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Abstract In this paper, a S-type memristor with

tangent nonlinearity is proposed. The introduced

memristor can generate two kinds of stable pinched

hysteresis loops with initial conditions from two flanks

of the initial critical point. The power-off plot verifies

that the memristor is nonvolatile, and the DC V-I plot

shows that the memristor is locally active with the

locally active region symmetrical about the origin.

The equivalent circuit of the memristor, derived by

small-signal analysis method, is used to study the

dynamics near the operating point in the locally active

region. Owing to the bistable and locally active

properties and S-type DC V-I curve, this memristor

is called S-type BLAM for short. Then, a new Wien-

bridge oscillator circuit is designed by substituting one

of its resistances with S-type BLAM. It finds that the

circuit system can produce chaotic oscillation and

complex dynamic behavior, which is further con-

firmed by analog circuit experiment.

Keywords Memristor � Coexisting pinched

hysteresis loops � Non-volatile � Local activity �
Nonlinear dynamics

1 Introduction

In 1971, Chua proposed the fourth basic circuit

component called memristor in view of the symmetric

logical relation of circuit theory [1], and the physical

fabrication by Hewlett-Packard laboratory made the

theoretical assumption of memristor come true [2].

Due to the special properties of nanometer size, low

power consumption, inherent nonlinearity and non-

volatile, memristor possesses the great potentials of

inducing new dynamical mode of electronic oscilla-

tion, enhancing the security of chaotic communica-

tion, increasing the reliability of chaotic encryption

and improving the efficiency of neural network in

searching optimal solution [3–9]. And it can be

predicted that memristor will play a key role in the

development of next-generation memory system with

ultra-low energy consumption and high density mem-

ory [10]. Nevertheless, the characteristics of memris-

tor need to be further explored and revealed.

The memristor with multistable characteristics can

produce different types of pinched hysteresis loops

under different initial conditions. In 2016, Ascoli

proposed a bistable memristor endowed with a

stable pinched hysteresis loop-pair, stimulated by

DC as well as AC periodic signal [11]. Mannan found

the coexisting pinched hysteresis loops in Chua

corsage memristor [12]. In Ref [3], Chang proposed

a bistable memristor model containing cubic term and

found that its dynamics was governed by cubic term.

Wang reported a three stable pinched hysteresis loops

C. Li (&) � H. Li � W. Xie � J. Du
Key Laboratory of Hunan Province On Information

Photonics and Freespace Optical Communications,

College of Physics and Electronics, Hunan Institute of

Science and Technology, 414006 Yueyang, China

e-mail: lichunlai33@126.com

123

Nonlinear Dyn (2021) 106:1041–1058

https://doi.org/10.1007/s11071-021-06814-4(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-06814-4&amp;domain=pdf
https://doi.org/10.1007/s11071-021-06814-4


memristor by adding a polynomial characteristic

function into the original Chua corsage memristor

[13]. Wang also reported a multi-stable memristor by

introducing periodic function and multiple equilibria

[14]. It’s inevitable that a multistable device would

give rise to the multistability and complexity in a

dynamical system. Therefore, it is of great significance

to study the multistability of memristor.

Locally active memristor (LAM) is the memristor

with negative memristance under a certain voltage

crossed or the memristor with negative memductance

under a certain current crossed [15–17]. It is uncov-

ered that local activity is essential for nonlinear system

to keep oscillation and amplify weak fluctuation

signal. Therefore, local activity is considered to be

the origin of all complexities in dynamical system

[18–20]. In general, locally active memristor can be

divided into two categories: the first one is not passive

for which all points in the DC V-I plot lie in each

quadrant, the second one is passive but locally active

whose points in the DC V-I plot only lie in the first and

third quadrant with VI C 0. For example, Chua

proposed a passive but locally active memristor based

on piecewise linear function [21], and it was con-

nected with an inductor and a battery to generate

oscillating behavior with particular initial conditions

and DC bias [12]. In addition, it has been found that

some particular memristors, such as vanadium dioxide

(VO2) and niobium oxide (NbOx) devices, are passive

but locally active memristors [22, 23]. Pickett revealed

that the NbOx devices have current-controlled nega-

tive differential resistance [24]. And the mathematical

model for NbOx LAM was presented based on the

Chua’s unfolding theorem and parameter optimization

method [25]. Unlike nonvolatile memristor, most of

the nanoscale LAMs have the characteristics of

volatile resistance switching. Recently, a new type of

nanoscale devices of locally active memristor, called

S-Type LAM, was proposed [26–28]. And a S-Type

LAM model with volatile resistance was then pro-

posed [29]. S-Type LAM is a nonlinear local active

device, which is simpler in concept than the passive

memristor with negative resistance; thus it can form an

oscillation circuit without pure negative resistor.

However, the S-Type LAMs are difficult to commer-

cially access due to the technology and cost of

manufacturing nano-scale electronic component

[30]. Therefore, in order to enrich the theoretical

knowledge of S-Type LAM and explore its practical

application in various fields, it is necessary to further

study the emulator and simulation model in the area of

negative differential resistance (NDR).

Memristor has been widely used in chaotic oscil-

lator for the unique characteristics of storage and

inherent nonlinear. For example, Sah proposed an

oscillator made with only a memristor and a battery,

which is distinct from the traditional electronic

oscillator including at least two energy-storage ele-

ments and a locally active nonlinearity [31]. Wang

modeled the neural network by utilizing flux-con-

trolled memristor to describe the influence of electro-

magnetic radiation on neuron, and found that the

simple neural network can induce infinite number of

coexisting hidden attractors [32]. Zeng introduced an

inductor-free two-memristor-based chaotic circuit,

which is developed from a current feedback op amp-

based sinusoidal oscillator. The proposed circuit has

three line equilibria and can perform the dynamics of

extreme multistability, amplitude death and transient

transition behavior [7]. As a nonlinear locally active

device, S-type LAM is conceptually simple for

building oscillating circuit without pure negative

resistor, and the local active region renders the

oscillating system capable to amplify extremely small

fluctuation in energy. Therefore, S-type LAM is

preferred over other memristor in the design of chaotic

oscillator [33–35]. In Ref [29], Wang designed a

S-type LAM-based chaotic oscillator by using a

resistor, a capacitor and an inductor. However, it is

not clear whether S-type LAM could be used to other

oscillating circuits such as Wien-bridge circuit.

Therefore, it would be interesting and potentially

valuable if S-type LAM could be successfully applied.

In this paper, we introduce a S-type bistable locally

active memristor with tangent nonlinearity and study

its associated memristor oscillator circuit. The main

contribution of this work is summarized as follows: (1)

The memristor can generate two kinds of

stable pinched hysteresis loops induced from two

flanks of the initial critical point of the initial

condition. (2) The memristor is locally active and

the locally active region is symmetrical about the

origin. (3) The memristor has a S-type DCV-I plot and

a nonvolatile power-off plot, which is different to the

nanoscale LAMs and the S-type LAM in Ref [29] with

volatile resistance. The rest of this paper is organized

as below: In Sect. 2, the mathematical model of S-type

bistable locally active memristor is presented and the
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voltage-current characteristics are analyzed by coex-

isting pinched hysteresis loops, power-off plot and DC

V-I plot. In Sect. 3, the small-signal analysis method is

used to study the equivalent circuit near the operating

point in the locally active region and the frequency

response of the impedance function is also revealed.

Then, in Sect. 4, we design a new Wien-bridge

oscillator circuit by using the proposed S-type BLAM

and investigate its complex dynamics. In Sect. 5, an

analog circuit is designed to experimentally confirm

the proposed oscillator circuit. Finally, a brief con-

clusion including some concluding remarks is drawn

in Sect. 6.

2 Memristor model and voltage-current

characteristics

2.1 Model of S-type BLAM

Memristor can be categorized into ideal memristor,

generic memristor and extended memristor, according

to the mathematical definition [21]. The ideal mem-

ristor is the simplest model and the extended memris-

tor is developed on the ideal one. The generic

memristor is mathematically defined as

yðtÞ ¼ f ðx; u; tÞuðtÞ
dx

dt
¼ gðx; u; tÞ

8
<

:
ð1Þ

where u(t), y(t) and x(t) are the input, output and

internal state variable of the memristor; f(�) and g(�) are
the functions that can be customized and related to the

internal state variable x(t). The memristor is the

voltage-controlled when the input is voltage and the

output is current, while the memristor is the current-

controlled if the input is current and the output is

voltage. Now, a current-controlled generic memristor

model is proposed, as below

v ¼ f ðx; iÞ ¼ ða0 þ a1xþ a2 tanhðxÞÞi
dx

dt
¼ gðx; iÞ ¼ b1xþ b2 tanhðxÞ � ci2

(

ð2Þ

where i and v are the input current and output voltage;

a0, a1, a2, b1, b2 and c are the model parameters, which

are set to a0 = - 1, a1 = - 1, a2 = 3, b1 = - 1,

b2 = 3, c = 0.5.

Next, we analyze the voltage–current characteris-

tics of the memristor on the basis of coexisting pinched

hysteresis loops, power-off plot and DC V-I plot, and

consequently prove that it is bistable, nonvolatile and

locally active.

2.2 Coexisting pinched hysteresis loops

When driven by a zero-mean input source with a

certain amplitude and frequency, the input–output

curve of memristor will pass through the origin in the

voltage–current plane and exhibit a pinched hysteresis

loop. A memristor with two coexisting pinched

hysteresis loops is called bistable memristor [15, 33].

When two unequal initial values are located on both

sides of the critical initial value XC, the dynamic

behavior of the bistable memristor appears to be two

distinctly different and stable pinched hysteresis

loops; when two unequal initial values are located on

one side of the critical initial value, the dynamic

behavior of the bistable memristor displays one

monostable pinched hysteresis loop.

The sinusoidal current source i(t) = Asin(2pFt)
with the amplitude A = 2 and frequency F = 0.1 is

chosen as the driving source. When the initial values

of X0 = 0.526 and X0 = 0.527 are located on both sides

of the critical initial value XC = 0.52677, two com-

pletely different stable pinched hysteresis loops are

drawn in Fig. 1a, where the red curve stands for

X0 = 0.526 and blue curve stands for X0 = 0.527.

However, when the two initial values X0 = 0.527 and

X0 = 0.528 are both greater than the critical initial

value, the two pinched hysteresis loops are completely

coincident, as shown in Fig. 1b. And when the two

initial values X0 = 0.525 and X0 = 0.526 are both

smaller than the critical initial value, the two pinched

hysteresis loops are also completely identical, as

shown in Fig. 1c.

The coexisting pinched hysteresis loops depend not

only on the initial value of memristor but also on the

amplitude and frequency of the driving signal. When

the initial values and frequency of the sinusoidal

current source are fixed as X0 = - 1, X0 = 1 and

F = 0.1, the lower and upper limits of the critical

amplitude are determined as AC1 = 1.305 and AC2-

= 2.049227. Figure 1d shows two completely coin-

cident pinched hysteresis loops with amplitude A = 1

(A\AC1). While Fig. 1e displays the coexisting

hysteresis loop with amplitude A = 1.9 (AC1-

\A\AC2). When the amplitude increases to greater
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than the upper limit AC2, such as A = 2.1, the two

hysteresis loops coincide again, as shown in Fig. 1f.

The critical frequency value FC is approximately

equal to 0.0826 when X0 = - 1, X0 = 1 and A = 2.

Figure 1g–i shows the evolution of pinched hysteresis

loops as the frequency F monotonously increases. It’s

found that the two pinched hysteresis loops with

X0 = - 1, X0 = 1 and A = 2 evolve from stable super-

position of low frequency with F\FC, to coexistence

of bistable state with F[FC. And it’s found that the

enclosed area of the pinched hysteresis loop shrinks

monotonously with the increase of the excitation

frequency.

It is worth noting that in the process of hardware

circuit implementation, the different initial conditions

can be realized by randomly switching the power

supply. And in the process of PSIM circuit simulation,

the different initial conditions can be realized by

setting the initial voltage value of the capacitor. But in

the process of DSP or FPGA implementation, the

desired initial values can be expediently assigned [36].

2.3 Power-off plot and nonvolatility

When signal source is turned off, the non-volatile

memristor can remember its most recent state.

According to Chua’s memristor theorem

[18, 21, 33], the memristor is non-volatile if the

power-off plot (POP) intersects the dx=dt ¼ 0 axis at

least twice with a negative slope. Therefore, the POP

technology can not only judge the nonvolatility of

Fig. 1 Coexisting pinched hysteresis loops with: different

initial values of a x(0) = 0.526 and x(0) = 0.527, b x(0) = 0.527

and x(0) = 0.528; c x(0) = 0.525 and x(0) = 0.526; different

amplitudes of d A = 1, e A = 1.9, f A = 2.1; different

frequencies of g F = 0.08, h F = 0.0826, i F = 0.15
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memristor, but also reveal the changing process of the

scalar state variable.

The POP of S-type BLAM can be obtained by

setting i = 0 in g(�) of Eq. (2), as below

dx

dt

�
�
�
�
i¼0

¼ b1xþ b2 tanhðxÞ ð3Þ

It’s known from the POP in Fig. 2 that there are

three intersections (equilibrium points) Q-1,Q0 andQ1

with the dx=dt ¼ 0 axis. The scalar state variables

corresponding to the three equilibrium points are

x = - 2.9847, x = 0 and x = 2.9847, respectively. As

we know that the two intersectionsQ-1 andQ1 with the

dx=dt ¼ 0 axis have negative slopes, thus the designed

S-type BLAM is nonvolatile. The state variable x in

the upper half plane of POP will move to the right as

time increases, and the state variable x in the lower half

plane of POP will move to the left as time goes on.

Accordingly, the equilibrium point is asymptotically

stable when the state variables on both half planes

converge toward it. On the contrary, the equilibrium

point is unstable. Thus, we know from Fig. 2 that

equilibrium points Q-1 and Q1 are asymptotically

stable, while Q0 is unstable. Therefore, for different

initial states x0, the memristor exhibits one of two

asymptotically stable equilibrium states, i.e.

x ¼
xðQ�1Þ ¼ �2:9847; if x0 6 0

xðQ1Þ ¼ 2:9847; if x0 [ 0

(

ð4Þ

2.4 DC V-I plot and local activity

As a powerful visualization tool to understand the

intrinsic property of memristor, the DC V-I plot is a

smooth curve composed of enough test points. A

group of DC voltage v = Vk (k = 1,2,3,…,n) can be

obtained by adding a group of continuous DC current

i = Ik (k = 1,2,3,…,n) to S-type BLAM. Then, the

state variable x = Xk (k = 1,2,3,…,n) is an equilibrium

state satisfying dx
dt i¼Ikj ¼ 0, i.e.

cI2 ¼ b1X þ b2 tanhðXÞ ð5Þ

It’s derived the functional relationship between the

applied DC current I2 and the equilibrium state X,

expressed as

I2 ¼ b1X þ b2 tanhðXÞ
c

¼ ~I2ðXÞ ð6Þ

And the function between I and X can be deduced as

I ¼ ~IðXÞ ð7Þ

We obtain the DC voltage Vwhen a1 ¼ b1; a2 ¼ b2

V ¼ ða0 þ a1X þ a2 tanhðXÞÞI ¼ ða0 þ cI2ÞI ð8Þ

It’s further deduced the functional relationship

between the output DC voltage V and the equilibrium

state X by substituting Eq. (7) into Eq. (8), as denoted

by

V ¼ VðIÞ ¼ Vð~IðXÞÞ ¼ ~VðXÞ ð9Þ

The curves of DC V-I and equilibrium state are

plotted in Fig. 3 with - 2 B I B 2. It can be seen

from the X-I equilibrium state curve that the three

equilibrium states X = 0 and X = ± 2.9847 are

consistent with the result in the POP curve. Moreover,

the red curve (- 5 B X B - 2.9847) in the X-

I diagram has a blood relationship with the red curve

in the POP diagram. Similarly, the green and blue

curve segments in the X-I diagram are related to the

green and blue curve segments in the POP diagram,

respectively. On the one hand, the slopes of the red and

blue curve segments in the X-I diagram are both

negative since they are caused by the stable equilib-

rium state, so the entire X-I curve is locally active. On

the other hand, the curve segment in the lower half

plane of X-I2 diagram causes the discontinuity of the

X-I and the X-V diagram. Moreover, each color

Fig. 2 POP of S-type BLAM
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segment in the X-V diagram has the same source with

the corresponding color segment in the X-I diagram.

It can be seen that the DC V-I plot has a continuous

S-shaped behavior. And the slope of the green curve

segment is negative, indicating that the introduced

memristor is locally active. The ranges of DC current

I and DC voltage V of the NDR are [- 0.8165, 0.8165]

and [- 0.54433, 0.54433], shown in the cyan region.

An impressive feature of the memristor is that the

NDR region is symmetrical about the origin.

3 Small-signal analysis

3.1 Small-signal impedance function

There are several options for the electronic imple-

mentation of the memristor, such as high-frequency

grounded memristor emulator circuit[37], memristive

diode bridge [38] and floating memristor emulator

circuit [39]. In this section, we will analyze the system

response in NDR region by applying a small signal to

the DC operating point of the nonlinear dynamical

system. Also we can derive the small-signal equivalent

circuit of the memristor by using the small-signal

analysis method. Thus, a small-signal input current Di

Fig. 3 a DC V-I plot of S-type BLAM and equilibrium state curve on b X-I2 plane, c X-I plane and d X-V plane
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is applied to the DC operating point (V, I) of the

memristor, and it gives rise to the responses v and x

v ¼ V þ Dv

i ¼ I þ Di

x ¼ X þ Dx

8
><

>:
ð10Þ

Equation (2) can be expanded at equilibrium point

Q(X, I) by Taylor expansion. Because the input signal

working at the Q point is small enough, the higher-

order term can be ignored. Accordingly, the resulting

equations are given below

v ¼ V þ Dv ¼ f ðX; IÞ þ a11Dxþ a12Di

dx

dt
¼ dðX þ DxÞ

dt
¼ gðX; IÞ þ a21Dxþ a22Di

8
<

:

ð11Þ

where g(X, I) = 0 and

a11 ¼
of

ox

�
�
�
�
Q

¼ Iða1 þ a2sech
2ðXÞÞ

a12 ¼
of

oi

�
�
�
�
Q

¼ a0 þ a1X þ a2 tanhðXÞ

a21 ¼
og

ox

�
�
�
�
Q

¼ b1 þ b2sech
2ðXÞ

a22 ¼
og

oi

�
�
�
�
Q

¼ �2cI

The increments of voltage and state variable

derivative can be expressed as

Dv ¼ a11Dxþ a12Di
D _x ¼ a21Dxþ a22Di

�

ð12Þ

And we obtain from (12)

VðSÞ ¼ a11XðSÞ þ a12IðSÞ
SXðSÞ ¼ a21XðSÞ þ a22IðSÞ

�

ð13Þ

where V(S), X(S), I(S) are the Laplace transforms of

Dv, Dx, Di, respectively. The small-signal impedance

function of S-type BLAM at operating point Q is

represented as

Z S;Qð Þ ¼ VðSÞ
IðSÞ ¼ a11a22

S� a21
þ a12 ¼

a12Sþ Aj j
S� a21

ð14Þ

where A ¼ a11 a12
a21 a22

� �

. By setting S = jx, the fre-

quency response Z(jx,Q) is given by

Zðjx;QÞ ¼ a12x2 � a21 Aj j � ja11a22x

a221 þ x2
ð15Þ

The real part and imaginary part of Z(jx,Q) are

obtained as

ReZðjx;QÞ ¼ a12x2 � a21 Aj j
a221 þ x2

ImZðjx;QÞ ¼ � a11a22x

a221 þ x2

8
>><

>>:

ð16Þ

3.2 Small-signal equivalent circuit

The frequency responses of S-type BLAM with

I = 0.8 and - 100 B x B 100 are drawn in Fig. 4.

It can be found that the real part ReZ(jx,Q) always
remains a negative value in the entire frequency range.

And the imaginary part ImZ(jx,Q) is negative when

x\ 0 while it remains positive for x[ 0. What’s

more, the imaginary part ImZ(jx,Q) first increases and
then decreases as the frequency increases from x = 0.

The frequency response ImZ(jx,Q) with x belong-

ing to [- 100, 100] is depicted in Fig. 5a under some

positive DC currents I within the local active area

(I = 0, 0.2, 0.4, 0.6, 0.7 and 0.8165). It finds that the

imaginary parts of the impedance functions for all the

operating points are located in the first and third

quadrants. When x C 0, the value of ImZ(jx,Q) is

within the range of [0,0.4) and decreases with the

decrease of the DC input current I. When the opposite

DC input current I is selected as 0, - 0.2, - 0.4, -

0.6, - 0.7 and - 0.8165, the frequency response

ImZ(jx,Q) is completely consistent with that of

Fig. 4 Frequency responses of S-type BLAM with I = 0.8
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positive DC current I. This is probably induced by the

symmetry of the local active region relative to the

origin.

Let x vary in the range of [- 100, 100], the

frequency response ReZ(jx,Q) with some positive DC

currents I in the local active area is shown in Fig. 5b.

It’s observed from Fig. 5b that the value of

ReZ(jx,Q) is negative with the symmetry about

x = 0. And for the same frequency, the value of

ReZ(jx,Q) increases with the increase of DC input

current I. Furthermore, the frequency response

ReZ(jx,Q) of the small signal impedance function is

consistent with that of positive DC current I when the

opposite negative current I is applied to S-type BLAM.

Based on the above analysis, the small-signal

equivalent circuit of S-type BLAM at the operating

point Q is depicted in Fig. 6, which can be regarded as

the series connection of a negative resistance and an

inductance

Zðjx;QÞ ¼ RðxÞ þ jxLðxÞ ð17Þ

And the equivalent resistance R(x) and inductance

L(x) are given by

RðxÞ ¼ a12x2 � a21 Aj j
a221 þ x2

LðxÞ ¼ � a11a22
a221 þ x2

8
>><

>>:

ð18Þ

4 S-type BLAM-based oscillator circuit

4.1 Circuit model

Wien-bridge circuit has the advantages of stable oscil-

lation, high-quality waveform and adjustable oscilla-

tion frequency [40, 41]. Thus, an active oscillator

circuit, manipulated by substituting one resistance of

Wien-bridge circuit with S-type BLAM, is built in

Fig. 7.

When taking the internal variable x of memristor,

voltage VC1 of capacitor C1, voltage VC2 of capacitor

C2 and current iL of inductor L as the state variables,

the mathematical expression of S-type BLAM-based

Wien-bridge oscillator circuit is described by

Fig. 5 a Frequency responses of ImZðjx;QÞ about different DC currents; b Frequency responses of ReZðjx;QÞ about different DC
currents

+

-

v ( )L ω

i ( )R ω

Fig. 6 Small-signal equivalent circuit of the proposed

memristor
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dx

dt
¼ b1xþ b2 tanhðxÞ � ci2L

C1

dVC1

dt
¼ 1

R3

R5

R4

VC1 þ VC2

� �

� iL �
VC1

R1

C2

dVC2

dt
¼ � 1

R3

R5

R4

VC1 þ VC2

� �

L
diL
dt

¼ VC1 � R2iL � ða0 þ a1xþ a2 tanhðxÞÞiL

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð19Þ

For the convenience of analysis, we introduce the

following dimensionless variables and normalized

circuit parameters

x ¼ x; VC1 ¼ y; VC2 ¼ z; iL ¼ w

1

R1C1

¼ 1

R3C1

¼ 1

R3C2

¼ 1;
R5

R4

¼ d;
1

C1

¼ e;
1

L
¼ f ;

R2

L
¼ g

Thus, the corresponding dimensionless circuit

equation is deduced to be

_x ¼ b1xþ b2 tanhðxÞ � cw2

_y ¼ ðd � 1Þyþ z� ew

_z ¼ �ðdyþ zÞ
_w ¼ f ðy� ða0 þ a1xþ a2 tanhðxÞÞwÞ � gw

8
>>><

>>>:

ð20Þ

For system (20), d, e, f, g are the control parameters;

a0, a1, a2, b1, b2, c are the internal parameters of

memristor. Therefore, only some of the control

parameters will be considered for the bifurcation

analysis of system (20). As an inherent property of

nonlinear dynamical system, symmetry may help to

explain the appearance of symmetrical attractors with

different shapes. We can easily notice that system (20)

is invariant under the coordinate transformation (x, y,

z, w) ? (x, - y, - z, - w), which indicates the

symmetry about x-coordinate axis.

4.2 Equilibrium point and its stability

When considering the parameter set P = {d = 0.5,

e = 0.5, f = 1.78, g = 0.1, a0 =- 1, a1 =- 1, a2 = 3,

b1 =- 1, b2 = 3, c = 0.5}, we can obtain three equi-

librium points of system (20), expressed as P1 = (0, 0,

0, 0), P2 = (0.22769,- 0.47107, 0.23554, 0.94215)

and P3 = (0.22769, 0.47107, -

0.23554, - 0.94215). The Jacobian matrix of system

(20) can be calculated as

J ¼

3

cosh2ðxÞ
� 1 0 0 �w

0 d � 1 1 �e
0 �d �1 0

�fwð 3

cosh2ðxÞ
� 1Þ f 0 f ð1þ x� 3 tanhðxÞÞ � g

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð21Þ

And the characteristic equation is

kþ 1ð Þ2 � dk
� 	

k� h2ð Þ kþ g� fh1ð Þ � fw2h2

 �

þ fe kþ 1ð Þ k� h2ð Þ ¼ 0

ð22Þ

where h1 ¼ 1þ x� 3 tanhðxÞ; h2 ¼ 3
cosh2ðxÞ � 1. By

solving Eq. (22), the characteristic value for equilib-

rium point P1 is: k1,2 = - 0.5216 ± 0.6114i,

k3 = 1.2231, k4 = 2. Therefore, P1 is an unstable sad-

dle-focus of index-2. Similarly, for the equilibrium

points P2 and P3, the eigenvalues are obtained as

k1,2 = - 0.5367 ± 0.9942i, k3 = 3.061,

k4 = - 0.7479. It shows that equilibrium points P2

and P3 are unstable saddle-focus of index-1.

4.3 Dissipation and existence of attractor

It is well known that chaotic flow can be divided into

either conservative or dissipative one [42, 43]. For the

conservative chaotic system, the phase space trajec-

tory occupies an unchanged volume and there is no

state space attribute; thus its divergence is zero.

However, the phase orbit of dissipative system will

2C

+ -

1C

2CV

1R

3R

A
2R

4R

5R

L

Li

M

+
- 1CV

Fig. 7 S-type BLAM-based Wien-bridge oscillator circuit
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shrink to a bounded subset with a zero-measured

volume, which leads to the emergence of strange

attractor and negative divergence [44, 45]. Accord-

ingly, we can obtain the preliminary information

related to the existence of attractive sets in the

introduced S-type BLAM by calculating the volume

shrinkage Dv.

Dv ¼ o _x

ox
þ o _y

oy
þ o _z

oz
þ o _w

ow

¼ fxþ 3ð1� f sinhðxÞ coshðxÞÞ
cosh2ðxÞ

þ d þ f � g� 3

ð23Þ

The divergence curve on the system orbit x is drawn

in Fig. 8. It finds that the time period for Dv[ 0 is

sufficiently small before the point M(0.49, 0). And it

can be considered that the divergence is always

negative. Therefore, the system orbit in the phase

space will converge to a subset of measure zero

volume with an exponential rate, and there exists

chaotic attractor in the introduced S-type BLAM.

When taking the parameter set P and the initial

value (x0, y0, z0, w0) = (0.1, 0.1, 0.1, 0.1), the chaotic

attractors of system (20) are shown in Fig. 9. In

addition, the Lapunov exponent can be calculated as

LE1 = 0.0463, LE2 = - 0.0022, LE3 = - 0.67338,

LE4 = - 0.6827, and the Kaplan–Yorke dimension

is DKY = 3 ? (0.0463 - 0.0022 - 0.67338)/

0.6827 = 2.0782. Therefore, it can be further

explained that system (20) is indeed chaotic.

4.4 Dynamics evolution with control parameter

The dynamics evolution influenced by the control

parameters is intuitively studied, as a rule, executed

with the detecting technologies of bifurcation diagram

and Lyapunov exponent.

First, the system dynamics versus control parameter

d is considered, under the condition of parameter set

P and initial state (0.1, 0.1, 0.1, 0.1). It can be seen

from Fig. 10 that the dynamics switches between

period and chaos when parameter d varies in the range

of [0.01, 1.2]. The detailed dynamics is analyzed by

slicing parameter ranges. In the interval of d [ [0.01,

0.4), the system origins from period-1 at d = 0.01, and

enters into chaos through chaos crisis at d = 0.225,

then exits from chaos through tangent bifurcation and

enters into period-2 behavior. After a short period-2

state, it enters into chaotic state again through the

chaos crisis at d = 0.26. After passing through a short

chaotic region, it enters into period-3 state at d = 0.28

through tangent bifurcation. The forward period

doubling bifurcation begins at d = 0.32 and it enters

into chaotic state at d = 0.325. And at d = 0.365, it

enters into the period-4 state through the tangent

bifurcation. In the interval of d [ [0.4, 0.6), the system

evolves from the period-4 state to the period-5 state

and produces four chaos branches. After a long period-

4 state, it generates four remerging primary bubbles

through forward and reverse period-doubling bifurca-

tions at d = 0.415. When d = 0.428, it exits from the

period-4 state and enters into period-8 state via the

forward period bifurcation again. Then it immediately

enter into chaotic state. At d = 0.565, it enters into

period-5 state via the tangent bifurcation. In the

interval of d [ [0.6, 1.2], the system undergoes similar

dynamics evolution of the interval d [ [0.01, 0.4).

Then, the dynamics evolution influenced by the

control parameter f is considered. As depicted in

Fig. 11, the system switches between period and chaos

when parameter f varies in the range of [1.74, 1.92]. In

addition, it can be seen that the system enters into or

exits from chaos via forward and reverse period-

doubling bifurcation, tangent bifurcation and chaos

crisis. In the interval of f [ [1.74, 1.752), the system

origins from forward period-doubling bifurcation to

chaos. In the interval of f [ [1.752, 1.88), the system

Fig. 8 The plot of Dv on the x system orbit
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enters into period-5 state through tangent bifurcation

at f = 1.768. Then it enters into a short-term chaos

through chaos crisis at f = 1.772. Next, the first reverse

period-doubling bifurcation occurs at f = 1.782, and

the system exits from chaotic state and enters into

period-4 state. Then, the system has a similar evolu-

tion in the range of [1.772, 1.782). In the interval of

f [ [1.88, 1.92], the system is mainly chaotic, accom-

panied by abundant short period windows.

4.5 Local basins of attraction and multistability

The attraction basin can intuitively provide detailed

information of multistable dynamics by measuring the

size of attractor. For the typical parameter set P of

S-type BLAM-based Wien-bridge system (20), the

local basin of attraction in the y0-w0 initial plane under

x0 = 0.1 and z0 = 0.1 and that in the x0-z0 initial plane

under y0 = 0.1 and w0 = 0.1 are depicted in Fig. 12.

The attraction regions marked with different colors in

Fig. 12 represent the initial condition regions showing

completely different oscillation patterns, i.e., different

types of coexisting attractors.

The phase diagrams of coexisting oscillation pat-

terns corresponding to different attraction regions are

numerically drawn in Fig. 13. Specifically, the phase

diagrams under the initial conditions (0.1, 0, 0.1, 0),

(0.1, 0, 0.1, 1) and (0.1, 0.5, 0.1, - 1) in Fig. 13a

Fig. 9 The phase diagram of system (20) in a x-w plane; b y-w plane. c z-w plane

Fig. 10 a Bifurcation diagram and b Lyapunov exponent

spectrum versus parameter d Fig. 11 a Bifurcation diagram and b Lyapunov exponent

spectrum versus parameter f
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correspond to the red, yellow and blue regions in

Fig. 12a, and the phase diagrams under the initial

conditions (0.2, 0.1, 0, 0.1), (- 0.2, 0.1, 0, 0.1) and

(- 0.4, 0.1,- 0.2, 0.1) in Fig. 13b correspond to the

red, yellow and blue regions in Fig. 12b. It is obvious

that the red region corresponds to the double-scroll

chaotic attractor, the yellow region corresponds to

stable point attractor, and the blue region corresponds

to the single-scroll chaotic attractor. The numerical

results show that the disconnected coexisting attrac-

tors emerge in the S-type BLAM-based Wien-bridge

system. Therefore, the dynamical behavior not only

depends on the memristor initial condition x0 but also

on the other initial conditions z0, y0 and w0.

4.6 Transient dynamics

The transient dynamics will emerge when there is a

non-attracting chaotic saddle in the phase space, for

which the orbit is always characterized by chaotic

behavior before another motion mode appears. When

the parameters d = 1.03, e = 0.497, f = 1.7514,

g = 0.058, a0 = - 1, a1 = - 1, a2 = 3, b1 = - 1,

b2 = 3, c = 0.5 and initial conditions (x0, y0, z0,

w0) = (0.1, 0.1, 0.1, 0.1) are selected, the time-domain

waveform and phase diagrams of the system (20) are

drawn in Fig. 14. It’s shown that it displays a double

scroll chaotic attractor when t\ 200 s. However,

when t is in the range of [200,600], it displays the

period-1 motion mode. Therefore, the transient

dynamics results in the generation of two attractors

with different topological structures.

5 Implementation of S-type BLAM-based circuit

Circuit implementation is of great significance for the

practical application of chaotic system. In addition, the

results of theoretical analysis and numerical simula-

tion also need to be further verified by circuit

observation. In this section, an analog electronic

circuit, for physically realizing system (20) in different

cases, is constructed based on the improved module-

based technique [46–48]. The circuit schematic dia-

gram of the S-type BLAM-based Wien-bridge system

is designed as Fig. 15. The hyperbolic tangent func-

tions tanh(�) and - tanh(�) are implemented by a

differential pair [6], as shown in Fig. 16. In fact, the

Fig. 12 Local basins of

attraction in a y0-w0 plane

with x0 = 0.1 and z0 = 0.1;

b x0-z0 plane with y0 = 0.1

and w0 = 0.1

Fig. 13 Different types of

coexisting attractors in

a different attraction regions
of Fig. 12 (a); b different

attraction regions of Fig. 12

(b)
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tangent function can also be handily implemented by

embedded system [49]. It’s noted that the proportional

compression is not performed in the circuit imple-

mentation since the variable of amplitude works in the

desired ranges of the operational amplifier [50] and

that it is important to ensure an appropriate DC

operating point [51]. The chip model of multiplication,

operational amplifier and bipolar junction transistor

are selected as AD633JN, TL082 and 2N1711 to

achieve low-cost execution. In addition, different

resistors and ceramic capacitors are used. The main

circuit in Fig. 15 consists of four integrators, three

inverters, one tanh module and one inverting tanh

module. And in Fig. 15, A and B are the input and

output ports of the hyperbolic tangent function

Fig. 14 a Time-domain diagram of x in the region of [0 s, 600 s]; phase portrait for the time intervals [0 s, 200 s] and [200 s, 600 s] in

b y-w plane and c z-w plane

Fig. 15 Circuit diagram of memristor-based Wien-bridge circuit
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module, C and D are the input and output ports of the

inverting hyperbolic tangent function module.

Based on the topology of Fig. 15 and circuit theory,

we establish the circuit state equation

Fig. 16 Circuit diagrams of a function tanh(�) and b function - tanh(�)

cFig. 17 Numerical and experimental results for (a1-a2) period-
2 attractor; (b1-b2) single scroll chaotic attractor and (c1-c2)
double scroll chaotic attractor
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RC1

dx

dt
¼ � R

R1

xþ R

R2

tanhðxÞ � R

R3

w2

RC2

dy

dt
¼ � R

R4

yþ R

R5

z� R

R6

w

RC3

dz

dt
¼ � R

R9

y� R

R10

z

RC4

dw

dt
¼ R

R11

yþ R

R12

wþ R

R13

xw� R

R14

tanhðxÞw

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð24Þ

When the time constant is considered as RCi-

= 1 ms with R = 10kX and Ci = 100nF (i = 1, 2, 3,

4), the other circuit parameters of Fig. 15 are deter-

mined by

R1 ¼ R5 ¼ R7 ¼ R8 ¼ R10 ¼ R15 ¼ R16

¼ R17 ¼ R18 ¼ R ¼ 10kX

R2 ¼
R

3
¼ 3:333kX; R3 ¼ R4 ¼ R6 ¼ R9

¼ R

0:5
¼ 20kX

R11 ¼ R13 ¼
R

1:78
¼ 5:618kX; R12 ¼

R

1:68

¼ 5:952kX; R14 ¼
R

5:34
¼ 1:873kX

The circuit parameters for hyperbolic tangent

function and inverting hyperbolic tangent function

are fixed as

Rr2 ¼ Rr5 ¼ Rr6 ¼ Rr7 ¼ Rr8 ¼ Rr10 ¼ Rr13

¼ Rr14 ¼ Rr15 ¼ Rr16 ¼ 10kX

Rr1 ¼ Rr9 ¼ 0:52kX; Rr3 ¼ Rr4 ¼ Rr11 ¼ Rr12

¼ 1kX; I1 ¼ I2 ¼ 1:1mA

For comparative analysis, the parameter condition

P mentioned above is considered excepting for

f = 1.75, 1.753, 1.78 to obtain period-2 attractor,

single scroll chaotic attractor and double scroll chaotic

attractor, as shown by the numerical results in the left

part of Fig. 17. When f equals to 1.75, 1.753 and 1.78,

the resistances R11 and R13 are calculated to be

5.7143kX, 5.7045kX and 5.618kX, the resistance R12

is calculated to be 6.0606kX, 6.0496kX, and 5.952kX,
and the resistance R14 is calculated to be 1.9048kX,
1.9015kX, and 1.873kX. The corresponding phase

diagrams are experimentally observed in the right part

of Fig. 17, which agree well with the numerical

simulation.

6 Conclusion

This paper presented a S-type locally active memristor

and explored its application in oscillator circuit. The

introduced S-type memristor possesses a symmetric

locally active domain and two different

bistable pinched hysteresis loops. Especially, the

bistable pinched hysteresis loops are not only affected

by the initial value, but also by the amplitude and

frequency of the applied sinusoidal signal. The DC V-

I plot and POP plot have been carried out to verify the

locally active and nonvolatile characteristics of the

memristor. Compared with the reported S-Type

memristor, the obvious feature of S-type BLAM is

the nonvolatility and the origin symmetry of the local

active region. Moreover, a newWien-bridge oscillator

circuit is designed based on S-type BLAM. It finds that

the circuit system can produce chaotic oscillation and

complex dynamic behavior, which is further con-

firmed by analog circuit experiment. The proposed

locally active memristor is compared with the one in

Table 1 Comparison of S-type locally active memristor

Items Ref [29] Proposed memristor

Memductance function Quadratic term Linear term and tangent function

Volatility or nonvolatility volatility nonvolatility

Locally active range 1.07 V\V\ 4.69 V

1.27 mA\ I\ 3.53 mA

- 0.54433 V\V\ 0.54433 V

- 0.8165 mA\ I\ 0.8165 mA and symmetric about the origin

Bi-stability No Yes

S-type Memristor Yes Yes
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Ref [29] from the basis of locally active range, non-

volatility, bi-stability, etc., as given in Table 1.
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