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Abstract Vibration isolation systems with quasi-

zero stiffness (QZS) performance have been widely

studied because of their characteristics: high static

stiffness and low dynamic stiffness. However, the

effective displacement range of QZS is usually so

small that strongly limits its application existing in

real engineering. Thus, this study’ main innovation is

to attempt to expand the effective displacement range

of the QZS system via a semi-active control strategy.

We first present a novel quasi-zero stiffness (QZS)

vibration isolation system. The QZS characteristic is

achieved by combining a mechanism with six oblique

springs and a coil spring, which provide negative

stiffness and positive stiffness, respectively. The

effects of inclination angles of oblique springs on the

negative stiffness of the system are first discussed via

the static analysis method. The dynamic characteris-

tics under simple harmonic excitation are then

analyzed using the harmonic balance method, includ-

ing the jumping phenomena and force–displacement

transmissibility. To further enlarge the effective

displacement range of QZS, a feedback displacement

strategy is utilized to actively adjust the inclination

angles of oblique springs and realize the alteration of

the stiffness of the QZS system. Results obtained from

theoretical analysis show that, in the aspect of low-

frequency vibration isolation performance, different

from linear systems, the proposed QZS system has

obvious advantages, and the displacement range of

quasi-zero stiffness property is significantly expanded

from a single equilibrium point to a relatively lager

range when the semi-active control strategy is imple-

mented. Furthermore, the virtual prototype simulation

results reveal that the proposed QZS system can

maintain excellent vibration isolation performance

under significant amplitude vibration after adding

control.

Keywords Quasi-zero stiffness � Force–

displacement transmissibility � Semi-active control �
Vibration isolation

1 Introduction

Although linear vibration isolator is the most widely

used and matured vibration isolator in real engineer-

ing, it has inherent shortcomings. That is, it can purely

isolate vibration when excited frequency is more than
ffiffiffi

2
p

times of natural frequency; moreover, the vibra-

tion isolation performance at low-frequency band is

weak [1]. One way to reduce the initial isolation

frequency is to reduce the static stiffness by sacrificing
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the load capacity [2, 3]. Thus, people try to study a

device with high static stiffness, but its dynamic

stiffness is low, which means that the vibration

isolation frequency is guaranteed, and it can withstand

large load [4, 5]. This novel isolation system can

support high weight thanks to its high static stiffness;

at the same time, the low dynamic stiffness makes it

have excellent low-frequency vibration isolation

capability.

Since the seminal works of Alsbushov [4], various

types of QZS systems have been developed. Liu and

coworkers [6–8] have extensively studied novel QZS

systems whose negative stiffness was offered by two

Euler buckled beams or sliding beams, including basic

QZS characteristics, ultra-low-frequency nonlinear

isolation and imperfection analysis. A low-frequency

QZS vibration isolator was designed by Jing et al.

[9–13] based on bio-inspired limb-like mechanism. Its

basic structure was similar to that of a scissors

mechanism, and its excellent vibration isolation

abilities were analytically and experimentally verified.

Zhou and coauthors [14, 15] and Liu et al. [16] used

linear spring to support mass while paralleling a cam–

roller–spring structure with negative stiffness to form

a QZS system, where the later work used the nonlinear

springs in the negative stiffness mechanism. Shaw

et al. [17, 18] have designed novel QZS systems using

bistable composite plate as negative stiffness struc-

ture. QZS vibrators were also designed by using

electromagnets or permanent magnets distributed in

special locations, whose QZS performances were

verified by theoretical and experimental methods

[19–25]. In these kinds of QZS systems, it is

noteworthy that the negative stiffness can be actively

controlled and adjusted by changing the current.

Besides, many others researches have also been

conducted to investigate the vibration isolation per-

formances of various QZS systems [26–31].

Utilizing oblique springs to supply negative stiff-

ness is a simple way to design QZS systems.

Carrella et al. [32–34] used a pair of oblique springs

to obtain negative stiffness and then achieved the QZS

property by paralleling another positive stiffness coil

spring. It was proved that the effect of negative

stiffness structure is positive in terms of the force and

displacement transmissibility. Lu et al. [35–38] and

Wang et al. [39] have substantially studied two-stage

QZS vibration isolation systems, in which the nonlin-

ear negative stiffness was also achieved via oblique

springs. Xu et al. [40] designed a QZS system with

four oblique springs to generate negative stiffness and

one coil spring in parallel to provide positive stiffness,

theoretically and experimentally demonstrating that

the system had a wider frequency band for effective

vibration isolation. Zhao et al. [41] added a group of

oblique springs to the traditional three springs QZS

system and expanded the range of quasi-zero stiffness

by superposition of different stiffness regions. Zhou

et al. [42] put forward a kind of dynamic vibration

absorber based on oblique spring QZS system; through

theoretical and experimental methods, it was con-

firmed that the proposed vibration absorber has better

low-frequency vibration reduction performance when

compared with linear vibration absorber. Subse-

quently, Jing et al. [43] applied a time-delay active

control technology in an identical QZS system,

showing that the natural frequency was reduced and

the vibration isolation effect was significantly

improved. Analogously, Yang and Cao [44, 45] have

designed a QZS isolator with time-delay active

control. They showed that the use of control is

equivalent to increasing the damping force, and higher

time-delay can reduce the response amplitude.

According to the above works discussed, the QZS

system, whose negative stiffness is provided by

oblique springs, has one main drawback. That is, the

displacement range of QZS is extremely small, and

vibration with large amplitude can even be worsened,

therefore limiting its application in real engineering.

Thus, the main contribution of this study is to attempt

to broaden the displacement range of QZS via a semi-

active control strategy. In addition, we design a QZS

system by using six oblique springs. Static and

dynamic analysis are further performed to investigate

the QZS performances of the designed system.

This paper is organized as follows. After the

introduction, a QZS system with six oblique linear

springs’ mechanism and a vertical coil spring is

introduced in Sect. 2. In Sect. 3, the dynamic charac-

teristics of the QZS are studied, in which the force–

displacement transmissibility and jump phenomena

are analyzed and discussed. A semi-active control

method based on a feedback displacement control

strategy is presented to turn the QZS performance of

the proposed system in Sect. 4. The paper is closed

with some concluding remarks.
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2 Static analysis

2.1 The QZS system

As shown in Fig. 1a, the QZS system is composed of

seven linear springs, of which only one vertical coil

spring offers positive stiffness for the system, and the

other springs provide negative stiffness. The six

springs are initially tilted in space, starting from the

horizontal plane, marked as an angle h. The initial

length L0 and stiffness K of the six springs are the

same. The upper ends of these springs are gathered at

point A with a height of h from the horizontal plane,

and the other ends are hinged at point B;C;D;E;F and

G, respectively. The displacement of point A moving

vertically downward from equilibrium point O is

expressed by Y. As shown in Fig. 1(b), the six hinged

points are uniformly distributed by circumference

with point O as the center point; the distances from

point B;C;D;E;F and G to point O are marked as

a. The coil spring, K1, is installed in parallel with the

six oblique springs mechanism on the horizontal

plane, and the other point is fixed on a plane parallel to

the horizontal plane.

2.2 Analysis of negative stiffness characteristics

As shown in Fig. 2, a vertical downward force, F0, is

applied at point A, point A moves downwards, and the

six oblique springs are compressed from the initial

length L0 to L1. (L0 is smaller than L1.) The displace-

ment of point A is represented by x0, which is

calculated from the initial position. The relationship

between force F0 and displacement x0 is

Fig. 1 a Schematic representation of six oblique springs’ QZS system; b schematic representation of hinge points distribution of six

oblique springs at horizontal level

Fig. 2 Schematic representation of spatial geometric distribu-

tion of six oblique springs’ negative stiffness mechanism
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F0 ¼ 6KðL0 � L1Þ sin h ð1Þ

where sin h ¼ ðh� x0Þ=L1, L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh� x0Þ2 þ a2

q

.

Let Y0 be the displacement of point A moving

vertically downward from equilibrium point O, then

Eq. (1) can be rewritten as

F0 ¼ 6Kðh� x0Þ
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðh� x0Þ2
q � 1

0

B

@

1

C

A

¼ 6KY0 1 � L0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ Y2
0

p

 !

ð2Þ

The non-dimensional form of Eq. (2) is

F̂0 ¼ 6Ŷ0 1 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

â2 þ Ŷ2
0

q

0

B

@

1

C

A

ð3Þ

where F̂0 ¼ F0=KL, Ŷ0 ¼ Y0=L0, â ¼ a=L0

Therefore, the non-dimensional stiffness is

obtained as follows

K̂0 ¼ 6 1 � â2

ðâ2 þ Ŷ2
0 Þ

3=2

 !

ð4Þ

On the basis of above discussion, it can be

apparently seen that â determines the state of the

negative mechanism. When â ¼ 1, the six springs,

initially, lie horizontally; while when â ¼ 0, they are

perpendicular to the horizontal plane in space.

Figure 3 and Fig. 4 show the force–displacement

and stiffness–displacement relationships for different

values of â, respectively; both are in the non-dimen-

sional forms. From Fig. 3, it can be clearly found that

the six oblique springs’ mechanism has the negative

stiffness characteristic around the equilibrium point

except when â ¼ 0, and the force–displacement curve

has a highly nonlinear relationship. In addition, the

force becomes larger as â decreases from 1 to 0.

Moreover, the nonlinearity of the curve gets stronger

by decreasing the value of â, except when â equals 0;

when â ¼ 0, the curve presents linear property before

and after the equilibrium point. From Fig. 4, again, it

can be seen that the six oblique springs’ mechanism

shows negative property near the equilibrium point

except for â ¼ 0. Additionally, if the value of â is

reduced, the minimum value of negative stiffness

becomes smaller.

Let K̂0 be less than zero, yielding the relationship

between the non-dimensional displacement and â,

which can be defined by Eq. (5). The relationship is

also plotted in Fig. 5; the displacement range of the six

oblique springs’ mechanism with negative stiffness is

directly related to its structural parameters â.

Y
_
�

�

�

�

�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
_4=3 � a

_2

q

ð5Þ

2.3 Analysis of QZS characteristics

From Fig. 1a, putting a downwards force F on point A,

the displacement Y given by

Fig. 3 Non-dimensional force–displacement characteristic

Fig. 4 Non-dimensional stiffness–displacement characteristic

Fig. 5 Non-dimensional displacement from the static equilib-

rium position as a function of â
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F ¼ K1ðY þ hÞ þ 6KYð1 � L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ Y2
p Þ ð6Þ

Taking the non-dimensional form of Eq. (6) gives

F̂ ¼ Ŷ þ ĥþ 6kŶ 1 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

â2 þ Ŷ2
p

 !

ð7Þ

where Ŷ ¼ Y=L, ĥ ¼ h=L, â ¼ a=L, k ¼ K=K1,

F̂ ¼ F=K1L.

Through the differential calculation of the Eq. (7),

the non-dimensional stiffness is as follows

K̂ ¼ 1 þ 6k 1 � â2

ðâ2 þ Ŷ2Þ3=2

 !

ð8Þ

The system should satisfy the condition of quasi-

zero stiffness, i.e., let Eq. (8) be zero, one gets,

k ¼ ðâ2 þ Ŷ2Þ3=2

6ðâ2 � ðâ2 þ Ŷ2Þ3=2Þ
ð9Þ

When the system is in static equilibrium, Eq. (9)

degenerates to be

k ¼ â

6ð1 � âÞ ð10Þ

3 Dynamic behavior of the QZS system

3.1 Approximation of the stiffness of the QZS

system

In order to simplify the calculation and facilitate the

subsequent analysis, Taylor series is used to expand

Eq. (7) and approximately replaced by a cubic poly-

nomial. The results are as follows:

F̂1 ¼ 3k
â3

Ŷ3 ð11Þ

Correspondingly, the non-dimensional stiffness is

as follows

K̂ ¼ 9k
â3

Ŷ2 ð12Þ

The approximate non-dimensional force–displace-

ment curve of the proposed QZS system is plotted in

Fig. 6. The approximate non-dimensional stiffness–

displacement curve is plotted in Fig. 7. They are

compared with the exact curve as well. It can be found

that the error between approximate expression and

exact expression is sufficiently small, specially near

the equilibrium point; thus, it can be concluded that the

approximation strategy is reasonable. The error of the

non-dimensional stiffness at a specific point of

displacement is given as follows:

ek ¼ 1 � Kapproximate

Kexact

� �

� 100%

¼ 1 �
9k
a2 Ŷ

2

1 þ 6kð1 � â2

ðâ2þŶ2Þ3=2Þ

2

4

3

5� 100% ð13Þ

3.2 Force–displacement characteristic

and jumping phenomena

As shown in Fig. 8, linear damping is added to the

QZS system. When the system is not loaded, the mass,

m, keeps the system exactly in the static equilibrium

position. k0 is used to represent the quasi-zero

stiffness, and the damping is represented by c. At the

top of the system, a simple harmonic excitation F ¼
H0 cosðxtÞ is applied downward, and the response

force at the foundation is marked as F1.

Fig. 6 Non-dimensional force–displacement characteristic

Fig. 7 Non-dimensional stiffness–displacement characteristic
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In conclusion, QZS system has better quasi-zero

performance only when it is close to the static

equilibrium position. Before dynamic analysis, the

following assumptions should be made:

(1) Under the action of excitation F, the QZS

system is always close to the static equilibrium

position.

(2) The force–displacement equation is approxi-

mately replaced by Eq. (11).

Based on the above assumptions, the equation of

motion can be approximately expressed as

m€xþ c _xþ 3

a3
LKx3 ¼ H0 cosðxtÞ ð14Þ

Its non-dimensional form reads

€̂xþ 2n _̂xþ lx̂3 ¼ Ĥ0 cosðwsÞ ð15Þ

where

x1 ¼
ffiffiffiffiffi

k1

m

r

;w ¼ x
x1

; s ¼ x1t; k ¼ k

k1

; â ¼ a

L
; l

¼ 3k
â3

; n ¼ c

2mx1

; ŷ ¼ y

L
; Ĥ0 ¼ H0

K1L

Analyzing Eq. (15), the equation for the motion of

the QZS system is a Duffing system with zero linear

term. The harmonic balance method [46, 47] will be

used to numerically obtain the solution without

considering other higher harmonic frequencies. The

periodic response can be expressed as

x̂ðsÞ ¼ H1 cosðwsþ uÞ. Inserting the response into

Eq. (15) yields the frequency–amplitude characteris-

tic, as

Ĥ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4
lH3

1 þ H1w
2

� �2

þð2H1nwÞ2

s

ð16Þ

From Eq. (16), the damping ratio n, the parameter

of system nonlinearity l, the amplitude of harmonic

excitation force Ĥ0 and the frequency of excitation w
all affect the amplitude of system response H1.

The QZS system has jumping phenomena, that is,

the jump frequency is the excitation frequency, the

response amplitude of the system will suddenly

decrease significantly. On the contrary, the phe-

nomenon for the jump-up frequency is just the

opposite. By expanding Eq. (16) and merging the

same terms, the equation for parameters w2 is obtained

as follows

H2
1w

4 þ ð4n2H2
1 � 3

2
lH4

1Þw
2 þ 9

16
l2H6

1 � Ĥ2
0 ¼ 0

ð17Þ

Solving Eq. (17) gives

w1:2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3lH2
1 � 8n2 � 4

H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3ln2H4
1 þ 4n4H2

1 þ Ĥ2
0

q

r

ð18Þ

When parameter w1 ¼ w2 and damping ratio n\\1,

the maximal amplitude of the system response is given

by

H1 max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n6 þ 3lĤ2
0

q

3ln

v

u

u

t

ð19Þ

Substituting Eq. (19) into Eq. (18), one gets the

jump-down frequency, as

wx ¼
1
ffiffiffiffiffi

2n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n6 þ 3

4
lĤ2

0

r

� 3n3

s

ð20Þ

Given 4n6\\3lĤ2
0 , Eq. (20) can be further

approximated as

wx �
3lH2

0

16n2

� �1=4

ð21Þ

When the damping ratio n ¼ 0 and solving the

equation dw=dH1 ¼ 0, the approximate expression of

Fig. 8 Equivalent model of QZS vibration isolation system
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the corresponding amplitude for the jump-up fre-

quency can be obtained as follows

H1s �
2Ĥ0

3l

� �1=3

ð22Þ

By substituting Eq. (22) into Eq. (18), the jump-up

frequency is calculated as

ws �
9Ĥ0

ffiffiffi

l
p

4

 !1=3

ð23Þ

Based on the above analysis, the jump frequency of

the system is affected by the nonlinearity parameter l,

the damping ratio n and the amplitude of harmonic

excitation force Ĥ0. We will further qualify the

influences of these parameters by numerical simula-

tion analysis.

The relationship between the jump frequency and

the nonlinearity parameter l is shown in Fig. 9 with

other parameters fixed as n ¼ 0:02 and Ĥ0 ¼ 0:2. It

can be found that both jump-up frequency and jump-

down frequency increase with the increase in the

nonlinearity parameter l, with the former being much

smaller than the latter. Note that the effective vibration

isolation frequency range widens by decreasing the

jump-down frequency, meaning that reducing the

value of the nonlinearity parameter l can make the

vibration isolation ability better.

We also plot the curve that describes the relation-

ship between the system jump frequency and the

amplitude of harmonic excitation force Ĥ0 as shown in

Fig. 10; other parameters are kept as l ¼ 5 and

n ¼ 0:02. It can be found that the influence is similar

to that of the nonlinearity parameter l.

The relationship between the system jump fre-

quency and damping ratio n is shown in Fig. 11 by

keeping other parameters as l ¼ 5 and Ĥ0 ¼ 0:2.

Obviously, the jump-down frequency decreases by

enlarging the damping ratio n. When n reaches the

critical damping ratio nc, the jumping interval

becomes zero, i.e., the two jump frequencies are

equal, and there are no longer jumping phenomena.

The critical damping ratio is expressed by nc as

follows:

nc ¼
9Ĥ0

ffiffiffi

l
p

4

 !1=3

� 1

2
þ 1

12 1
108

þ i
ffiffiffiffi

23
p

216

� 	1=3

2

6

4

þ 1

108
þ i

ffiffiffiffiffi

23
p

216

� �1=3
#1=2

ð24Þ

3.3 Force transmissibility

For the system presented in Fig. 8, the force trans-

ferred to the foundation is given by

F̂1 ¼ 2n _̂xþ lx̂3 ð25Þ
Fig. 9 The effect of nonlinearity parameter l on the jump

frequency for parameter settings of n ¼ 0:02 and Ĥ0 ¼ 0:2

Fig. 10 The effect of amplitude of harmonic excitation force Ĥ0

on the jump frequency for parameter settings of l ¼ 5 and

n ¼ 0:02

Fig. 11 The effect of damping ratio n on the jump frequency for

parameter settings of l ¼ 5 and Ĥ0 ¼ 0:2
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Using the harmonic balance method and neglecting

the higher harmonics, the magnitude of the force can

be reformulated as

F̂1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

4
lH3

1

� �2

þð�2nwH1Þ2

s

ð26Þ

Then, the force transmissibility is given by

g ¼ F̂1

Ĥ0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
4
lH3

1


 �2þ �2nwH1ð Þ2
q

Ĥ0

ð27Þ

The force transmissibility is determined by four

parameters; they are the amplitude of harmonic

excitation force Ĥ0, the damping ratio n, the nonlin-

earity parameter l and the frequency w. The force

transmissibility is plotted in Fig. 12 for three values of

the damping ratio n, i.e., n¼0:05, 0.2 and 0.5. The

other parameters are l ¼ 3 and Ĥ0 ¼ 0:05. The

transmissibility for the linear system is also presented

for comparison purpose. Note that the linear system

only consists of one positive spring. It is obvious that

the maximum amplitude of the transmissibility of two

systems both decreases with an increase in damping

ratio. Finally, the jumping phenomena of QZS system

will disappear because the damping ratio has increased

to a certain value. The effective isolation frequency

range of linear system is not affected by the change of

damping. Nonetheless, for the QZS systems, when the

damping ratio is small, i.e., n¼0:05, it is obvious that

the transmission curve is bent to the right hand side,

and the initial effective isolation frequency is the

jump-down frequency. When n¼0:2, the initial isola-

tion frequency is obviously reduced and the jumping

phenomena is disappeared. Finally, it can be said that

compared with the two systems, the QZS system is

more susceptible to damping, but its low-frequency

vibration isolation ability is superior.

The force transmissibility is plotted in Fig. 13 for

n ¼ 0:05,Ĥ0 ¼ 0:5 and three values of the nonlinearity

parameter l, i.e., l¼0:05, 0.5 and 1. When l¼5, the

transmission curve is obviously bent to the right hand

side. When the nonlinearity parameter decreases to be

1, the bending degree of the transmission curve does

not change and not obviously move to the left, but the

peak value of the response decreases. Further reducing

the nonlinearity parameter to l¼ 0.5, the transfer

curve changes according to the same law. It is shown

that the jump-down frequency becomes smaller with

the decrease in the nonlinearity parameter l, which

also means that the frequency range of vibration that

can be isolated becomes larger.

Figure 14 shows that the jump frequency tends

larger as the amplitude of harmonic excitation force

Ĥ0 increases where the parameters are n ¼ 0:05 and

l ¼ 3. When the amplitude of harmonic excitation

force is small, i.e., Ĥ0¼ 0.05, it is obvious that the

bending degree of the transmission curve does not

change. However, compared with the amplitude of

harmonic excitation force, for Ĥ0¼ 0.5, the curve

moves more clearly to the left. This means that the

initial isolation frequency is relatively low for har-

monic excitation force with smaller amplitude.

4 Semi-active control for the proposedQZS system

For the system presented in Fig. 8, the non-dimen-

sional stiffness and displacement characteristic are

shown in Fig. 15, where the values of â are different

and k ¼ 1. It can be confirmed from the diagram that

the stiffness characteristics of the system are affected

Fig. 12 Magnitude of the force transmissibility for different

values of n: 0.05, 0.2 and 0.5

Fig. 13 Magnitude of the force transmissibility for different

values of l: 0.5, 1 and 5
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by â. When â¼ 1, the non-dimensional stiffness K
_

varies with displacement but remains positive stiffness

all the time. For â¼6=7, the zero stiffness of the

system appears only at one point, that is, the static

equilibrium position. It’s positive at all other displace-

ments, and the value of positive stiffness is propor-

tional to the displacement. For â¼5=7, zero stiffness

appears at two positions, and the stiffness remains

negative between the two zero stiffness points.

However, the negative stiffness is not stable, so it is

necessary to avoid this situation.

Combined with the above analysis, it can be found

that by adjusting the values of â, the non-dimensional

stiffness remaining zero in a certain displacement

range can be achieved. Combined with the non-

dimensional stiffness expressed in Eq. (8), when the K
_

remains zero, the relationship between Y
_

and param-

eter â is given by

Ŷ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6k
1 þ 6k

â2

� �2=3

�â2

s

ð28Þ

When k ¼ 1, 6=7â22=3 � â2 � 0 should be satisfied in

Eq. (28). Therefore, the range of parameter â can be

obtained as follows:

0� â� 6

7
ð29Þ

The relationship between Y
_

and parameter â given

by Eq. (28) is plotted in Fig. 16 for k ¼ 1. It can be

seen that, when the displacement of the isolated mass

changes, two different spring inclination angles can be

found to correspond to the displacement, thus keeping

the stiffness of the system to be zero.

Based on this feature, a semi-active control method

for the proposed QZS system based on a feedback

displacement control strategy is proposed, as shown in

Fig. 17. A displacement sensor is mounted on the mass

of vibration isolation to detect the displacement

deviating from the initial position when vibration

occurs. The specific control flow is shown in Fig. 18.

The feedback displacement is transmitted to the

controller, which can adjust the distance between

one end of the oblique springs and the center of the

system, thereby leading to the alteration of the

inclination angle of the springs. Finally, under the

semi-active control strategy, the stiffness remains zero

in a certain displacement range.

The first half of the curve in Fig. 16 is taken as the

process that the inclination angle of the springs varies

with the displacement. This means that when the

displacement changes from zero to approximately

equal to 0.33, the â decreases from about 0.86 to

roundly 0.47. At the same time, the displacement

sensor has a certain accuracy, so the feedback

Fig. 14 Magnitude of the force transmissibility for different

values of Ĥ0: 0.05, 0.5 and 1

Fig. 15 Non-dimensional stiffness of the QZS system when

k ¼ 1 and different values of â: 6/7, 5/7 and 1

Fig. 16 The relationship between non-dimensional displace-

ment Y
_

and parameter â for Eq. (28) when k ¼ 1
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displacement is a finite number of numerical values

with deterministic accuracy. Finally, the non-dimen-

sional stiffness characteristics of the active stiffness

QZS system are shown in Fig. 19. From Fig. 19, the

non-dimensional displacement of the system is

approximately in the range of - 0.33 to 0.33, and

the non-dimensional stiffness of the QZS system

remains zero. Beyond this displacement range, the

stiffness is always positive because the six oblique

springs’ structure no longer has negative stiffness

characteristics.

Using the parameters shown in Table 1, the

prototype model of semi-active QZS system is estab-

lished in ADAMS, as shown in Fig. 20. At this time,

the system is in equilibrium. One end of the six oblique

springs is connected with the vibration isolation

platform, and the other end is connected to the end

of six vertical rods. The vertical rods can move along

the direction of the circumference radius under the

action of the controller and then adjust the inclination

angle of the six oblique springs.

The accuracy of the model needs to be verified.

When the mass of the isolation platform is set to zero,

the vertical spring is in the natural state, and the

vertical rods maintain the initial position. The vertical

force of the vibration isolation platform is obtained by

applying displacement excitation on the platform, as

Fig. 17 Schematic diagram of QZS with semi-active control

method based on a feedback displacement control strategy

Fig. 18 Schematic diagram of semi-active control method

Fig. 19 Non-dimensional stiffness of the QZS system with

semi-active control method

Table 1 The design

parameters of the QZS

system

Parameter Value

K0 2 N/mm

K1 2 N/mm

L0 70 mm

a 60 mm

m 7.347 kg

h 36 mm

Fig. 20 Virtual prototype model of semi-active QZS system
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shown in Fig. 21. Obviously, the system exhibits zero

stiffness, so the virtual prototype model is qualita-

tively verified.

Considering the dimension of the system, Eq. (28)

is approximately simplified. The governing equation

between the displacement regulated by the controller

and the vibration response amplitude of the isolation

platform can be obtained:

Dx ¼ 0:8eDy ð30Þ

where Dx is the displacement regulated by the

controller, Dy is the vibration amplitude of the

vibration isolation platform measured by the sensor

and e is the adjustment coefficient, which is related to

vibration excitation and frequency.

In the ADAMS model of equilibrium state, con-

sidering the effective control interval of semi-active

control, the vibration excitation applied to the base of

the system is Y ¼ 10sinð2tÞ.
Firstly, the simulation response curve of QZS

system without semi-active control is obtained, as

shown in Fig. 22. From Fig. 22, the response ampli-

tude is far higher than the excitation amplitude, which

worsens the vibration and does not have vibration

isolation performance. Secondly, the semi-active

control is started and the adjustment coefficient is set

to 0.1. As shown in Fig. 22, the steady-state response

amplitude is about 3 mm, only about one third of the

excitation amplitude, which means that the QZS

system under semi-active control can overcome the

vibration deterioration problem under large amplitude

excitation and maintain excellent vibration isolation

performance.

5 Conclusion

In this study, we have designed and analyzed a QZS

system with an oblique linear spring structure. Its

jumping phenomena and force–displacement trans-

missibility were investigated by the harmonic balance

method. Moreover, based on the characteristic that the

dynamic stiffness of the system is directly related to

the initial inclination angle of the springs, a semi-

active control method of displacement feedback

control strategy is proposed. Finally, a virtual proto-

type simulation model of the QZS system is estab-

lished. The essential results provide a new idea for

semi-active control of the QZS system. The theoretical

and simulation analysis results demonstrate that:

(a) Increasing the damping of the proposed QZS

system can improve its transmission characteristics.

The vibration isolation effect is better for the vibration

with lower excitation amplitude. Compared with the

linear system, the proposed QZS system has a better

vibration isolation effect, especially in the low-

frequency band. (b) The numerical results show that

under the semi-active control strategy, the zero

stiffness range has been broadened from a single

equilibrium point to a large displacement range, i.e.,

the non-dimensional displacement is about -0.33 to

0.33. (c) Combined with ADAMS simulation results,

under the semi-active control strategy, the system still

maintains a good vibration isolation performance for

large amplitude vibration, indicating that expanding

the zero stiffness–displacement range of the proposed

QZS system can improve the vibration isolation ability

of the system for large amplitude vibration.

Further research will explore the impact of delay on

the control effect of the system and propose a control

algorithm for the delay.
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