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Abstract This paper deals with the compensation of
nonlinearities in dynamical systems using Nonlinear
polynomial AutoRegressive models with eXogenous
inputs (NARX) identified from data. The compensa-
tion approach is formulated for static and dynamical
contexts for the general case and is also adapted for sys-
tems with hysteresis. Both simulated and experimental
results are presented to illustrate the method. In the
experimental case, the proposed method is compared
to other approaches and was found to be competitive.
Thismethod yielded amaximum tracking error of 3.9%
while the corresponding value for the uncompensated
system was 21.0%. Furthermore, the presented tech-
nique typically results in compensation signals with
lower energy requirements. The results also show that
the proposed methodology can provide compensation
signals that practically linearize the systems using sim-
ple nonlinear models with very few terms.
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1 Introduction

Nonlinear system identification is now a mature field.
For the last three decades, much attention has been paid
to the problem of building nonlinear models from data
[10,22,33,40]. A natural next step is the use of such
identified models in more specific applications, such
as compensation and control, which is the aim of this
work.

The presence of nonlinear effects can impose sig-
nificant performance limitations in a wide range of
applications, such as actuators [7–9,20,25,37], sen-
sors [13,18], pH neutralization [21], and power sys-
tems [41], among others [14,15,30,32,44,45]. A natu-
ral solution would be to mitigate such effects by mak-
ing the systems more linear with the aid of a compen-
sator and, consequently, more amenable to control. A
dynamical model with a simple structure is quite useful
to design a compensator.

Compensation approaches aim to design a com-
pensation input that reduces nonlinearity, allowing for
more accurate control and tracking. Many of these
approaches start with an appropriate model that repre-
sents themost fundamental aspects of the system, espe-
cially the static nonlinearity [5]. In the literature, there
is a vast number of works devoted to the modeling and
compensation for nonlinear systems ranging from those
based onphenomenologicalmodels [7–9,26,27,37,44]
to those that use computational intelligence [36] such as
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Radial Basis Functions (RBFs) [13,25,47] and Neural
Networks (NNs) [19,30,31,41,45,46], among others.

The identification of phenomenological models
tends to be a challenging task that requires sophisti-
cated algorithms based often on heuristics techniques.
Therefore, satisfactory results depend largely on the
proper design of these algorithms, including the tuning
of meta-parameters, which is usually an empiric task
[36]. In addition, the design of compensators from such
models is not usually simple or even possible, because
it depends on the analytical inversion of these mod-
els. For methods based on universal approximation of
functions, such as RBFs and NNs, it is more difficult to
provide a physics-based interpretation [36]. A partic-
ular type of neural network that has been often used
in the literature for identification and compensation
of nonlinear systems is the Nonlinear AutoRegressive
with eXogenous inputs Neural Networks, i.e., NARX
NNs [31,46]. Despite the benefits of NARX NNs due
to the fair generality presented by NARX structures,
these frameworks are based on a black-box philosophy
that complicates the use of constraints related to the
structure or parameters, which can be elegantly accom-
modated in gray-box approaches [1]. Also, their com-
pensators present low or no degree of interpretability,
which limits the analysis of these types of models and
their compensators.

An alternative framework is based on NARX poly-
nomial models, which are adopted in this paper. For
this class of models, if the structure is carefully cho-
sen [3,12,35], besides being quite general [24], such
models can encode nonlinear information in a simple
and recognizable way [5,29], which allows using them
to derive explicitly compensation laws [1]. In addition,
NARX polynomials are amenable to gray-box tech-
niques [2] that allow the encoding relevant features
from nonlinear systems, which is usually not possi-
ble with purely black-box strategies. From now on,
the term NARX models must be understood strictly as
NARX polynomial models, and form the basis of this
work. Although these models can represent a variety of
phenomena, few works in the literature apply NARX
polynomials for compensation since the most common
applications take NARX NNs as a basis.

In the context of hysteresis compensation, [23] has
presented a strategy based on an analytical inversion of
NARX models. For this purpose, somewhat restrictive
assumptions must be satisfied by the model structure.
Also, as pointed out in [1], the methodology developed

by [23] may suffer from singularity problems when the
velocity variable is equal to zero.

Two ways to design compensators have been pre-
sented in [1]: The first one is similar to what was done
in [23] and the second seeks compensators directly
from the data. Both strategies have overcome the sin-
gularity problem because the restrictions on themodels
structure prevent a division by the velocity variable in
the compensator. However, as the former also needs
to isolate the input explicitly, such a method handles
with more specific structures than those used in the
present paper. The second strategy requires careful data
processing, such as filtering the output signals. Also,
some algebraicmanipulations are required to overcome
potential causality problems [1].

The main contributions of this work are the pro-
posed approaches to find compensation inputs itera-
tively for nonlinear systems in static and dynamical
contexts through identified NARXmodels. Besides, an
adaptation of the dynamical strategy is presented for
hysteretic systems. In both strategies, an algebraic poly-
nomial of the compensation input is formulated, which
is achieved bymanipulating the identifiedmodel. Thus,
the compensation signal is calculated iteratively, which
confers an adaptive feature to the approaches. The
proposed compensators are compared with one well-
established [37] and two recent [1] ones.

This work is organized as follows. In Sect. 2, back-
ground is provided and the compensation problem is
stated in Sect. 2.2. Section 3 presents the formulation
for static compensation (3.1), dynamical compensation
(3.2) and adapts such formulation specifically for sys-
tems with hysteresis (3.3). Numerical and experimen-
tal results are discussed in Sect. 4. Finally, concluding
remarks are given in Sect. 5.

2 Background

ANARX(NonlinearAutoregressivemodelwith eXoge-
nous inputs) polynomial model M for a single-input
single-output system is given by [24]:

y(k) = f �
(
y(k−1), . . . , y(k−ny),

u(k−τd), . . . , u(k−nu)
)+e(k), (1)

where u(k), y(k) ∈ R are, respectively, the input and
output signals sampled at instant k ∈ N, and f �(·)
is a nonlinear polynomial function with degree � ∈
N

+. nu, ny ∈ N
+ are the maximum lags for u and y,
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respectively, τd ∈ N
+ is the pure time delay, and e(k)

accounts for the uncertainties and possible noise.
Model (1) is a parsimonious polynomialmodel in the

sense that it contains only a small group of regressors
chosen from an usually large set of candidate regres-
sors by means of some structure selection procedure
[3,12,17,35,38]. Each regressor of M, which can be
any linear and nonlinear combination up to degree �,
is multiplied by a constant parameter, θi . Hence, a
NARX polynomial model is linear-in-the-parameters
and classic least squares (LS) procedures can be used
[34]. In the presence of noise, however, it is common to
add moving average (MA) terms to the model, which
will no longer be linear-in-the-parameters. Fortunately,
extended least squares estimators (ELS) can be used to
circumvent noise-induced bias [12,28].

2.1 Steady-state analysis

The steady-state relation of model (1) is obtained by
taking u(k) = ū and y(k) = ȳ, ∀k, thus yielding:
M̄ : ȳ = f̄ �(ū, ȳ),

which, for a known value of ū, can be rewritten as:

cy, �y (ū)ȳ�y+cy, �y−1(ū)ȳ�y−1 + . . . + cy,1(ū)ȳ

+cy,0(ū)=0, (2)

where 1 ≤ �y ≤ � is the degree of the static model M̄,
whose coefficients cy,i , i = 0, . . . , �y usually depend
on ū. Solving (2) for the unknown ȳ is achieved by
finding the �y roots of this polynomial. The roots of (2)
will yield the fixed points of model (1) for ū, whose
definition is presented below.

Definition 1 (Fixed points [6]) The steady-state anal-
ysis of model (1) is computed by taking y(k)=ȳ, ∀k
and u(k)=ū, ∀k, yielding ȳ = f̄ �(ȳ, ū), whose solu-
tion/root(s) ȳ (2) for a given constant value of input ū
is defined as the fixed point(s), or equilibria, of model
(1) for ū.

The condition for (local) stability of the fixed points
is obtained by finding the eigenvalues of the Jacobian
matrix of model M (1) evaluated at each fixed point,
as follows:
∣∣
∣∣eig

(
∂ f �

∂ y

∣
∣∣
ū,ȳ

) ∣∣
∣∣ < 1, (3)

where y = [y(k−1) . . . y(k−ny)]T , T is the transpose
and eig(·) indicates the eigenvalues.

Example 1 Consider model M given by:

y(k) = θ̂1y(k − 1) + θ̂2u(k − 1) + θ̂3u(k − 1)u(k − 2)

+θ̂4u(k − 1)2 + θ̂5u(k − 1)3, (4)

for which τd=1, ny=1, nu=2, and �=3. Its static form
M̄ is obtained taking u(k−1)=u(k −2)=ū and y(k −
1) = y(k)=ȳ, such that:

ȳ = θ̂1 ȳ + θ̂2ū + θ̂3ū
2 + θ̂4ū

2 + θ̂5ū
3, (5)

which can be written in the format of (2) as:

0 = [
θ̂1 − 1

]

︸ ︷︷ ︸
cy,1

ȳ + θ̂5ū
3 + [

θ̂3 + θ̂4
]
ū2 + θ̂2ū

︸ ︷︷ ︸
cy,0(ū)

. (6)

Hence, model (4) only has one fixed point for each
value of ū, given by:

ȳ = −cy,0(ū)

cy,1
= θ̂5ū3 + [

θ̂3 + θ̂4
]
ū2 + θ̂2ū

1 − θ̂1
. (7)

For the first-ordermodel (4), the Jacobian “matrix”will
be a scalar and condition (3) becomes:

∣∣∣
∣

∂ f �

∂y(k − 1)

∣∣
∣
ū,ȳ

∣∣∣
∣ < 1,

∣∣∣∣θ̂1
∣∣∣
ū,ȳ

∣∣∣∣ < 1,

−1 < θ̂1 < 1. (8)

If (8) is satisfied, then (7) is a stable fixed point. ��

2.2 Statement of the problem

It is assumed that a NARX model M (1) is available
for a given nonlinear dynamical system S, estimated
from input-output data ZN = {u(k), ys(k)}Nk=1 col-
lected from S. Based on M, the aim is to design a
compensatorMr such that the open-loop combination
of Mr followed by S (see Fig. 1) is more linear and
therefore more amenable for control. Specifically,Mr

should compensate the nonlinearity in S.
Mathematically, we require that the reference r(k)

and output yc(k) of the compensated system should
be closer to each other than the input u(k) and output
ys(k) of the uncompensated system. Hence if J is some
proximity cost function, like the mean squared value,
we require that J [r(k), yc(k)] < J [u(k), ys(k)].
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Fig. 1 Block diagram of the compensated system

3 Methodology

This section presents the methodology developed to
design compensators based on NARX polynomial
models. First, inSect. 3.1,wepresent the static compen-
sation that is simpler to understand and serves as a basis
for the main result, which is the dynamical compensa-
tion detailed in Sect. 3.2. In the sequel, this approach
is applied to systems with hysteresis in Sect. 3.3. The
identification ofmodelM is not described in this paper.
The interested reader is referred to [2] for a view of sys-
tem identification methods, and [43] for the procedures
followed to obtain the models used in this paper.

3.1 Static compensation

It is assumed that the input and output signals are
bounded, thus u(k) ∈ [umin, umax],∀k and ys(k) ∈
[ymin, ymax],∀k. As for model M (1), the following
assumptions will be needed:

Assumption 1 M is valid, that is, y(k) ≈ ys(k) for
the same input.

Assumption 2 For any ū ∈ [umin, umax], the model
M has at least one local stable fixed point such that
ȳ ∈ [ymin, ymax].

In order to obtain a static compensator M̄r , an
inverse problem in steady-state has to be solved. In
other words, we seek the system input values m̄ that
will drive the output to the reference at steady-state,
ȳ ≈ r̄ . Starting with the model M in steady-state,
ȳ = f̄ �(ū, ȳ), ȳ is replaced with r̄ and ū with m̄ to
yield M̄r : r̄ = f̄ �(m̄, r̄). Consequently, it is possible
to rewrite (2) by grouping its terms in such a way that
it yields a polynomial in the unknown variable m̄, M̄r:

cm, �m (r̄)m̄�m+cm, �m−1(r̄)m̄
�m−1+ . . .

. . . +cm, 1(r̄)m̄+cm, 0(r̄)=0. (9)

Although each of the �m roots of (9) is a solution
to the inverse problem, not all are appropriate to be

used in practice. For this reason, two constraints are
considered. The used root:

Constraint C1) must be real, m ∈ R; and
Constraint C2) must be within the data range,

namely m ∈ [umin, umax].
Assumption2 ensures that any root m̄ (9) that sat-

isfies the above constrains will drive the system to a
stable fixed point. Also, because of Assumption 1, such
a steady-state will satisfy ȳc ≈ r̄ . The algebraic proce-
dure is illustrated below with a simple example. Then,
in the sequel, a dynamical version of this procedure
will be discussed in Sect. 3.2.

Example 2 In Example1, it was seen that:

ȳ = θ̂1 ȳ + θ̂2ū + θ̂3ū
2 + θ̂4ū

2 + θ̂5ū
3,

which can be written in the format of (9) as:

r̄ = θ̂1r̄ + θ̂2m̄ + θ̂3m̄
2 + θ̂4m̄

2 + θ̂5m̄
3,

0 = θ̂5︸︷︷︸
cm,3

m̄3 + [
θ̂3 + θ̂4

]

︸ ︷︷ ︸
cm,2

m̄2 + θ̂2︸︷︷︸
cm,1

m̄ + [
θ̂1r̄ − r̄

]

︸ ︷︷ ︸
cm,0(r̄)

. (10)

Hence, for a given reference value r̄ , the roots of (10)
provide potential compensation inputs that in steady-
state will drive the system to the target. A practical
problem is to decide which of the three roots in this
example should be used. If there is only one real root,
then it is chosen as the compensation input. However,
if there are three real roots, a more general decision-
making process is required. ��

For the sake of clarity, the roots of (9) will be placed
in a vector m̄(r̄) � [m̄1 · · · m̄�m ]T . Although the �m
values of m̄ are solutions to the inverse problem, only
those that satisfy C1 and C2 should be considered as
potential compensation inputs. This reasoning under-
lies the main algorithm that will be used in the dynam-
ical context. The practical issue of how to choose from
two potential inputs that satisfy C1 and C2 will be dis-
cussed in the dynamical setting below.

3.2 Dynamical compensation

Themain difference between the framework developed
in this subsection and the basis laid down in the previ-
ous one is that here the reference is a sequence of values
r(k), and not a constant value r̄ . The same is true for the
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compensation input m(k) and the compensated output
yc(k).

The aim now is to achieve y(k) ≈ r(k) by solving
an inverse problem dynamically. Replacing variables
as in Sect. 3.1 and omitting the noise term, (1) can be
written as:

r(k)= f �
(
r(k−1), . . ., r(k−ny),m(k−τd), . . .,m(k−nu)

)
.

As will become clear, it is convenient to introduce
the time-shift k ← k + τd – meaning that k will be
replaced with k+τd – hence the last equation becomes:

r(k+τd) = f �
(
r(k+τd−1), . . . , r(k+τd−ny),

m(k), . . . ,m(k+τd−nu)
)
. (11)

The aim is to find m(k) that will drive the system
to the desired target r(k). Consequently, as before,
(11) will be expressed in terms of a polynomial in the
unknown m(k) as:

0=c�m (k)m(k)�m+c�m−1(k)m(k)�m−1 + . . .

. . . + c1(k)m(k) + c0(k), (12)

where the time-varying coefficients c j (k), j = 0, . . . ,
�m , can depend on past values of m up to time k − 1,
and on past and future values of r up to time k + τd.
Hence, the following additional assumption is required
in the dynamical case.

Assumption 3 The reference signalmust be known up
to time k + τd.

The following example illustrates this procedure.

Example 3 Consider the same model used in Exam-
ple1, replacing y(k) with r(k) and u(k) with m(k),
yields:

r(k) = θ̂1r(k − 1) + θ̂2m(k − 1) + θ̂3m(k − 1)m(k − 2)

+θ̂4m(k − 1)2 + θ̂5m(k − 1)3,

forwhich τd = 1.Next, taking the time-shift k ← k+1,
the last equation can be expressed in the form of (12):

0 = θ̂5m(k)3+θ̂4m(k)2+[
θ̂2+θ̂3m(k−1)

]
m(k)

+[θ̂1r(k)−r(k+1)],
0 = c3(k)m(k)3+c2(k)m(k)2+c1(k)m(k) + c0(k), (13)

where all the values of r are known (see Assumption3)
and also all past values of m. Hence, at each time step
k the solutions to (13), that is, the three values of m(k)
are the potential compensation inputs. ��

Remarks on the initialization and the choice of the
root to be used as the compensation input follow. The
term calibration curve in Remark1 – see below – refers
to a set ofM pairs of input-output values forS obtained
in steady-state: {(ū p, ȳs,p)}Mp=1. This can be achieved
by exciting the system with a sequence of steps with
final values ū p and, for eachof them,waiting for steady-
state before measuring ȳs,p.

Remark 1 (Initial compensator conditions). From
Assumption3, r(k+τd) is known in (12).Call that value
r̄ . Using the calibration curve of S, find the respective
m̄ and takem( j) = m̄, j = k−1, . . . , k+τd−nu . If the
calibration curve is not available, the static nonlinearity
of modelM, which is the mathematical approximation
of such a curve, can be use instead. Additionally, we
can solve (9), r̄= f̄ �(m̄, r̄), for m̄. If there is more than
one solution use the one that: i) stabilizes the model
output and ii) satisfies constraints C1 and C2. Items i)
and ii) are automatically taken into account by using
the calibration curve or static nonlinearity of M. ��
Remark 2 (The decision-making process). Let mk �
[mk

1 · · · mk
�m

]T be the set of roots of (12). If only one
element of mk satisfies C1 and C2, then this will be the
compensation input at time k, otherwise we choose the
root according to:

m(k) = argmin
mk

j , ∀ j∈{1,...,�m }

(
|mk

j − m(k − 1)|
)
.

subject to: C1, C2 (14)

The use of (14) selects the solutionmk
j that is closest to

the compensation value used in the previous time step.
This simple criterion results in smoother signals m(k)
and, consequently, in less compensation effort [1]. ��

If �m is even and composed only of complex con-
jugate values, then take m(k)=m(k − 1). This situa-
tion is not common for models that satisfy Assump-
tion1. Algorithm1 summarizes the method to select
the appropriate root.

3.3 Compensation for systems with hysteresis

The inclusion of the first difference of the input u(k)
and the corresponding sign function as regressors is
a sufficient condition for NARX models to mimic a
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Algorithm 1: Selecting the Appropriate Solution
for (12)

Input: m(k − 1); mk � [mk
1 · · · mk

�m
]T

v ← ∞
a ← 0
for j = 1 to �m do

if mk
j ∈ R (C1) and umin ≤ mk

j ≤ umax (C2) then
e ← |mk

j − m(k − 1)|
if e < v then

v ← e
a ← 1
m(k) ← mk

j

end
end

end
if a = 0 then

m(k) ← m(k − 1)
end
Output: m(k)

hysteresis loop [29]. A general NARX model set [11]
extended with these regressors will be referred to as
Mh:

y(k) = g�
(
y(k − 1), · · · , y(k − ny), u(k − τd), · · · ,

u(k − nu), φ1(k − 1), φ2(k − 1)
) + e(k),

(15)

whereφ1(k)=u(k)−u(k−1),φ2(k)=sign(φ1(k)), g�(·)
is a polynomial function of the regressor variables up
to degree �, and the other parameters are the same
as defined in (1). For models such as (15), there are
two sets of equilibria for the deterministic part (omit-
ting the noise) under loading-unloading inputs: one
for loading with φ2(k)=1, and one for unloading with
φ2(k)=−1 [1]. A constrained approach is proposed and
detailed in [1] to ensure that the model can describe
dynamic behavior, and steady-state for varying inputs
that become constant at some point.

Therefore, to deal specifically with hysteresis com-
pensation, the generalmethodproposed inSect. 3.2will
be adapted. Considering non-constant inputs, the fol-
lowing simplification will be used:

φ1(k − 1)φ2(k − 1) = φ1(k − 1)
|φ1(k − 1)|
φ1(k − 1)

,

= |u(k − 1) − u(k − 2)|, (16)

for u(k − 1) 
= u(k − 2).
The compensator is developed following the steps

below:

1. Rewrite Mh as:

0 = g�
(
y(k − 1), · · · , y(k − ny), u(k − τd), · · · ,

u(k−nu), φ1(k−1), φ2(k−1)
) − y(k); (17)

2. if φ1(k − 1)φ2(k − 1) appears in any regressor of
(17), replace it using (16);

3. if φ1(k−1) and φ2(k−1) still appear, replace them
withu(k−1)−u(k−2) and |u(k−1)−u(k−2)|/[u(k−1)
−u(k − 2)], respectively;

4. if [u(k−1)−u(k−2)] appears in any denominator,
multiply the equation by [u(k − 1) − u(k − 2)];

5. replace y(k)with r(k), u(k)withm(k), perform the
time shift k ← k+τd, and rewrite this equation like
(12);

6. split the equation with | · | into two polynomials in
the unknown m(k):

0 = cL�m (k)m(k)�m + cL�m−1(k)m(k)�m−1

+ . . . + cL1 (k)m(k) + cL0 (k)

for m(k) > m(k − 1), (18)

0 = cU�m (k)m(k)�m + cU�m−1(k)m(k)�m−1

+ . . . + cU1 (k)m(k) + cU0 (k)

for m(k) < m(k − 1), (19)

where the superscripts L and U refer to loading and
unloading regimes, respectively. Because now the sys-
tem is hysteretic, (12) has two counterparts: one for
loading (18), and one for unloading (19). In this case,
the compensation input m(k) will be a feasible root
of (18) or (19). Before detailing the decision-making
process, the previous steps are illustrated below.

Example 4 Suppose that the model Mh is:

y(k) = θ̂1y(k−1)+θ̂2u(k−1)3

+ θ̂3φ1(k−1)φ2(k−1)u(k−1)

+ θ̂4φ1(k − 1)φ2(k − 1)y(k − 1). (20)

Following steps1 and 2, (20) is rewritten as:

0 = θ̂1y(k−1)+θ̂2u(k−1)3

+ θ̂3|u(k−1) − u(k−2)|u(k−1)

+ θ̂4|u(k−1) − u(k−2)|y(k − 1) − y(k). (21)

In this model, steps3 and 4 do not apply. Following
step5, we get (remember that τd = 1):

0 = θ̂1r(k)+θ̂2m(k)3+θ̂3|m(k) − m(k−1)|m(k)

+θ̂4|m(k) − m(k−1)|r(k) − r(k + 1), (22)
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Nonlinearity compensation 715

which can be split into two polynomials (step6) as:

0 = θ̂2m(k)3 + θ̂3m(k)2 +
[−θ̂3m(k − 1) + θ̂4r(k)]m(k) +
[θ̂1r(k) − θ̂4m(k − 1)r(k) − r(k + 1)]
for m(k) > m(k − 1), (23)

0 = θ̂2m(k)3 − θ̂3m(k)2 +
[θ̂3m(k − 1) − θ̂4r(k)]m(k) +
[θ̂1r(k) + θ̂4m(k − 1)r(k) − r(k + 1)]
for m(k) < m(k − 1). (24)

Here, (23) refers to loading regime similar to form (18)
with cL3 (k) = θ̂2, cL2 (k) = θ̂3, cL1 (k) = −θ̂3m(k − 1) +
θ̂4r(k), and cL0 (k)= θ̂1r(k)−θ̂4m(k − 1)r(k)−r(k+ 1);
while, in an analogous way, (24) refers to unloading
regime in form (19) with coefficients cU3 (k) = θ̂2,
cU2 (k) = −θ̂3, cU1 (k) = θ̂3m(k − 1) − θ̂4r(k), and
cU0 (k) = θ̂1r(k) + θ̂4m(k − 1)r(k) − r(k + 1).

Polynomials (23) and (24), which are valid for k ≥
1, can be initialized, at k = 0, using an estimate of the
hysteresis loop, as illustrated in Example 5. ��

In addition to Assumption3, C1 and C2, the follow-
ing must also be true for hysteretic systems:

Constraint C3) m(k) > m(k − 1), if (18) is used
at time k; OR

Constraint C4) m(k) < m(k − 1), if (19) is used
at time k.

Constraints C3 and C4 are needed to ensure that the
root is consistentwith the regime forwhich itwas calcu-
lated. Therefore, the decision-making process for hys-
teretic systems is similar to that explained in Remark2
with the addition of these new constraints. Hence:

m(k) = argmin
mk

j , ∀ j∈{1,...,�m }

(
|mk

j − m(k − 1)|
)
,

subject to: C1, C2, Cq (25)

where q ∈ {3, 4}. The step-by-step procedure is anal-
ogous to Algorithm1, but now using (25) instead of
(14).

3.4 Initialization for systems with hysteresis

If anyparameter of compensators (18) and (19) depends
on previous values of the compensation input m(k),
i.e., {m(k−1), . . . ,m(k+τd−nu)}, such values must

Fig. 2 Loop H is obtained from the simulation of model (20)
with the input described in Example5. Blue dots (·) refer to load-
ing regime, while those in red (·) refer to unloading. For a given
output or reference, say r(1), there are two possible inputs indi-
cated by triangles (�) blue and red (�) that correspond tomL(0)
and mU(0), respectively. Which of these to use to start comput-
ing the compensator is determined by the regime at initialization
time

be determined for initialization. In Sect. 3.2, the static
curve was used, as described in Remark1. Here, a hys-
teresis loop H, which is the counterpart of the static
curve, will be used instead. In what follows, a proce-
dure is described to obtain H for a given model Mh

(15).
Consider the following sinusoidal input signal with

period T = 1/ fmin:

ũ(k) = A sin (2π fmink) + ũ0, (26)

where fmin = 1/T is the lowest frequency of interest,
ũ0=(umin+umax)/2 is the mean, and A = umax − ũ0
is the amplitude. Using ũ(k) in model (15), after the
transient, the resulting data set {ũ(k), ỹ(k)}Ne

k=Ni
, where

Ni > T and Ne = Ni + T , corresponds to a hysteresis
loop H. The use of H to initialize the compensator is
illustrated in the next example.

Example 5 Consider model (20) of Example4, whose
parameter values are θ̂1 = 0.8, θ̂2 = 0.4, θ̂3 = 0.2,
and θ̂4 = 0.1. In order to initialize the compensator,
at k = 0, m(−1) is needed in (23) and (24). For this
purpose, suppose that the excitation input signal ũ (26)
is defined with A = 1, fmin = 1 Hz, and ũ0 = 1 for
which the resulting H is shown in Fig. 2.

From Assumption3, we have that the reference is
known up to time r(k+1). Suppose that r(1) = 2 and
that ỹ = r(1), there are two possible values for the
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input ũ, namely of, mL(0) and mU(0), which can be
obtained from H (Fig. 2). The selection between these
values is made based on the current regime of the refer-
ence signal, i.e., loading (r(1) − r(0) > 0) or unload-
ing (r(1) − r(0) < 0). In this example, at k = 0,
the reference is in the loading regime and, therefore,
m(0) = mL(0) is chosen to initialize (23) and (24). ��

4 Results

This section illustrates the compensator design pro-
posed in Sect. 3 for two simulated benchmark systems
and for a pilot plant starting from the identifiedmodels.
The input design andother identification procedures are
detailed in [43]. To evaluate the performance achieved
with the proposed compensation two strategies were
used. The first one is to compare the static nonlinear-
ities of the compensated and uncompensated systems.
The second is related to the time evolution where the
mean absolute percentage error (MAPE)

MAPE =
∑N

k=1 |ys(k) − y(k)|
N |max( ys) − min( ys)|

× 100% (27)

is computed for both systems.

4.1 A heating system

The bench test system is a small electrical heater mod-
eled by the following Hammerstein model [4]:

y(k) =β1y(k − 1)+β2v(k − 1)+β3y(k − 2)

+ β4v(k − 2),

v(k) =p1u(k)2 + p2u(k), (28)

where y(k) is the normalized temperature, and u(k)
is the electric power applied to the heater within the
range 0≤u(k)≤1. The data set has been presented in
[5].1 The operation region of the model is u(k) ∈
[0, 1] and y(k) ∈ [0, 0.5]. As described in [43], the
obtained parameters of (28) are: p1=4.639331×10−1,
p2=5.435865×10−2;β1=1.205445,β2=8.985133×10−2,
β3=−3.0877507×10−1 and β4=9.462358 × 10−3.

1 https://www.researchgate.net/publication/3352493_Nonlin
earities_in_NARX_polynomial_models_Representation_and_
estimation.

Table 1 MAPE for model (29) with sinusoidal inputs u(k) =
u0 + 0.2sin(2π f k). Free-run simulation was used

f [Hz] u0 [V]

0.3 (%) 0.5 (%) 0.7 (%)

0.0005 5.5 3.0 2.9

0.001 5.8 2.9 2.8

0.002 7.0 4.0 3.1

From now on, the Hammerstein model (28) will be
treated as the system S to be compensated.

To compensate the nonlinearities in S, the following
three-term model M was obtained as detailed in [43]:

y(k) = θ̂1y(k − 1) + θ̂2u(k − 2)2 + θ̂3y(k − 2), (29)

where θ̂1 = 8.958185× 10−1, θ̂2 = 6.393347× 10−2,
and θ̂3 = −1.746750 × 10−2. Validation results (see
Table1) indicate some degradation at higher frequen-
cies and at points of operation close to the origin.

The static function of M (29) is:

ȳ = θ̂2ū2

1 − θ̂1 − θ̂3
, (30)

from where it is seen that for each value of the input,
there is only one fixed point. Because M is second-
order, there are two eigenvalues at each fixed point ȳ.
The Jacobian matrix in this case does not depend on ū
or ȳ. Using (3) the condition for stability is:
∣∣∣
∣eig

([
0 1
θ3 θ1

])∣∣∣
∣ < 1,

where the eigenvalues of the Jacobian matrix are the
algebraic solutions of λ2 − θ1λ− θ3 = 0, which yields
|λ1| = 0.8759 and |λ2| = 0.0199. Therefore, the fixed
point for each input value is stable and, consequently,
Assumption 2 is satisfied.

To illustrate the static compensation method pre-
sented in Sect. 3.1, ȳ is replaced with r̄ and ū with m̄ in
(30) to find a polynomial in the unknown m̄, that can
be expressed like (9):

r̄ = θ̂2m̄2

1 − θ̂1 − θ̂3
,

0 = [θ̂2]︸︷︷︸
cm,2

m̄2 + [(θ̂1 + θ̂3 − 1)r̄ ]︸ ︷︷ ︸
cm,0(r̄)

. (31)

Since (31) is an incomplete quadratic equation and
the operation region is limited to 0 ≤ m̄ ≤ 1, the
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(a)

(b)

Fig. 3 Validation results for static compensation: (–) is the ref-
erence generated using (33) with na = 0, nb = 11, τ = 600,
μ = 1/30; (-·-), compensated system; (- -), uncompensated sys-
tem. In a temporal evolution of the outputs and the reference; b
static curves in the r × y plane

algebraic solution is given by:

m̄ =
√

−cm,0(r̄)

cm,2
=

√
(1 − θ̂1 − θ̂3)r̄

θ̂2
. (32)

Also, as r̄ ≥ 0, θ̂2 > 0 and 1− θ̂1− θ̂3 > 0, the result
of the square root in (32) is always real. In Fig. 3, the
static compensation results are shown for a reference
that is a sequence of steps given by:

r(k) =
nb∑

i=na

μH(k − iτ), (33)

where na , nb, τ andμ are user-defined parameters, and
H(k) is the unit step function:

H(k) =
{
0 for k < 0;
1 for k ≥ 0.

(34)

As expected, the compensated system is approximately
linear (see Fig. 3b). The static compensation can be
used to find the initial values for the dynamical com-
pensator when needed.

For dynamical compensation, using model M (29)
yields (see Eq.11):

r(k + 1) = θ̂1r(k) + θ̂2m(k)2 + θ̂3r(k − 1)

and (see Eq.12):

0 = [θ̂2]︸︷︷︸
c2

m(k)2 + [θ̂1r(k) + θ̂3r(k − 1) − r(k + 1)]
︸ ︷︷ ︸

c0(k)

. (35)

(a)

(b)

Fig. 4 Compensation results.a temporal evolution;b the applied
inputs. In (a), (–) is the reference r(k) = 0.15sin(2π(1/480)k+
π/2) + 0.2; (-·-) is the output of the compensated system yc(k)
and (- -) is the output of the system ys(k) without compensation.
In (b), (-·-) is the compensation input m(k), while (- -) is the
input applied in the uncompensated system

Solving (35) at each iteration yields the compensa-
tion input m(k). Because (35) is quadratic, there are
two possibilities. Either both roots are real, and then
Algorithm1 is used to select which one to use, or the
roots are complex conjugate in which case the previous
value is used, i.e., m(k) = m(k − 1).

The solution of (35) gives the compensator Mr:

m(k) =
√

−c0(k)

c2
=

√
r(k + 1) − θ̂1r(k) − θ̂3r(k − 1)

θ̂2
.

(36)

Becausem(k)does not depend on its previous values, in
order to initialize (36), it is sufficient to make r(−1) =
r(0) in (36) at k = 0.

In Fig. 4 and in Table 2, the results obtained with
Mr (36) is compared to the uncompensated system for
different reference signals. The uncompensated results
were obtained using r(k) as the input for S. From
Table 2, it is seen that as the frequency increases,
the compensation becomes somewhat less effective, as
would be expected for most control systems. Also for
small values of r(k) (seeFig. 4b), complex roots appear,
and according to Algorithm1, the last computed value
will be used, that is, m(k) = m(k − 1).

Figure5 shows the results for a Monte Carlo test of
10000 runs. The reference r(k) used in this test is a
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Table 2 MAPE for compensated and uncompensated systems
with r(k) = r0sin(2π f k + π/2) + r0

f [Hz] r0 [V]

0.05 (%) 0.10 (%) 0.20 (%)

Compensated 0.0005 7.8 4.1 3.4

0.001 9.4 6.4 5.6

0.002 15.5 12.2 10.2

0.004 29.5 25.8 20.2

Uncompensated 0.0005 45.6 44.0 40.8

0.001 45.5 44.0 40.9

0.002 45.3 44.0 41.4

0.004 44.8 43.7 41.8

Fig. 5 Static curves: dynamical compensation. (-∗-) Steady-
state values of the reference r(k) generated using (33) with
na = 1, nb = 10, τ = 360 and μ = 0.04257. (-∗-) Static
curve of the uncompensated system, and of (-∗-) the compen-
sated system obtained by averaging over 10000 Monte Carlos
runs, μ(r̄). (- -) ±2σ(r̄) error bars. The ∗ are the values after the
systems reach steady-state. See Fig. 3 for other details

sequence of ascending steps similar to those of Fig. 3a.
During each run, a perturbedmodelM (29) is obtained
by taking parameters from a Gaussian distribution cen-
tered at the original parameters and with the covariance
matrix of the estimator. The black dashed lines indicate
the region determined by μ(r̄) ± 2σ(r̄), where μ(r̄) is
the output mean and σ(r̄) is the standard deviation. The
compensation performance is considerably effective on
average for r̄<0.3, and then it degrades a bit.

Table 3 MAPE for model (38) with sinusoidal inputs u(k) =
Gsin(2π f k). Free-run simulation was used

f [Hz] G [V]

10 (%) 30 (%) 50 (%)

0.2 2.6 2.0 4.7

1.0 2.7 1.3 4.1

5.0 7.7 5.0 3.6

4.2 A hysteretic system

In this example, the following Bouc-Wen model was
used to describe the hysteretic behavior of a piezoelec-
tric actuator (PZT) that is an unimorph cantilever [37]:

ḣ(t) =αbwu̇(t) − βbw|u̇(t)|h(t) − γbwu̇(t)|h(t)|,
y(t) =νyu(t) − h(t), (37)

where u(t)[V] is the voltage input, y(t)[μm] is the
position output, the parameters αbw = 0.9[μm/V] and
βbw = γbw = 0.008[V−1] determine the hysteresis
loop, while νy = 1.6[μm/V] is a weight factor for the
output. Here, (37) is referred to as the system S to be
compensated, which is simulated with a fourth-order
Runge–Kutta method with integration step δt =5ms.

The following NARX polynomial model Mh (15)
to represent S was obtained as detailed in [43]:

y(k) = θ̂1y(k−1)+θ̂2φ2(k−1)φ3(k−1)u(k−1)

+θ̂3φ2(k−1)φ3(k−1)y(k−1)+θ̂4φ2(k−1),

(38)

where θ̂1 = 1.000099, θ̂2 = 6.630567 × 10−3, θ̂3 =
−6.247018 × 10−3, and θ̂4 = 7.892915. Validation
results (seeTable3) indicate somedegradation at higher
frequencies and amplitudes.

Following steps 1, 2, 3 and 5 (see Sect. 3.3) the com-
pensator obtained isMh,r:

0 = θ̂1r(k)−r(k+1)+θ̂2|m(k)−m(k−1)|m(k)

+θ̂3|m(k)−m(k−1)|r(k)+θ̂4|m(k)−m(k−1)|,
(39)

for which is assumed that m(k) 
=m(k − 1). Splitting
this into two polynomials, step6 yields:

0 = cL2m(k)2+cL1 (k)m(k)+cL0 (k), for m(k)>m(k−1);
(40)
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(a)

(b)

(c)

Fig. 6 Compensation results for system (37). a temporal evo-
lution of outputs; b the r × y plane and c temporal evolution of
inputs. (–) represents the reference r(k) = 30sin(2π(2)k+π/2);
(-·-), results for compensator given by (40) and (41) and (- -),
uncompensated system

and

0 = cU2 m(k)2+cU1 (k)m(k)+cU0 (k), for m(k)<m(k−1),

(41)

where cL2 = θ̂2, cL1 (k) = −θ̂2m(k − 1) + θ̂3r(k) + θ̂4,
cL0 (k) = θ̂1r(k)− θ̂3m(k−1)r(k)− θ̂4m(k−1)−r(k+
1), cU2 = −θ̂2, cU1 (k) = θ̂2m(k − 1)− θ̂3r(k)− θ̂4, and
cU0 (k) = θ̂1r(k) + θ̂3m(k − 1)r(k) + θ̂4m(k − 1) −
r(k + 1).

As some parameters of (40) and (41) depend on
m(k − 1), the initialization of the compensator is
required at k = 0. Applying ũ = 50sin(2π0.2k) to
model Mh (38), the hysteresis loop H(ũ, ỹ) is deter-
mined.Making ỹ = r(k+1),m(k−1) can be provided
directly from loop H as in Example5.

Validation results (see Fig. 6 and Table4) indicate
that the compensated system presents better tracking
performance than the uncompensated one in all eval-
uated scenarios. In addition, the worst results occur at
higher frequencies and amplitudes.

Finally, Fig. 7 shows the results for 10000 Monte
Carlo runs, where r(k) = 20sin(2π(2)k+π/2) is used
in 5 cycles. A perturbed modelMh (38) is obtained, as
before. FromMonteCarlo tests the regionμ(k)±2σ(k)
was computed similarly as described in Sect. 4.1, but
now for each k. Comparing with Fig. 5, the error bars

Table 4 MAPE for compensated and uncompensated systems
with r(k) = G0sin(2π f k + π/2)

f [Hz] G0 [μm]

20 (%) 30 (%) 40 (%)

Compensated 0.2 1.4 3.2 5.2

1.0 0.9 2.5 4.5

2.0 1.0 1.4 3.4

5.0 5.4 4.5 3.9

Uncompensated 0.2 7.8 7.1 6.4

1.0 7.8 7.0 6.3

2.0 7.7 6.9 6.1

5.0 7.6 6.6 5.8

(a)

(b)

Fig. 7 Results for 10000MonteCarlo runs. a temporal evolution
of the outputs in the last cycle; b plane r(k) × y(k). (-∗-) refers
to the uncompensated system, (-∗-) refers to the reference and
(-∗-) is the average μ(k) of the 10000 Monte Carlo runs for the
compensated system. (- -) represent the error bars of ±2σ(k)

determine a wider region due to the sensitivity of Mh

on variations in θ̂2.
It should be mentioned that the constraint �y = 1

presented in [1] is not fulfilled, where �y = 1 is
the sum of all linear output regressors. In order to
show how this constraint affects the behavior of the
model and compensator, we use a constrained least
squares estimator to impose �y = 1 on the parameters
of model (38). The model obtained with constraints,
Mh,cns, has the same structure ofMh (38) with param-
eters: �y = θ̂1,cns = 1, θ̂2,cns = 6.630913 × 10−3,
θ̂3,cns = −6.157515 × 10−3, and ρ̂4,cns = 7.893146.

The compensator of Mh and Mh,cns have a same
polynomial structure. The compensator Mh,cns,r is
obtained when we replace each corresponding parame-
ter ofMh,cns in (40) and (41). The modeling and com-
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(a) (c)

(b) (d)

Fig. 8 Validation and compensation results for modelsMh and
Mh,cns when a sinusoidal input or reference become constant.
a u(k) = 30sin(2π(2)k) that becomes constant at k = 920. This
input determines the outputs in b when applied to the system S
(–), to Mh (-·-) and to Mh,cns (- -). In c, m(k) for Mh (-·-) and
Mh,cns (- -) that were calculated for r(k) = u(30sin(2π(2)k)).
d The corresponding outputs for (c) where r(k) is (–)

pensation results are similar to those in Tables3 and 4,
and are omitted.

A more relevant comparison for these two models
and compensators is shown in Fig. 8 where a reference
sinusoidal signal becomes constant. Note that the val-
idation and compensation results for Mh (38) do not
converge at steady-state. As φ̄1 = φ̄2 = 0, both mod-
els become ȳ = �y ȳ that have a single eigenvalue
equal to �y . Consequently, as �y = θ̂1 > 1, Mh is
unstable while the constraint �y = θ̂1,cns = 1, makes
Mh,cns to remain in the last state. The compensation
methods work in open-loop, hence steady-state errors
are expected, but they tend to be less significant for
more accurate models. In the current example, whereas
modelMh diverges, the constrainedmodelMh,cns pro-
vides a steady-state error of approximately 0.26μm in
Fig. 8b. Such errors are reflected in the compensation
performance since Mh,cns,r presents an offset error of
0.83μm in Fig. 8d while the other,Mh,r, has a steady-
state error which tends to infinity similarly to its model.

4.3 Experimental results

In this section, the compensation strategy is applied
to an experimental pneumatic control valve, for which
control performance can degrade significantly due to
friction, dead-zone, dead-band, and hysteresis [16,39].

The present valve is the same used in [1], where
the measured output is its stem position and the input
is a pressure signal applied to the valve after passing
V/I and I/P conversion. The sampling time is Ts =
0.01 s and, for details of the identification of this system
the reader is referred to [1,43]. Four models will be
considered in this study, as detailed below.
1- Mh is the model identified with the inclusion of
φ1(k) and φ2(k) as candidate regressors [29], and with
the gray-box restrictions proposed by [1]. As shown in
Fig. 8, such constraints are important to describe the
steady-state behavior. The estimated model is:

y(k) = θ̂1y(k − 1) + θ̂2y(k − 2) + θ̂3φ1(k − 1)

+ θ̂4u(k − 1)φ1(k − 1)φ2(k − 1)

+ θ̂5y(k − 2)φ1(k − 1)φ2(k − 1), (42)

with θ̂1=9.76 × 10−1, θ̂2=2.40 × 10−2, θ̂3=1.19 ×
10−1, θ̂4 = 3.76 and θ̂5 = −4.73. Note that, �y =
θ̂1 + θ̂2 = 1.

The following models are found in the literature.
2- Mbw is used to represent a BW model (37)
with parameters re-estimated using an evolutionary
approach based on niches [42]: αbw = 7.54 × 10−1,
βbw = −4.96, γbw = −3.61 and νy = 7.54 × 10−1.

The two last models adopted were identified in [1]:
3- Mh,2 was identified – see Eq. 33 in [1] – with the
same constraints used for Mh (42), plus an additional
one such that the input signal can be isolated when
writing the compensator equation.
4- M̆h was identified to describe the inverse rela-
tionship between u(k) and y(k) of the valve – see
Eq. 34 in [1]. Therefore, the model provides û(k)
given y(k). The set of candidate regressors includes
φ̆1(k) = y(k) − y(k − 1) and φ̆2(k) = sign[φ̆1(k)].

The performance of the direct models (see Table5)
show similar values of the MAPE. Since M̆h is an
inverse model, which predicts the input signal instead
of the output and must be simulated from a smoothed
version of y(k) [1], we do not directly compare the
MAPE accuracy of this model with the others. More
details can be found in [43].

The respective compensators are given below.
1- Compensator Mh,r, for Mh (42), was obtained
following steps 1, 2, 3, 5 and 6 and consists of two
quadratic polynomials like (40) and (41) with parame-
ters:cL2 = θ̂4, cL1 (k) = θ̂3 − θ̂4m(k − 1) + θ̂5r(k − 1),
cL0 (k) = θ̂1r(k) + θ̂2r(k − 1) + θ̂3m(k − 1) − θ̂5r(k −
1)m(k − 1) − r(k + 1), cU2 = −θ̂4, cU1 (k) = −θ̂3 +
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Table 5 MAPE for models validation with sinusoidal inputs
u(t) = G0sin(2π(0.1)t + π/4) + 3V

Model G0 [V]

0.45 (%) 0.55 (%) 0.65 (%) 0.75 (%)

1 - Mh 3.6 3.0 3.1 4.9

2 - Mbw 3.9 4.1 4.5 6.5

3 - Mh,2 3.2 3.5 3.9 5.7

θ̂4m(k−1)− θ̂5r(k−1) and cU0 (k) = θ̂1r(k)+ θ̂2r(k−
1) − θ̂3m(k − 1) + θ̂5r(k − 1)m(k − 1) − r(k + 1).
2- The compensation law m(t), for model Mbw and
referred to as Mbw,r, was proposed by [37]:

m(t) = 10

7.21
[r(t) + h(t)]. (43)

3- The compensator for Mh,2 namely Mh,2,r is given
by Eq. 35 in [1].
4- Finally, M̆h,r, the compensator for M̆h, is given by
Eq. 36 of [1].

Compensation results (see Table6 and Fig. 9) are
considerably better in all evaluated scenarios when
compared to the uncompensated system.

For the uncompensated system, the input is the ref-
erence r(k). Using this as a starting point, we would
like to quantify howmuch more has to be done in order
to achieve compensation. To this end, the following is
computed:

E(δm) =
N−1∑

k=N−N0

δm(k)2, (44)

where δm(k) = |m(k) − r(k)| and N is the length of
δm(k). E(δm) can be interpreted as the energy of δm(k)
over one period N0. Also, the variability with respect
to the uncompensated system is given by the standard
deviation of δm(k), σ(δm) (see Table7).

Similar to the validation results of model Mbw,
the corresponding compensator Mbw,r (43) performs
slightlyworse compared to those based onNARXmod-
els. This suggests that NARX models are more appro-
priate to describe nonlinearities in the valve. This is
not surprising, as the class of NARX polynomials is
more general than the Bouc-Wen class. On the positive
side, the Bouc-Wen model provided the simplest com-
pensator among those presented, although it is given
in continuous-time which demands a numerical inte-
gration algorithm. In addition (see Table7) the respec-
tive compensator provides small values of E(δm) and

(a)

(b)

(c) (d)

(e) (f)

Fig. 9 Compensation results for the pneumatic valve. a three
cycles of the compensation inputs; b outputs for the compensated
systems; c–f show the r × y plane for each compensator. (–
) r(t) = 0.34sin(2π(0.1)t + π/4) + 3V ; (–), uncompensated
system; (-·-) compensation withMh,r(40–41); (–) compensation
with Mbw,r (43); (· ·) compensation with Mh,2,r (35) in [1]; (-
-) compensation with M̆h,r (36) in [1]

σ(δm). The most challenging task related to the Bouc-
Wen model is to estimate its parameters, which was
done with an evolutionary approach.

Both compensation strategies proposed by [1] per-
formed well. Mh,2,r requires special care in choosing
the model structure otherwise the compensation input
m(k) cannot be computed explicitly. Apart from that
the compensation law tends to be easier to calculate
than for the one put forward in this work. On the neg-
ative side, Mh,2,r produces inputs with more abrupt
changes (see Fig. 9a and e). This is reflected in higher
values of E(δm) and σ(δm).

The overall good performance of compensatorM̆h,r

comes at the expense of careful data preprocessing [1].
This compensator can produce smooth compensation
inputs (Fig. 9a and f) with low MAPE values (Table6).
However, E(δm) and σ(δm) tend to increase consider-
ably with the reference amplitude (Table 7).
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Table 6 MAPE for
compensated and
uncompensated systems
with r(t) =
G0sin(2π(0.1)t) + 3.07V

Compensation Strategy G0 [V]

0.26 (%) 0.34 (%) 0.41 (%) 0.50 (%)

1- Mh,r (40-41) 3.9 3.3 3.3 3.8

2- Mbw,r (43) 5.9 4.4 4.3 4.2

3- Mh,2,r (35) in [1] 3.6 3.5 3.9 5.2

4- M̆h,r (36) in [1] 2.9 2.8 3.2 2.7

Uncompensated 21.0 18.0 16.2 14.4

Table 7 E(δm)[σ(δm)] for
the investigated
compensators with r(t) =
G0sin(2π(0.1)t) + 3.07V

Strategy G0 [V]

0.26 0.34 0.41 0.50

1- Mh,r (40–41) 28.3 [0.154] 33.7 [0.165] 39.4 [0.174] 49.4 [0.186]

2- Mbw,r (43) 27.0 [0.149] 33.3 [0.163] 40.6 [0.178] 53.7 [0.197]

3- Mh,2,r (35) in [1] 38.7 [0.184] 43.7 [0.193] 50.1 [0.203] 57.2 [0.206]

4- M̆h,r (36) in [1] 24.9 [0.139] 38.3 [0.174] 52.7 [0.203] 72.6 [0.237]

The compensator designed with the methodology
put forward in this work, Mh,r, was also able to com-
pensate for the nonlinearity in the valve. The MAPE
is among the lowest, especially for moderate-high ref-
erence amplitudes G0, with the advantage that E(δm)

and σ(δm) do not increase as much as for the other
regulators with G0 (Table7). In addition,Mh has only
five termswhich facilitates obtaining the compensation
law. Also, if the parameters of such a model needed
to be updated, a recursive algorithm could be readily
implemented. On the other hand, if the process mod-
els turned out to be polynomials with degree greater
than three, numerical solvers would be needed to find
the roots. Fortunately, many systems can be adequately
described using polynomialswith � ≥ 3.As a side note,
there is a self-consistency check indirectly provided by
the current method, which is the appearance of unfea-
sible roots: either complex or real, but outside the oper-
ating range. Whenever this happens it is an indication
that the process model is not adequate. Fortunately, no
such problems occurred in the present case study.

5 Conclusion

This work has presented an approach to compensate
nonlinearities based onNARXpolynomial models pre-
viously estimated. The method is simple and easy to

interpret, as the compensation input turns out to be
the value required for the system to attain steady-state
values. The compensation input is obtained iteratively,
which confers some adaptability to the method. The
degree of adaptability can be readily increased by esti-
mating the model parameters recursively, this has not
been explored in the paper.

The method has been considered in three contexts:
static – for constant references, dynamical – for sinu-
soidal references, and for systems with hysteresis. At
first, the technique was illustrated using two simulated
systems. The performance is comparable to that of
other methods available in the literature. In addition,
the method presents some robustness to variation in
the parameters, as evaluated using Monte Carlo tests.

The proposed technique was also implemented on
a pilot plant, where the goal was to compensate the
nonlinearity of a pneumatic control valve. The perfor-
mance was compared with a compensator designed in
[37] and two more recent strategies published by [1].
All compensators can achieve nonlinearity compensa-
tion for the valve (see Table6). Pros and cons of each
technique were discussed.

Another interesting feature of the presented tech-
nique is that a compensator can be designed for linear
or nonlinear systems with or without using constraints
during model estimation. Perhaps the main foreseen
limitation occurs if the compensators are designed
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using polynomial models of degree greater than 3,
which is not a common situation in practice, though
it could happen. In this case, it would be necessary to
use numerical solvers to find the roots, which could
turn out to be a problem for more demanding online
applications. Fortunately, many relevant systems can
be described by models up to 3rd degree, for which
the roots can be found with analytical expressions pre-
sented in Appendix1.

Finally, the aim of the compensators is to cancel
out most of the nonlinearity. This would allow for the
design of linear feedback controllers as a second step.
For future works, we intend to investigate the possi-
ble issues related to this closed-loop scheme and if the
greater amount of unfeasible roots might be interpreted
as a relevant indicator for time-varying behavior.
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A solving algebraic polynomial equations

Algebraic polynomial equations with unknown x ,
degree n ∈ N

+, and known coefficients ai ∈ R,
i ∈ {0, . . . , n}, can be expressed as

0 = anx
n + an−1x

n−1 + . . . + a1x + a0, an 
= 0(45)

For (45), there are n complex roots. The analytical solu-
tions for n ≤ 3 are presented in the sequel.
A) Linear Equations

0 = a1x + a0, a1 
= 0

x = −a0
a1

B) Quadratic Equations

0 = a2x
2 + a1x + a0, a2 
= 0

� = a21 − 4a2a0

xi = −a1 + (−1)i�

2a2
, i ∈ {0, 1}

C) Cubic Equations

0 = a3x
3 + a2x

2 + a1x + a0, a3 
= 0

�0 = a22 − 3a3a1

�1 = 2a32 − 9a3a2a1 + 27a23a0

C =
3

√√√√�1 ±
√

�2
1 − 4�3

0

2

ξ = −1 + √−3

2

xi = − 1

3a3

(
a2 + ξ iC + �0

C

)
, i ∈ {0, 1, 2}
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