactly locate

the resonant frequency band for removing the strong

Fig. 5 Simulated signals:

a a series of transients,

b transients with noise, c the
frequency spectrum and

d zoomed envelope

spectrum of transients with

noise
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background noise. Meanwhile, it can be seen from

Fig. 8 that weak fault characteristics are overwhelmed

by strong background noise and the spectral peaks at

the fault characteristic frequency and its harmonics

cannot be identified from the zoomed envelope

spectrum in Fig. 8c. That is because filter-based

methods including kurtogram and maximum corre-

lated kurtosis deconvolution may fail to design the

exact filter for extracting weak fault characteristics

due to strong background noise, especially when noise

and weak fault characteristics are located at the same

frequency band.

4 Experimental validation of proposed method

in bearing and gear fault detection

In this section, two experiments including a bearing

with slight flaking on its outer race and a gear with

scuffing from wind turbine drivetrain are used to

Fig. 6 The detected results

for a simulated signal using

the proposed method:

a time-domain waveform

and b its zoomed frequency

spectrum

Fig. 7 The detected results

for a simulated signal using

kurtogram: a kurtogram,

b the filtered signal and its

envelope spectrum

Fig. 8 The detected results

for a simulated signal using

maximum correlated

kurtosis deconvolution:

a the filtered signal, b its

frequency spectrum and

c zoomed envelope

spectrum
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validate the effectiveness of the proposed method,

respectively.

4.1 Fault detection of rolling element bearings

The bearing experimental setup consists of a motor, a

support bearing, a coupling, a tested bearing whose

type is LDK UER204 and a hydraulic cylinder, as

shown in Fig. 9a. This bearing tested setup is designed

to conduct the accelerated degradation tests of rolling

element bearings. In the process of the accelerated

degradation tests, a tested rolling element bearing has

occurred a slight flaking on its outer race, as shown in

Fig. 9b. The corresponding vibration signals are

acquired by using two PCB 352C33 accelerometers,

which are placed on the housing of the tested bearings.

In the experiment, the rotating frequency of motor is

30 Hz, the sampling frequency is 25.6 kHz and the

sampling time is 1.28 s. In addition, the structural

parameters and fault characteristic frequencies of the

tested bearing are shown in Table 1, respectively.

The raw vibration signal of the tested bearing with

slight flaking on its outer race is shown in Fig. 10.

There are obvious impulsive components with the

interval of 30 Hz excited by the rotating shaft in the

time-domain waveform, and meanwhile, one can see

the rotating frequency 30 Hz and its harmonics from

its zoomed envelope spectrum, as well. However, it is

difficult for us to observe the clear spectral peaks at the

outer race fault characteristic frequency 92.49 Hz and

its harmonics from the frequency and zoomed

envelope spectrum of raw vibration signal. By check-

ing the experimental setup, it is found that there is a

shaft-bending defect to occur at the experimental

setup, which excites obvious rotating frequency and its

harmonics. This shows that the outer race fault

characteristics of the tested bearing are overwhelmed

completely by the shaft-bending fault characteristics

and strong background noise.

First, two widely used fault detection tool, i.e.,

maximum correlated kurtosis deconvolution and kur-

togram, are employed to process the raw bearing

vibration signal for extracting the outer race fault

characteristics of the tested bearing. The detected

results are shown in Figs. 11 and 12, respectively. It

can be seen from Fig. 11c that the rotating frequency

30 Hz and its harmonics are dominant in the whole

envelope spectrum of the filtered signal. One can

hardly observe the eye-catching spectral peaks at the

outer race fault characteristic frequency and its

harmonics. In this bearing case, therefore, maximum

correlated kurtosis deconvolution fails to extract the

outer race fault characteristics of the tested bearing.

Similarly, Fig. 12 shows that kurtogram cannot extract

weak outer race fault characteristics of the tested

bearing yet because it fails to determine the optimal

filtering frequency band.

Thus, the proposed method is used to enhance weak

fault characteristics of the tested bearing embedded in

the envelope of the raw vibration signal. The detected

results are depicted in Fig. 13, where the optimal

parameters are written as below: aopt ¼ 0:05485,

R¼1000, DUopt ¼ 8:85726, xoptm ¼ 71:7072 and

copt ¼ 0:3629. It can be noticed that the periodic

component excited by the slight flaking on the outer

race of the tested bearing is amplified by the proposed

SR method, and the interferences from both back-

ground noise and the components excited by healthy

(a) (b)

Motor 

Coupling

Controller 

Support bearing 

Tested bearing

Hydraulic cylinder 

Slight flaking on the outer race

Shaft 

Fig. 9 a A bearing experimental setup and b the tested bearing with slight flaking on its outer race
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parts are eliminated. In the zoomed frequency spec-

trum as shown in Fig. 13b, one can clearly see that the

spectral peak at the outer race fault characteristic

frequency of the tested bearing is eye-catching, which

indicates a slight defect occurs on the outer race of the

tested bearing. The diagnostic result is consistent with

the fact that the slight flaking occurs on the outer race

of the tested bearing. Moreover, the optimal fractional

order aopt ¼ 0:05485 suggests that the fractional-order

derivative in the proposed method is able to enhance

the benefits of noise to bearing fault detection.

4.2 Fault detection of gears

In this section, the vibration signal from wind turbine

drivetrain is used to validate the effectiveness of the

Table 1 Experimental

parameters of the tested

rolling element bearing

Bearing parameters Values Fault characteristic frequencies Values

Ball diameter 7.92 mm Inner race fault characteristic frequency 147.51 Hz

Pitch diameter 34.55 mm Outer race fault characteristic frequency 92.49 Hz

Roller number 8 Roller fault characteristic frequency 61.98 Hz

Contact angle 0� Cage fault characteristic frequency 11.56 Hz

Fig. 10 A raw bearing

vibration signal: a time-

domain waveform, b its

frequency spectrum and

c zoomed envelope

spectrum

Fig. 11 The detected

results for the tested bearing

using maximum correlated

kurtosis deconvolution:

a the filtered signal, b its

zoomed frequency spectrum

and c envelope spectrum
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proposed method, where a scuffing occurs on the

pinion of high-speed stage fixed-axis gearset due to

two loss-of-oil events [34–37], as shown in Fig. 14b.

The internal configuration of wind turbine drivetrain is

shown in Fig. 14a. The experimental parameters of

high-speed stage fixed-axis gearset are shown as

below: the gear tooth number is 88, the pinion tooth

number is 22, the high-speed shaft rotating frequency

is 30 Hz, the sampling frequency is 40 kHz and the

sampling time is 2 s.

The raw vibration signal from the pinion of high-

speed stage fixed-axis gearset and its frequency

spectrum is plotted in Fig. 15a, b, respectively. To

observe weak fault characteristics excited by the

defect on the pinion of high-speed stage fixed-axis

gearset, the frequency spectrum centered by meshing

frequency of high-speed stage fixed-axis gearset is

zoomed as the subfigure of Fig. 15b. It can be seen

from the zoomed frequency spectrum that the spectral

peak at the meshing frequency of high-speed stage

fixed-axis gearset is dominant, while the amplitudes at

Fig. 12 The detected results for the tested bearing using kurtogram: a kurtogram, b the filtered signal and c its envelope spectrum

Fig. 13 The detected results for the tested bearing using the proposed method: a time-domain waveform and b its zoomed frequency

spectrum

Generator

Blades Low-speed shaft 

Intermediate-speed shaft
High-speed shaft

Low-speed stage  
planetary gearset 

Intermediate-speed stage
fixed-axis gearset 

High-speed stage 
fixed-axis gearset 

Main 
bearing 

Brake

(a) (b) Fig. 14 Wind turbine

drivetrain: a internal

configuration and b high-

speed stage pinion with

scuffing
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the sidebands spaced by the meshing frequency of

high-speed stage fixed-axis gearset are somewhat

weak to identify them.

The weak fault characteristics of gearboxes are

organized by the meshing frequency and its sidebands.

Generally, one can observe more abundant fault

characteristics from the frequency spectrum of the

raw vibration signal instead of its envelope spectrum,

which is beneficial to identify the fault location of

multiple-stage gearboxes. Therefore, the raw vibration

signal of gearboxes is fed into the proposed method.

The detected results are shown in Fig. 16, where the

optimal parameters are written as below:

aopt ¼ 0:01134, DUopt ¼ 5:1282, xoptm ¼ 15:6134 and

copt ¼ 0:9916. There are obvious impulsive compo-

nents in the time-domain waveform of Fig. 16a

compared with the raw gear vibration signal. More-

over, one can see from the zoomed frequency

spectrum of Fig. 16b that the amplitudes at the

sidebands spaced by the meshing frequency 660 Hz

of high-speed stage fixed-axis gearset are noticeable

and their interval 30 Hz equals the rotating frequency

of the pinion of high-speed stage fixed-axis gearset,

demonstrating that a defect occurs on the opinion of

high-speed stage fixed-axis gearset. The diagnostic

result is consistent with the fact that a defect has

occurred on the pinion of high-speed stage fixed-axis

gearset. When the scaling factor is tuned to R¼5000,

the detected results under the same parameters are

plotted in Fig. 17. Compared with the detected results

in Fig. 16, it is found that the spectral peaks at the right

sidebands in Fig. 17 become more evident. Such a

behavior is because the improved second-order SR

model characterizes nonlinear band-pass filtering

property, and moreover, the narrow pass-band can be

shifted by adjusting the scaling factor, as shown in

Fig. 15 The raw vibration

signal from the pinion of

high-speed stage fixed-axis

gearset: a time-domain

waveform and b its

frequency spectrum

Fig. 16 The detected

results for the pinion of

high-speed stage fixed-axis

gearset using the proposed

method with R¼3900:

a time-domain waveform

and b its frequency spectrum
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Fig. 4c. Therefore, the proposed method with the

scaling factor R¼3900 enhances the left sidebands,

whereas that with the scaling factor R¼5000 amplifies

the right sidebands. In addition, when the fractional

order is aopt ¼ 0:01134 the optimal detected results are

obtained, suggesting that the fractional-order deriva-

tive is able to enhance the performance of SR for gear

fault detection.

Besides the proposed method, maximum correlated

kurtosis deconvolution and kurtogram are also used to

process the raw gear vibration signal and the detected

results are depicted in Figs. 18 and 19, respectively. It

can be seen from Fig. 18 that the spectral peaks at the

meshing frequency and sidebands of high-speed stage

fixed-axis gearbox are very weak in the zoomed

frequency spectrum. Unfortunately, Fig. 19 shows

that the optimal filtering frequency band range cannot

cover the meshing frequency and its sidebands of

Fig. 17 The detected

results for the pinion of

high-speed stage fixed-axis

gearset using the proposed

method with R¼5000:

a time-domain waveform

and b its frequency spectrum

Fig. 18 The detected

results for the pinion of

high-speed stage fixed-axis

gearset using maximum

correlated kurtosis

deconvolution: a the time-

domain waveform of filtered

signal and b its frequency

spectrum

Fig. 19 The kurtogram for the pinion of high-speed stage fixed-

axis gearset
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high-speed stage fixed-axis gearbox, indicating that

kurtogram fails to extracting weak gear fault charac-

teristics. Compared the detected results in Figs. 16 and

18, the spectral peaks at the meshing frequency and

sidebands in the detected results using the proposed

method characterize higher amplitudes and are easier

to identify. That is, the proposed method is able to

harvest the energy of noise to enhance weak gear fault

characteristics embedded in the raw vibration signal,

whereas maximum correlated kurtosis deconvolution

and kurtogram are to eliminate the noise embedded in

the raw vibration signal for detecting gear fault

characteristics.

5 Conclusions

The fractional-order derivative characterizes memory-

dependent property and reflects high dependence

between current and previous values of the state

variable of a system. Such a behavior is able to reflect

the continuous mechanical degradation process where

the current value of the mechanical state variable, e.g.,

vibration, is highly dependent on its previous values.

Meanwhile, the second-order bistable SR model

characterizes nonlinear band-pass filtering property

and is able to suppress the multiscale noise located at

different frequency bands. Therefore, an improved

second-order SRmodel is established by incorporating

the fractional-order derivative into the second-order

bistable SR model. The improved second-order SR

model is able to not only suppress the multiscale noise

embedded in signals but also characterize better

performance than integer-order SR models in weak

characteristic enhancement. Afterward, based on the

improved model a second-order SR method enhanced

by the fractional-order derivative is proposed for

mechanical fault detection. Experiments including a

bearing with slight flaking and a gear with scuffing

from wind turbine drivetrain are performed to validate

the effectiveness of the proposed method. The results

show that the proposed method is able to extract weak

fault characteristics embedded in signals and the

benefits of noise in the proposed method to weak fault

characteristic extraction are able to be enhanced by the

fractional-order derivative. Compared with maximum

correlated kurtosis deconvolution and kurtogram, the

proposed method is a good alternative for mechanical

fault detection. In this article, we just use QGAs to

optimize the parameters of the second-order SR

enhanced by Grünwald–Letnikov fractional-order

derivatives for mechanical fault detection. In future

work, we would investigate deep learning-based

multi-objective fusion algorithms to optimize the

parameters of the second-order SR enhanced by

Grünwald–Letnikov fractional-order derivative. Even,

we would explore the application of SR induced by

other types of fractional-order derivative to mechan-

ical fault detection for developing the architecture of

SR induced by fractional-order derivative and the

benefits of noise in neural networks for mechanical

fault detection [38].
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