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Abstract As the volume and the mass of the payload
increases, it is often necessary to use two ship-mounted
cranes to jointly transport huge payloads under marine
environment. Compared with a single ship-mounted
crane, dual ship-mounted cranes contain more state
variables, geometric constraints and coupling dynam-
ics, which bring more challenges in kinematic analysis
and controller design for such complicated underac-
tuated systems. In order to solve these problems, the
dynamicmodel of the dual ship-mounted crane systems
is established based on Lagrange’s method. Consider-
ing different practical requirements, two energy-based
nonlinear controllers for dual ship-mounted cranes
are developed, including a full-state feedback control
method and an output feedback control method. More
preciously, during the control design process, the sat-
uration constraints of the controllers have been fully
considered. Meanwhile, the proposed controllers can
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achieve accurate positioning of the double-constrained
derricks as well as effective elimination of payload
swing. The stability of the equilibrium point of the
closed-loop system is analyzed by using Lyapunov
techniques and Lasalle’s invariance principle. As far
as we know, the modeling and the output feedback
controller design of dual ship-mounted cranes are pro-
posed for the first time in this paper. At the same
time, the design and analysis process does not need to
linearize the complex nonlinear dynamics equations,
while the proposed output feedback control method is
robust against the situations when the velocity signals
are unknown/unavailable. Finally, a series of experi-
ments are carried out to verify the effectiveness of the
proposed nonlinear controllers.

Keywords Dual ship-mounted crane systems · Anti-
swing control · Nonlinear system · Motion control ·
Lyapunov techniques

1 Introduction

Generally speaking,most practicalmechanical systems
are nonlinear systems, which play increasingly impor-
tant roles in industry areas [1–4]. In particular, some of
them exhibit underactuated characteristics, namely that
the system control inputs are less than their degrees of
freedom (DOFs) [5–8]. As a typical underactuated sys-
tem, crane systems have attractedmore andmore atten-
tions due to their advantages of high carrying capacity,
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good operation flexibility, and low energy consump-
tion [9–17]. However, during the transportation pro-
cess, the payloads will swing back and forth unexpect-
edly, which not only greatly reduces the transporta-
tion efficiency, but also poses a danger to the workers
around it. Therefore, the primary control objective of
the crane is to transport payloads to desired locations
as quickly as possible, while suppressing unexpected
payload swings.

Offshore cranes are essential transportation tools
installed on ships under marine environment, which
are widely used in the construction and mainte-
nance of marine facilities, replenishment at sea, load-
ing/unloading of cargoes, and so on. With the devel-
opment of marine industry, offshore cranes become
increasingly important to transport cargoes, therefore,
the modeling and control of offshore cranes have
attracted extensive attention in recent years. In [18],
a prediction algorithm is developed to deal with the
uncertain trajectories induced by the movement of the
target ship, and an increased adaptive NN-based track-
ing control method is presented. To deal with unknown
parameters and handle unknown disturbances, espe-
cially unmatched disturbances, a new adaptive robust
coupling control approach is proposed in [19]. By intro-
ducing an error-related bounded function on the slid-
ing surface, Yang et al. [20] propose a controller that
can realize the positioning of the boom/rope in a finite
time. Through a learning law to deal with the sea waves
problems, and an adaptive law to handle the unknown
system parameters, Qian et al. [21] propose an adaptive
repetitive learning control strategy. However, most of
the above methods [18–21] are applied to lifting tasks
with small volume or small mass loads between the
ship and the port/land. For lifting some large or heavy
loads between ship and port/land or lifting heavy loads
between two ships in marine environment, due to the
need to deal with additional state constraints between
two cranes, the existing control strategies for single
ship-mounted crane systems are not applicable to the
dual ship-mounted crane systems.

Due to the limited working capacity of single ship-
mounted cranes, the offshore dual ship-mounted crane
systems are widely used in complex environments
to complete heavy payload transport tasks. However,
although they are both underactuated systems, com-
pared with the single ship-mounted cranes, double
ship-mounted cranes contain more state variables, geo-
metric constraints and coupling relations. Therefore,

not only the swing of the rope should be fully con-
sidered, but also the rotation of the payload around
itself should be eliminated. Meanwhile, the complex
kinematic and dynamic characteristics of dual ship-
mounted cranes make controller design and stability
analysis more challenging than a single ship-mounted
crane system. Based on the modeling of collaborative
crane, Lu et al. [22] use Lagrange’s equation to estab-
lish the dynamic model of a four-rope crane. Fu et al.
[23] built a 7-DOFdual rotary cranemodel, and accord-
ing to the payload constraint condition to simplify the
model of five DOFs. Lu et al. [24] fully consider the
coordination between cranes and proposes an efficient
nonlinear coordination controller. In order to solve the
control problem of DRCS (dual rotary crane systems),
in [25], Sun et al. developed a bounded output feed-
back controller which realizes the accurate positioning
of the boom and eliminates the swing of the payload.
Most of the above methods [22–25] are applied to the
control tasks between two cranes fixed on land. How-
ever, for the lifting tasks that need to be completed in
the marine environment, due to the additional need to
deal with the interference effects of waves that can-
not be ignored, these existing control strategies are
also not suitable for dual ship-mounted crane systems.
Therefore, more effective control methods should be
proposed to solve the complex control problems of
accurate payload position, payload swing suppression,
external disturbances rejection, etc., for such underac-
tuated dual ship-mounted cranes systems.

Generally known, stability analysis is of great
importance for nonlinear control system [26,27]. In
[28], Omar Naifar et al. developed a quasiuniform sta-
bility result for fractional-order neural networks with
mixed delay, which is based on the generalized Gron-
wall inequality and the Caputo fractional derivative.
In [29], sufficient conditions on the practical Mittag–
Leffler and Mittag–Leffler stability are given based on
the Lyapunov technique. In addition, the parameters of
the system have a great influence on the control per-
formance of the system [30,31]. In [32], the effects of
single design parameter error, such as the manufactur-
ing tolerance of each part and assembly error, on the
performance of the quasi-zero-stiffness (QZS) isolator
are studied thoroughly. In [33], uncertainty quantifica-
tion and sensitivity analysis studies focus on the elec-
tromagnetic torque, flux linkage, and core loss of the
permanent magnet synchronous machine.
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Underactuated dual ship-mounted crane systems 325

So far, rarely research on the modeling and con-
trol of offshore dual ship-mounted crane systems have
been published. In this paper, the dynamic model of
dual ship-mounted cranes are derived, and then, with-
out any linearization of the nonlinear dynamics, a full-
state feedback control strategy and an output feedback
control strategy which consider saturation constraint
are proposed. Moreover, we use Lyapunov techniques
and LaSalle’s invariance principle to strictly prove the
corresponding stability. Finally, experimental results
are implemented to verify the effectiveness of the pro-
posed model and control strategy.

Specifically, themain contributions of this paper are
listed in the following aspects.

(1) In this paper, a novel nonlinear dynamic model of
dual ship-mounted crane systems are developed,
which can obtain the control tasks of lifting heavy
payloads in marine environment.

(2) For the 5-DOF dynamic model of dual ship-
mounted cranes, ship roll disturbances are fully
considered as a part of cranes dynamics.Moreover,
a simplified 3-DOF dynamic model is established
according to the system constraints, which brings
much convenience to the controller design.

(3) Theproposed energy-based controllers can achieve
precise positioning of the huge payload, while pay-
load swings can be eliminated effectively. Mean-
while, asymptotic stability for the desired equilib-
rium point in the presence of persistent ship roll
disturbances can be guaranteed.

(4) Saturation constraints of the controllers are consid-
ered, and the velocity feedback signals are unnec-
essary in the output feedback control method.

The rest of this paper is summarized below. Section 2
depicts the establishment and the simplification process
of dual ship-mounted crane systems. Then in Sect. 3,
based on the control target, two energy-based nonlin-
ear controllers are developed, and the system stability
is analyzed by using Lyapunov techniques. After that,
Sect. 4 provides a series of experimental results to ver-
ify the effectiveness of the proposed control method.
Finally, the summary of this paper is given in Sect. 5.

2 Dynamics analysis and model transformation

In this section, we first establish a 5-DOF model
through the geometric relationship of the model. And

Fig. 1 illustration for the dual ship-mounted cranes system

Table 1 Parametered of the dual ship-mounted crane systems

Parameters Physical Units

ml Booms mass kg

m Payload mass kg

L Booms length m

l Ropes length m

D The distance between ship A and ship B m

α1 Ship A roll angle ◦
α2 Ship B roll angle ◦
φ1 Boom A pitch angle in IS ◦

φ2 Boom B pitch angle in IS ◦

φ3 Rope A swing angle in IS ◦

φ4 Rope B swing angle in IS ◦

φ5(η5) payload swing angle in IS ◦

η1 Boom A pitch angle in IA ◦

η2 Boom B pitch angle in IB ◦

η3 Rope A swing angle in IA ◦

η4 Rope B swing angle in IB ◦

according to the constraint conditions between the
two cranes, the model is simplified to three DOFs.
This technique will greatly facilitate the correspond-
ing problem analysis and controller design.

The dual ship-mounted crane systems are composed
of two booms, two ropes and a payload, as shown in
Fig. 1. The center of gravity of the two spiral arms and
the load are defined as p1, p2, p0; The points at which
the two ropes intersect the load are defined as p01 and
p02, respectively. We involve three coordinate frames
to describe the system, including two ship-fixed frames
IA, IB , and the land-fixed inertial frame IS . The origin
of the world coordinate system is set at the center of
gravity of ship A. Assuming that ship B and ship A
are located on the same horizontal plane. The system
parameters are listed in Table 1.
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Assumption 1 During the overall transport process,
the boom pitch angles and rope swing angles are
within the following ranges: η1, η2 ∈ (0, π

2 ), η3, η4 ∈
(-π

2 , π
2 ), η5 ∈ (0, π).

2.1 Dynamics analysis

To facilitate our description, the following concise sym-
bol are adopted:

Sηi = sin ηi , Cηi = cos ηi ,

Sφi−αk = sin(φi − αk), Cφi−αk = cos(φi − αk),

Sηi+η j = sin(ηi + η j ), Cηi+η j = cos(ηi + η j ),

i, j = 1, 2, 3, 4, 5(i �= j), k = 1, 2

In order to establish the dynamic model of the dual
ship-mounted crane systems, we first analyze the kine-
matics of each part of the system. As shown in Fig. 1,
the coordinates of each point in the system in IS are as
follows:

p1 =
[
1

2
LCφ1−α1 ,

1

2
LSφ1−α1

]T
,

p2 =
[
D − 1

2
LCφ2−α2 ,

1

2
LSφ2−α2

]T
,

p01 = [
LCφ1−α1 + l Sφ3−α1 , LSφ1−α1 − lCφ3−α1

]T
,

p02 = [
D − LCφ2−α2 + l Sφ4−α2 , LSφ2−α2 − lCφ4−α2

]T
,

p0 =
[
1

2

(
xp01 + xp02

) − bCφ5 ,
1

2

(
yp01 + yp02

) − bSφ5

]T
,

where, xp01 and yp01 represent the abscissa and ordi-
nate of p01, respectively, and xp02 and yp02 represent
the abscissa and ordinate of p02, respectively.

Taking the derivation of the point p0 with respect to
time, then we can obtain the velocity of the payload in
IS as follows:

ṗ0 =
[
1

2
(−L(φ̇1-α̇1)Sφ1-α1 + L(φ̇2-α̇2)Sφ2-α2 + bSφ5 φ̇5

+ l(φ̇3-α̇1)Cφ3-α1 + l(φ̇4-α̇2)Cφ4-α2),

1

2
(L(φ̇1-α̇1)Cφ1-α1 + L(φ̇2-α̇2)Cφ2-α2 − bCφ5 φ̇5

]

+ l(φ̇3-α̇1)Sφ3-α1 + l(φ̇4-α̇2)Sφ4 -α2). (1)

Lagrange’s equation is used to build the model in iner-
tial coordinate system. Lagrange’s equation is:

d

dt
(
∂T

∂q̇k
) − ∂T

∂qk
= Qk, (2)

in (2), qk denotes the system state. Qk is the generalized
force exerted on the system, T is the kinetic energy of
the system. The generalized force Qk which contains
the driving force and the gravity force which can be
obtained by the virtual work done by each force.

The kinetic energy of the system includes the kinetic
energy of the two booms and the payload:

T = 1

6
ml L

2(φ̇1-α̇1)
2 + 1

6
ml L

2(φ̇2-α̇2)
2

+ 1

2
m( ṗ0)

T ṗ0. (3)

By applying Lagrange’s equation, after rigorous calcu-
lation, we can get:

d

dt

(
∂T

∂φ̇1

)
− ∂T

∂φ1

= − 1

12
L(3LmSφ1+φ2-α1-α2(φ̇2 − α̇2)

2

− 3lmSφ1−φ3(φ̇3 − α̇1)
2

− 3lmCφ1−φ4-α1+α2(φ̇4 − α̇2)
2

+ 6bmSφ1−α1−φ5 φ̇
2
5

− 3Lm(φ̈1 − α̈1) − 4Lml(φ̈1 − α̈1)

− 3LmCφ1+φ2-α1-α2(φ̈2 − α̈2)

+ 3lmSφ1−φ3(φ̈3 − α̈1)

+ 3lmSφ1−φ4-α1+α2(φ̈4 − α̈2)

+ 6bmCφ1−α1−φ5 φ̈5)

d

dt

(
∂T

∂φ̇2

)
− ∂T

∂φ2

= − 1

12
L(3LmSφ1+φ2-α1-α2(φ̇1 − α̇1)

2

− 3lmCφ2+φ3-α1-α2(φ̇3 − α̇1)
2

− 3lmCφ2+φ4−2α2(φ̇4 − α̇2)
2

− 6bmSφ2−α2+φ5 φ̇
2
5

− 3LmCφ1+φ2-α1-α2(φ̈1 − α̈1)

− 4Lml(φ̈2 − α̈2) − 3Lm(φ̈2 − α̈2)

− 3lmSφ2+φ3-α1-α2(φ̈3 − α̈1)
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− 3lmSφ2+φ4−2α2(φ̈4 − α̈2)

+ 6bmCφ2−α2+φ5 φ̈5)

d

dt

(
∂T

∂φ̇3

)
− ∂T

∂φ3

= 1

4
lm(−LCφ1−φ3(φ̇1 − α̇1)

2

+ LCφ2+φ3-α1-α2(φ̇3 − α̇1)
2

+ l Sφ3−φ4-α1+α2(φ̇4 − α̇2)
2

+ 2bCφ3−α1−φ5 φ̇
2
5

− LSφ1−φ3(φ̈1 − α̈1)

+ LSφ2+φ3-α1-α2(φ̈2 − α̈2)

+ l(φ̈3 − α̈1)

+ lCφ3−φ4-α1+α2(φ̈4 − α̈2)

− 2bSφ3−α1−φ5 φ̈5)

d

dt

(
∂T

∂φ̇4

)
− ∂T

∂φ4

= 1

4
lm(−LCφ1−φ4-α1+α2(φ̇1 − α̇1)

2

+ LCφ2+φ4−2α2(φ̇2 − α̇2)
2

− l Sφ3−φ4-α1+α2(φ̇3 − α̇1)
2

+ 2bCφ4−α2−φ5 φ̇
2
5

− LSφ1−φ4-α1+α2(φ̈1 − α̈1)

+ LSφ2+φ4−2α2(φ̈2 − α̈2)

+ lCφ3−φ4-α1+α2(φ̈3 − α̈1)

+ l(φ̈4 − α̈2) − 2bSφ4−α2−φ5 φ̈5)

d

dt

(
∂T

∂φ̇5

)
− ∂T

∂φ5

= −1

2
bm(−LSφ1−α1−φ5(φ̇1 − α̇1)

2

− LSφ2−α2+φ5(φ̇2 − α̇2)
2

+ lCφ3−α1−φ5(φ̇3 − α̇1)
2

+ lCφ4−α2−φ5(φ̇4 − α̇2)
2

+ LCφ1−α1−φ5(φ̈1 − α̈1)

+ LCφ2−α2+φ5
(φ̈2 − α̈2)

+ l Sφ3−α1−φ5(φ̈3 − α̈1)

+ l Sφ4−α2−φ5(φ̈4 − α̈2) − 2bφ̈5). (4)

The sum of the virtual work done by the system’s
driving force and gravity is:

δW =δWU − δWG

= f1δφ1 + f2δφ2 − 1

2
(ml + m)gLCφ1−α1δφ1

− 1

2
(ml + m)gLCφ2−α2δφ2 − 1

2
mglSφ3−α1δφ3

− 1

2
mglSφ4−α2δφ4 + mgbCφ5δφ5. (5)

According to the definition of generalized force: Qk =
δW
δqk

, where, δqk is the virtual displacement in the direc-
tion of each state quantity, we can get the force/moment
of the dual ship-mounted crane systems in the direction
of five state variables φ1, φ2, φ3, φ4, φ5:

Q1 = f1 − 1

2
(ml + m)gLCφ1−α1 ,

Q2 = f2 − 1

2
(ml + m)gLCφ2−α2 ,

Q3 = −1

2
mglSφ3−α1 ,

Q4 = −1

2
mglSφ4−α2 ,

Q5 = mgbCφ5 . (6)

In order to facilitate the controller design, new aux-
iliary state variables are introduced to transform the
model:

η1=φ1-α1, η2=φ2 − α2, η3=φ3−α1, η4=φ4 − α2,

η5=φ5,

whose velocity signals can be obtained as:

η̇1=φ̇1 − α̇1, η̇2=φ̇2 − α̇2, η̇3=φ̇3-α̇1, η̇4=φ̇4 − α̇2,

η̇5=φ̇5.

Then according to Eq. (4) and (6), and utilizing the
Lagrange’s equation (2), the model can be obtained as:

Mq̈ + V q̇ + G = U, (7)

wherein, q = [η1, η2, η3, η4, η5]T , M ∈ R5×5, V ∈
R5×5, G ∈ R5, U ∈ R5 represent the inertia matrix,
Coriolis centripetal force matrix, the vectors of gravi-
ties and the vectors of the control inputs, respectively.
More details of M, V , G and U please see Appendix
A.
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According to the definitions of M and V , the fol-
lowing properties can be obtained through algebraic
operations [34]:

Property 1 M is a positive definite symmetric matrix.

Property 2 Ṁ/2 − V is a skew symmetric matrix,
namely:

ξ T (Ṁ/2 − V )ξ = 0, ∀ξ ∈ R5

These two properties will facilitate the subsequent
design and analysis of dual ship-mounted crane con-
trollers.

Remark 1 By introducing new auxiliary state vari-
ables, the coupling between the original state variables
and the disturbance variables strengthened, which can
effectively deal with the disturbances and facilitate the
controller design.

2.2 Model transformation

As can be clearly seen from Fig. 1, the system has the
following geometric constraints:

{
D − LCη2 − LCη1 + l Sη4 − l Sη3 = 2aSη5 ,

LSη1 − LSη2 − lCη3 + lCη4 = 2aCη5 .
(8)

According to the above equation, it can be deduced that
only twovariables of thefivevariables [η1, η2, η3, η4, η5]T
are independent. However, explicit functions cannot be
derived from constraints. For convenience and without
loss of generality, we assume:

η4 = g(η1, η2, η3), (9)

η5 = h(η1, η2, η3). (10)

Taking the derivative of the above equation, one can
obtain:

η̇4 = g1η̇1 + g2η̇2 + g3η̇3, (11)

η̇5 = h1η̇1 + h2η̇2 + h3η̇3. (12)

It can be obtained from Eq. (8):

g1 = LCη1−η5

l Sη4−η5

, g2 = -
LCη2+η5

l Sη4−η5

, g3 = Sη3−η5

Sη4−η5

, (13)

h1 = LCη1−η4

2aSη4−η5

, h2 = − LCη2+η4

2aSη4−η5

, h3 = lCη3−η4

2aSη4−η5

.

(14)

To simplify the dynamic model, the constraint condi-
tions are substituted into the system:

M0 = NT MN, V0 = NT MṄ + NT VN,

G0 = NTG, U0 = NTU, (15)

wherein, the matrix of N is depicted as:

N =

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
g1 g2 g3
h1 h2 h3

⎤
⎥⎥⎥⎥⎦ . (16)

Then the dynamic equation of the system can be
depicted as:

M0q̈0 + V0q̇0 + G0 = U0, (17)

wherein, q0 = [η1, η2, η3]T .The simplifiedmodel (17)
still satisfies property 1 and property 2.

Remark 2 Model (7) has five DOFs and two control
variables. After transformation, model (17) has three
DOFs and two control variables, it is still an underac-
tuated system. However, after considering constraints,
the new model reduces the extent of the underactuated,
which is more conducive to improve the control effect.

3 Controller design and stability analysis

In this section, based on the dual ship-mounted cranes
model according to the control objectives, a full-state
feedback control law is proposed, and then an out-
put feedback control law is proposed considering the
unavailable velocity signal. Finally, the proposed con-
trollers are proved strictly by using Lyapunov method.

The control objectives are realized through the reg-
ulation control of dual ship-mounted crane systems,
which can be summarized as follows:

(1)Driving the booms to the target positionηd ,which
can be expressed mathematically as:

lim
t→+∞ [η1, η2]T = [ηd , ηd ]T .
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Underactuated dual ship-mounted crane systems 329

(2) Eliminating the swing of the payload as soon as
possible, that is:

lim
t→+∞ [η3, η4, η5]T = [η3d , η4d , η5d ]T ,

where ηid(i = 3, 4, 5) represents the expected pay-
load swing angle. Through geometric analysis, it can
be obtained that:

η3d = arcsin
D − LCη1d − LCη2d − 2a

2l

= −η4d , η5d = π

2
.

(3) Considering the practical constraints to keep the
control inputs in the following range:

f1 ≤ f1max, f2 ≤ f2max,

where, f1max and f2max represent the maximum per-
mitted control input value.

3.1 Full-state feedback controller

3.1.1 Controller design

To simplify the subsequent derivation process, we
define the position errors as follows:

e1 = η1 − ηd , e2 = η2 − ηd , ⇒ ė1 = η̇1, ė2 = η̇2.

(18)

The Lyapunov candidate function is designed as:

VF = 1

2
q̇0

T M0q̇0 + mgb(1 − Sη5)

+ 1

2
mgl

[
(Cη3d + Cη4d ) − (Cη3 + Cη4)

]

+
2∑

i=1

kpi [ei arctan ei − 1

2
ln (1 + ei )

2]. (19)

Taking the time derivative of VF results in:

V̇F = 1

2
q̇T0 Ṁ0q̇0 + q̇T0 M0q̈0

+ 1

2
mglSη3 η̇3 + 1

2
mglSη4 η̇4-mgbCη5 η̇5

+ kp1ė1 arctan e1 + kp2ė2 arctan e2

= q̇T0 (M0q̈0 + V0q̇0) + q̇T0 G0

− 1

2
(m + ml )gLCη1 η̇1 − 1

2
(ml+m)gLCη2 η̇2

+ kp1ė1 arctan e1 + kp2ė2 arctan e2

= q̇T0 (U − G0) + q̇T0 G0

− 1

2
(m + ml )gLCη1 η̇1 − 1

2
(ml+m)gLCη2 η̇2

+ kp1ė1 arctan e1 + kp2ė2 arctan e2

=
[
f1 + kp1 arctan e1 − 1

2
(m + ml)gLCη1

]
ė1

+
[
f2 + kp2 arctan e2 − 1

2
(m + ml)gLCη2

]
ė2.

(20)

Based on (20), the controllers are designed as:

f1 = − kp1 arctan e1 − kd1 arctan ė1

+ 1

2
(m + ml)gLCη1, (21)

f2 = − kp2 arctan e2 − kd2 arctan ė2

+ 1

2
(m + ml)gLCη2 . (22)

Since the function arctan(x) is bounded, the gain can
be controlled by adjusting to meet the following con-
clusions:

π

2
kp1 + π

2
kd1 + 1

2
(m + ml)gL ≤ f1max,

π

2
kp2 + π

2
kd2 + 1

2
(m + ml)gL ≤ f2max.

Thus, the control inputs can be kept within the desired
range, and the controller input can be prevented from
exceeding the working capacity and entering into a sat-
uration state, which may significantly reduce the con-
trol performance and even lead to system instability.

3.1.2 Stability analysis

Theorem 1 Fordual ship-mounted crane systems shown
by (17), the controllers (21) and (22) can achieve the
expected control objectives, that is:

lim
t→+∞ [η1, η2, η3, η4, η5, η̇1, η̇2, η̇3, η̇4, η̇5]

T

= [ηd , ηd , η3d , η4d , η5d , 0, 0, 0, 0, 0]
T .

123



330 D. Hu et al.

Proof By substituting (21) and (22) into (20), we can
get:

V̇F = −kd1ė1 arctan ė1 − kd2ė2 arctan ė2 ≤ 0, (23)

thus, VF (t) ≤ VF (0). SinceVF (0) is bounded,VF (t) ∈
L∞. Based on this, the following conclusions can be
drawn from Eq. (19) :

η̇1, η̇2, η̇3, η̇4, η̇5, η1, η2, η3, η4, η5, e1, e2, ξ1, ξ2 ∈ L∞.

Defining a collection Ω1 = {
(q0, q̇0) |V̇ (t) = 0

}
, and

remember that τ1 is the largest invariant set in Ω1.
According to Eq. (23), it can be seen that:

ė1 = ė2 = 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

e1 = β1, e2 = β2,

ë1 = ë2 = 0,
η̇1 = η̇2 = 0 ⇒
η1 = β3, η2 = β4, η̈1 = η̈2 = 0 ,

(24)

therefore, the control inputs can be regarded as:

f1 = −kp1 arctan β1 + 1

2
(m + ml)gLCβ3, (25)

f2 = −kp2 arctan β2 + 1

2
(m + ml)gLCβ4 . (26)

By substituting (25) into the model Eq. (17), it is sim-
plified as follows:

f1 − 1
2gL(m + ml)Cη1

− 1
16a2

l Lm
= d

dt
[ρ1(·)], (27)

where

ρ1(·) = 4a[aSβ3−η3 + 1

Sη4−η5

× (
bCβ3−η5 Sη3−η4 + aSβ3 − η4Sη3−η5

)].
To integrate on both ends of the (27),

ρ1(·) = f1 − 1
2gL(m + ml)Cη1

− 1
16a2

l Lm
t + C1, (28)

in which, C1 is a constant.
Assuming that f1 − 1

2gL(m + ml)Cη1 �= 0, when
t → ∞, |ρ1(·)| → ∞. It’s not difficult to see ρ1(·) ∈

L∞, thus:

f1 − 1

2
gL(m + ml)Cη1 = 0, |ρ1(·)| = C1, (29)

substituting (29) into (25) derives:

−k1 arctan e1 = 0, (30)

thus:

e1 = 0, η1 = ηd , (31)

In the same way:

f2 − 1
2gL(m + ml)Cη2

1
8a2

l Lm
= d

dt
[ρ2(·)], (32)

wherein,

ρ2(·) = 2a[aSβ4+η3 + 1

Sη4−η5

× (−bCβ4+η5 Sη3−η4 + aSβ4+η4 Sη3−η5

)].
To integrate on both ends of the (32) yields:

ρ2(·) = f2 − 1
2gL(m + ml)Cη2

1
8a2

l Lm
t + C2, (33)

in which, C2 is a constant.
Assuming that f2 − 1

2gL(m + ml)Cη2 �= 0, when
t → ∞, |ρ2(·)| → ∞. It’s not difficult to see ρ2(·) ∈
L∞, thus:

e2 = 0, η2 = ηd , (34)

Through a series of mathematical calculation, we
can get: η5 = π

2 is always true when the system is
stable, where the proof of η5 = π

2 can be found in [25].
Based on the payload constraint relation (8), when

η1 = ηd , η2 = ηd , η5 = π
2 , it can be seen that:

{
l Sη3 − l Sη4 + 2a = D − 2LCηd ,

lCη4 − lCη3 = 0,
(35)
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according to the above equation,

η3 = arcsin
D − LCη1d − LCη2d − 2a

2l
, η3 = −η4,

(36)

thus:

lim
t→+∞ [η3, η4, η5, η̇3, η̇4, η̇5]T

=
[
η3d , η4d ,

π

2
, 0, 0, 0

]T
, (37)

From equations (24), (31), (34) and (37), it can be seen
that the maximum invariant set τ1 only contains the
equilibrium point:

[η1, η2, η3, η4, η5, η̇1, η̇2, η̇3, η̇4, η̇5]
T

= [η1d , η2dη3d , η4d , η5d , 0, 0, 0, 0, 0]
T .

According to LaSalle’s invariance theorem, the system
is asymptotically stable at the equilibriumpoint. There-
fore, the proof of Theorem 1 is completed. 
�

3.2 Output feedback controller

3.2.1 Controller design

It can be seen that the full-state feedback controller
requires velocity signals which are unavailable in some
cases. In order to overcome this shortcoming and
improve the robustness of the system, the control law
is further extended and some auxiliary signals ξ1 and
ξ2 are introduced to replace the velocity signals in the
control law.

The Lyapunov candidate function is redesigned as:

VO = 1

2
q̇0

T M0q̇0 + mgb(1 − Sη5)

+ 1

2
mgl

[
(Cη3d + Cη4d ) − (Cη3 + Cη4)

]

+
2∑

i=1

kpi (ei arctan ei − 1

2
ln(1 + ei

2))

+
2∑

i=1

(ξi arctan ξi − 1

2
ln(1 + ξi

2)). (38)

Taking the time derivative of VO results in:

V̇O = 1

2
q̇T0 Ṁ0q̇0 + q̇T0 M0q̈0

+ 1

2
mglSη3 η̇3 + 1

2
mglSη4 η̇4-mgbCη5 η̇5

+ kp1ė1 arctan e1 + kp2ė2 arctan e2

+ ξ̇1 arctan ξ1 + ξ̇2 arctan ξ2

= q̇T0 (M0q̈0 + V0q̇0) + q̇T0 G0

− 1

2
(m + ml )gLCη1 η̇1 − 1

2
(ml+m)gLCη2 η̇2

+ kp1ė1 arctan e1 + kp2ė2 arctan e2

+ ξ̇1 arctan ξ1 + ξ̇2 arctan ξ2

= q̇T0 (U − G0) + q̇T0 G0

− 1

2
(m + ml )gLCη1 η̇1 − 1

2
(ml+m)gLCη2 η̇2

+ kp1ė1 arctan e1 + kp2ė2 arctan e2

+ ξ̇1 arctan ξ1 + ξ̇2 arctan ξ2

=
[
f1 + kp1 arctan e1 − 1

2
(m + ml)gLCη1

]
ė1

+
[
f2 + kp2 arctan e2 − 1

2
(m + ml)gLCη2

]
ė2

+ ξ̇1 arctan ξ1 + ξ̇2 arctan ξ2. (39)

Therefore, design that:

ξ1 = w1 + kd1η1, ξ2 = w2 + kd2η2, (40)

substituting Eq. (40) into (39):

V̇O =( f1 + kp1 arctan e1 + kd1 arctan ξ1

− 1

2
(m + ml)gLCη1)ė1

+ ( f2 + kp2 arctan e2 + kd2 arctan ξ2

− 1

2
(m + ml)gLCη2)ė2

+ ẇ1 arctan ξ1 + ẇ2 arctan ξ2. (41)

We can design that:

ẇ1 = −kd1ξ1 = −kd1(w1 + kd1η1),

ẇ2 = −kd2ξ2 = −kd2(w2 + kd2η2), (42)
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then substituting (42) into (40), we can get:

ξ̇1 = −kd1(ξ1 − η̇1), ξ̇2 = −kd2(ξ2 − η̇2). (43)

Substituting the designed auxiliary signal (40) into the
Lyapunov function (38) and taking the time derivative
of VO :

V̇O =( f1 + kp1 arctan e1 + kd1 arctan ξ1

− 1

2
(m + ml)gLCη1)ė1

+( f2 + kp2 arctan e2 + kd2 arctan ξ2

− 1

2
(m + ml)gLCη2)ė2

− kd1ξ1 arctan ξ1 − kd2ξ2 arctan ξ2. (44)

Therefore, we modify the controllers to construct the
output feedback controllers as follows:

f1 = − kp1 arctan e1 − kd1 arctan ξ1

+ 1

2
(m + ml)gLCη1, (45)

f2 = − kp2 arctan e2 − kd2 arctan ξ2

+
1

2
(m + ml)gLCη2 , (46)

Remark 3 When comparing the control law (45) and
(46) with the full-state feedback controller (21) and
(22), it can be seen that the velocity signals ė1 and ė2
in (21) and (22) have been replaced by the auxiliary
signal ξ1 and ξ2 successfully, and the constructed out-
put feedback controller can be regarded as two output
variables designed according to the system state vari-
ables η1 and η2; meanwhile, it can be regarded as an
extension of the original full state feedback controller.

Remark 4 In fact, the control strategies are proposed to
ensure that the input signals f1, f2 are bounded. Since
the function arctan(x) and cos(x) are bounded, the
gain can be controlled by adjusting to meet the fol-
lowing conclusions: π

2 kp1 + π
2 kd1 + 1

2 (m + ml)gL ≤
f1max,

π
2 kp2 + π

2 kd2 + 1
2 (m +ml)gL ≤ f2max. Thus,

the control inputs can be kept within the desired range.
In practical application, the saturation of the controller
can be prevented by adjusting the control parameters
kp1, kp2, kd1, kd2.

Remark 5 kp1 arctan e1, kp2 arctan e2 are the terms asso-
ciated with the position error. As the position error

decreases, it decreases until the error converges to 0.
Therefore, Increasing kp1, kp2 will reduce the posi-
tioning errors of the system; however, they may also
cause payload swings. kd1 arctan ė1 and kd2 arctan ė2
are the terms associatedwith the velocity error. Increas-
ing kd1, kd2 will speed up the response of the system.
However, if kd1, kd2 are too large, they will cause the
system is not finite. It should also be noted that these
control parameters will affect the upper bound of the
controller input signal. Therefore, in general, we do not
expect to choose too large control gain.

3.2.2 Stability analysis

Theorem 2 Fordual ship-mounted crane systems shown
by (17), the controllers (45) and (46) can achieve the
expected control objectives, that is:

lim
t→+∞ [η1, η2, η3, η4, η5, η̇1, η̇2, η̇3, η̇4, η̇5]

T

= [ηd , ηd , η3d , η4d , η5d , 0, 0, 0, 0, 0]
T .

Proof By substituting (45) and (46) into (44), we can
get:

V̇ = −kd1ξ1 arctan ξ1 − kd2ξ2 arctan ξ2 ≤ 0, (47)

thus, V (t) ≤ V (0). Since V (0) is bounded, V (t) ∈
L∞. Based on this, the following conclusions can be
drawn from Eq. (38) :

η̇1, η̇2, η̇3, η̇4, η̇5, η1, η2, η3,

η4, η5, e1, e2, ξ1, ξ2 ∈ L∞. (48)

Define a collection Ω2 = {
(q0, q̇0) |V̇ (t) = 0

}
, and

remember that τ2 is the largest invariant set in Ω2.
According to Eq. (44), in τ2:

ξ1 = ξ2 = 0 ⇒ ξ̇1 = ξ̇2 = 0. (49)

According to equations (43) and (49), it can be seen
that:

{
η̇1 = ξ1 = 0,
η̇2 = ξ2 = 0,

⇒
⎧⎨
⎩

ė1 = 0, ė2 = 0,
⇒ e1 = β5, e2 = β6,

η1 = β7, η2 = β8,

(50)
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With some similar analysis in (25)-(37), one can finally
derive the same conclusion in Theorem 1. Thus, the
proof of Theorem 2 is completed. 
�

4 Experimental results

In this section, we build a simulation model of the dual
ship-mounted cranes in the MATLAB/Simulink envi-
ronment to conduct numerical experiments, and pro-
vide experimental results to verify the effectiveness of
the proposed method.

The physical parameters of the dual ship-mounted
crane systems are configured as:

ml = 2kg, m = 1kg, L = 0.5m, l = 0.8m,

2a = 0.2m, 2b = 0.1m, D = 2m.

Experiment 1: Control performance test
The control gains and parameters of the full-state

feedback controller are selected as:

Kp1 = 80, Kp2 = 80, Kd1 = 20, Kd2 = 20.

Without the loss of generality, the initial positions for
cranes are selected as:

[η1, η2, η3, η4, η5]
T = [

0◦, 0◦, 30◦, -30◦, 90◦]T
The equilibrium point of the system can be expressed
explicitly as:

η1=η2 = ηd=20
◦,

η3d = arcsin
D − 2L cos[ηd ] − 2a

2l
= 33◦,

η4d= −η3d = −33◦, η5d= 90◦,

fid = 1

2
(m + ml)gLCη1d = 6.9N (i = 1, 2).

The output feedback controller control gains and
parameters are selected as:

Kp1 = 120, Kp2 = 120, Kd1 = 50, Kd2 = 50.

Specifically, the auxiliary variables of the output feed-
back controller are initialized:

ω1(0) = ω2(0) = 0 ⇒
ξ1(0) = kd1η1(0) = 0, ξ2(0) = kd2η2(0) = 0,

Fig. 2 Experiment group 1 (Control performance test): Results
of the proposed full-state feedback controller (blue solid lines
denote: experimental results, red dashed lines: target values)

In addition, to better verify the control performance
of the proposed controller, an advanced nonlinear con-
troller proposed in [35] is chosen as a comparative
method. As shown in Figs. 2, 3 and 4, the booms
and ropes can be rapidly steered toward their desired
positions, respectively, under the proposed full-state
and output feedback controllers, which perform better
than the comparative nonlinear controller [35]. Specif-
ically, through fair comparison, it can be seen that there
have no up and down motions around the equilibrium
positions, and the static positioning errors are almost
nonexistent while the swing of the payload is basically
restrained by means of the proposed controllers.
Experiment 2: Robustness test

Owing to the variables and other parameters are not
accurate in some practical situations, it is necessary to
further test and analyze the robustness of the proposed
control method.

Case A: In this experiment, the payload mass is
changed to 10 kg to validate the robustness of the sug-
gested control approach against parametric uncertain-
ties.

Keeping the model parameters unchanged except
the load mass. When m = 10 kg, setting the control
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Fig. 3 Experiment group 1 (Control performance test): Results
of the proposed output feedback controller (blue solid lines
denote: experimental results, red dashed lines: target values)

Fig. 4 Experiment group 1 (Control performance test): Results
of the comparative controller in [35] (blue solid lines denote:
experimental results, red dashed lines: target values)

Fig. 5 Experiment group 2 (Robustness test): Results of the
proposed full-state feedback controller (blue solid lines denote:
experimental results for m = 10 kg, red dashed lines: experi-
mental results for m = 1 kg)

gain of the full-state feedback controller as: Kp1 =
800, Kp2 = 800, Kd1 = 200, Kd2 = 200; when
m = 1 kg, setting the control gain of the full-state feed-
back controller as: Kp1 = 120, Kp2 = 120, Kd1 =
50, Kd2 = 50. The experimental results are shown
in Fig. 5, blue solid lines are experimental results for
m = 10 kg, and red dash lines are experimental results
for m = 1 kg. As we can see, the control effects of the
full-state feedback controller are not affected by the
mass change.

In the mass robustness experimental of the output
feedback controller, other parameters except load mass
are kept constant. When m = 10 kg, setting the con-
trol gain of the output feedback controller as: Kp1 =
1500, Kp2 = 1500, Kd1 = 800, Kd2 = 800; when
m = 1 kg, setting the control gain of the output feed-
back controller as: Kp1 = 120, Kp2 = 120, Kd1 =
50, Kd2 = 50. The experimental results are shown
in Fig. 6, blue solid lines are experimental results for
m = 10 kg, and red dash lines are experimental results
for m = 1 kg. It can be seen that under the action of
the output feedback controller, the control effects of
system are not affected by the mass change.
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Fig. 6 Experiment group 2 (Robustness test): Results of the pro-
posed output feedback controller (blue solid lines denote: exper-
imental results for m = 10 kg, red dashed lines: experimental
results for m = 1 kg)

Case B: In this experiment, changing the length of
the rope to 1.5 m and keeping the other parameters of
the system the same.

Due to the rope length change, resetting the initial
positionof the cranes to select as: [η1, η2, η3, η4, η5]T =
[0◦, 0◦, 15.5◦, -15.5◦, 90◦]T . Then the balance points
of the system are updated as:

η1=η2 = ηd=20
◦,

η3d = arcsin
D − 2L cos[ηd ] − 2a

2l
= 16.7◦

η4d=-η3d = -16.7◦, η5d=90◦.

For the full-state feedback controller, setting the
control gain as: Kp1 = 800, Kp2 = 800, Kd1 =
200, Kd2 = 200. Under the effect of the full-state feed-
back controller, the experimental results are shown in
Fig. 7, As we can see, after the length of the ropes are
changed, the arms can still reach the desired position
within 1s, and the swing of the ropes and the load is
also restrained in a small range during transportation.

For the output feedback controller, setting the con-
trol gain as: Kp1 = 200, Kp2 = 200, Kd1 =
50, Kd2 = 50. Under the effect of the output feedback

Fig. 7 Experiment group 2 (Robustness test): Results of the
proposed full-state feedback controller (blue solid lines denote:
experimental results for l = 1.5 m, red dashed lines: target
results)

controller, the experimental results are shown in Fig. 8.
Similarly, after the length of the ropes are changed, the
arms can still reach the desired position within 1s, and
the swing of the ropes and the load is also restrained in
a small range during transportation.

This indicates that the two controllers can suppress
payload swing, achieve accurate positioning, and are
robust to unmodeled dynamics.
Experiment 3: Wave interference test

Keeping experiment 1 parameter unchanged and
select:

α1 = 5 sin t, α2 = 10 sin t.

Setting the control gain of the full-state feedback con-
troller as: Kp1 = 80, Kp2 = 80, Kd1 = 20, Kd2 =
20. And setting the control gain of the output feed-
back controller as: Kp1 = 120, Kp2 = 120, Kd1 =
50, Kd2 = 50. The experimental results are shown
in Fig. 9. The payload can still be transported to the
desired location, and the swing is suppressed within
about 1 seconds. It is shown that the two controllers
can suppress the wave disturbance, restrain the swing
of the payload, and realize accurate positioning.
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Fig. 8 Experiment group 2 (Robustness test): Results of the pro-
posed output feedback controller (blue solid lines denote: exper-
imental results for l = 1.5 m, red dashed lines: target results)

Fig. 9 Experiment group 3 (Wave interference test): Results
of proposed controllers (blue solid lines denote: experimental
results of full-state feedback controller, green dotted lines: exper-
imental results of output feedback controller, red dashed lines:
target results)

5 Conclusion

In order to solve the problem of large payload lift-
ing in marine environment, the model of dual ship-
mounted crane systems are derived. According to dif-
ferent actual requirements, a full-state feedback con-
troller and an output feedback controller which can
ensure the asymptotic stability of the desired equi-
librium point are proposed. And the proposed con-
trol methods realize the precise positioning of the
boom and the suppression of the payload swing. A
nonlinearized operation bounded output feedback con-
troller based on the original nonlinear dynamics design
is proposed in this paper to achieve effective con-
trol of the dual ship-mounted crane systems. Utiliz-
ing Lyapunov-based mathematical analysis, it is con-
cluded that the equilibriumpoint of the closed-loop sys-
tem is asymptotically stable. Finally, the effectiveness
of the proposed methods are both verified by numer-
ous compared experimental results. In order to further
improve the control performance, the problems of rope
length variation will be further considered in the future
researches. In addition, the control gain of the pro-
posed control method needs to be adjusted manually.
Hereto, we will consider to introduce more intelligent
control methods such as neural network and reinforce-
ment learning into the controller design.
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Appendix A Terms of M, V , G and U

The detailed terms of transformed matrices M, V and
G are provided as follows:

M =

⎡
⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55

⎤
⎥⎥⎥⎥⎦

where

M11 = M22 = 1

4
mL2 + 1

3
ml L

2,

M33 = M44 = 1

4
ml2,

M12 = M21 = 1

4
mL2Cη1+η2 ,

M13 = M31 = −1

4
l LmSη1−η3 ,

M14 = M41 = −1

4
l LmSη1−η4 ,

M15 = M51 = −1

2
bLmCη1−η5 ,

M23 = M32 = 1

4
l LmSη2+η3 ,

M24 = M42 = 1

4
l LmSη2+η4 ,

M25 = M52 = −1

2
bLmCη2+η5 ,

M34 = M43 = 1

4
l2mCη3−η4 ,

M35 = M53 = −1

2
bmlSη3−η5 ,

M45 = M54 = −1

2
bmlSη4−η5 , M55 = mb2.

The form of matrix V is depicted as:

V =

⎡
⎢⎢⎢⎢⎣

0 V12 V13 V14 V15
V21 0 V23 V24 V25
V31 V32 0 V34 V35
V41 V42 V43 0 V45
V51 V52 V53 V54 0

⎤
⎥⎥⎥⎥⎦

where,

V12 = −1

4
mL2Sη1+η2 η̇2, V13 = 1

4
l LmSη1−η3 η̇3,

V14 = 1

4
l LmCη1−η4 η̇4, V15 = −1

2
bLmSη1−η5 η̇5,

V21 = −1

4
mL2Sη1+η2 η̇1, V23 = 1

4
l LmCη2+η3 η̇3,

V24 = 1

4
l LmCη2+η4 η̇4, V25 = 1

2
bLmSη2+η5 η̇5,

V31 = −1

4
l LmCη1−η3 η̇1, V32 = 1

4
l LmCη2+η3 η̇2,

V34 = 1

4
l2mSη3−η4 η̇4, V35 = 1

2
bmlCη3−η5 η̇5,

V41 = −1

4
l LmCη1−η4 η̇1, V42 = 1

4
l LmCη2+η4 η̇2,

V43 = −1

4
l2mSη3−η4 η̇3, V45 = 1

2
bmlCη4−η5 η̇5,

V51 = 1

2
bLmSη1−η5 η̇1, V52 = 1

2
bLmSη2+η5 η̇2,

V53 = −1

2
bmlCη3−η5 η̇3, V54 = −1

2
bmlCη4−η5 η̇4.

The transformed matrix of G is:

G =

⎡
⎢⎢⎢⎢⎣

1
2 (m + ml)gLCη1
1
2 (m + ml)gLCη2

1
2mglSη3
1
2mglSη4−mgbCη5

⎤
⎥⎥⎥⎥⎦ .

The control input U = [
f1, f2, 0, 0, 0

]T
.
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