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Abstract Tower cranes are well-known underactu-
ated systems, where the design of controllers for them
with time-varying rope length was weak in the past
because of their complex dynamic characteristic. The
payload oscillation will become worse when the jib
slew angle, the trolley position and the rope length
are changed simultaneously. The proposed method is
designed based on robust adaptive sliding mode con-
trol via tracking nonzero initial reference trajectories,
in which frictions and lumped disturbances in the crane
system are eliminated, and unknown payload mass is
effectively estimated online. Lyapunov technique is
combined with LaSalle’s invariance theorem to design
controller and analyze stability. Various and strict sim-
ulations are applied, which validate the effectiveness
and extreme robustness of the proposed method.

Keywords Underactuated system · Tower crane ·
Time-varying rope length · Sway rejection · Robust
adaptive sliding mode control

1 Introduction

Because of their combination of simple structure and
complex dynamic characteristics, underactuated sys-
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tems where the number of actuators is less than the
DOF (degrees of freedom) have been paid more and
more attention to the control technique improvement
in recent years [1,2]. Typical underactuated systems
include underactuated manipulators [3], underactuated
mobile robots [4], reaction wheel pendulums [5], and
cranes [6], etc. Among them, cranes are common and
utilized to transport payload over long distances in fac-
tories, ports, construction sites, and so on.

Tower crane is a kind of crane that transports goods
in 3D (three-dimension) space. Its transportation pro-
cess is often accompanied by the translation of the
trolley and the rotation of the jib. These two driv-
ing mechanisms with different motion properties make
the dynamic model and design corresponding control
method more complicated. At the same time, with the
lifting movement of the payload, the length of the rope
will change, which will have a great impact on the
dynamic characteristics of the tower crane, such as the
natural frequency of the payload swing. In addition, at
the actual control applications, it is inevitable that there
will be friction effect, incomplete theoretical model-
ing, parameter uncertainties and external disturbances
of full DOF. In these cases, it is a very challenging issue
to realize the accurate positioning of the jib, trolley and
payload lifting with quickly suppressing the swing of
the payload.

The sliding mode control (SMC) can effectively
cope with uncertainties and disturbances and is widely
applied for nonlinear systems. Recently, Chereji et al.
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[7] have presented novel variant-designed LSMC and
RSMC controllers handling uncertainties caused by
unmodeled system dynamics and the simplified actu-
ator model. The controllers improve the robust con-
trol performance and do not add complexity. Based on
a finite-time extended state observer (FTESO) and a
super-twistingSMC,Liu et al. [8] designed afinite-time
decoupling control strategy, and its effectiveness and
robustness demonstrated via simulations. Wang et al.
[9] designed anUSDE-based (unknown systemdynam-
ics estimator) SMC method for unknown dynamics
servo mechanisms, and simulation and experiments
showed the satisfying control performance. However,
the abovemethodswere aimed at full-actuated systems,
which may not be effective for underactuated systems.

For underactuated systems control, some studies
are existed. Based on the combination of Udwadia–
Kalaba equations and underactuated equivalence prin-
ciple, Pappalardo et al. [10] presented a control method
for underactuated nonholonomic mechanical systems,
and the effectiveness of the method is verified by a
mobile robot dynamics model throughmany numerical
experiments. A SMC method based on extended dis-
turbance observer (SMCDO) was studied for a class of
underactuated systems by Ding et al. [11], and simula-
tion results showed the SMCDOhas strong disturbance
compensation ability and better control performance.
Ashrafiuon et al. [12] designed a general SMC method
for nonlinear underactuatedmultibodymechanical sys-
tems by full-state feedback.

In the past,many controllers aiming at cranes to real-
ize payload transportation and swing suppression have
been worked out, which include input-shaping [13],
slidingmode control [14,15], adaptive control [16–20],
coupling based method [6,21,22], robust control [23–
25], optimal control [26], intelligent control [27,28]
and adaptive neural network sliding mode control [29],
which is control method combining intelligent algo-
rithm and traditional controller.

However, to increase transportation efficiency, the
rope is often hoisted and lowered in many actual con-
ditions. Consequently, these above approaches that are
all not mentioned the presence of the changed rope
length are not certifiable the control performance and
system stability.

To solve the control problems of time-varying rope
length condition for cranes, Ramli et al. presented an
efficient controller using NNUMZV-APIDLNN algo-
rithm considering payload hoisting and disturbances

for overhead cranes, where significant reduction effect
in the swing angles was derived with experimental
results [30].

Li et al. designed a coupling-based controller for
underactuated overhead cranes to anti-swing and trans-
ferring payload [31]. Finite-time flatness-based regula-
tion controllers [32] were designed for craneswith both
constant and varying cable length, and anti-swing and
high-speed positioning problems were cracked owing
to Zhang et al. An adaptive coupling method subject to
unknown model parameters was proposed by Sun et al.
and verified by experiments, which could achieve pre-
cise trolley positioning and payload hoisting/lowering
control as well as fast swing elimination [33]. Lu et
al. [34] presented an enhanced-coupling adaptive con-
troller for overhead cranes, which had improvement in
the control performance and increased the robustness
aiming at the unknown payload mass. But, this method
just solves the unknown payload mass problem; other
common influences such as friction or external distur-
bances are omitted. In another research to solve the
payload hoisting effect problem, an improved UMZV
shaper by using the PSO algorithm to select the opti-
mal control parameters was utilized for underactuated
3D overhead cranes [35]. But, to solve the problems of
dynamic modeling and trajectory optimization, Peng
et al. [36] proposed a dynamic modeling and trajec-
tory tracking control strategy. Yang et al. [37] designed
a nonlinear actuator constraints controller combining
state observer and online friction compensation, which
achieved good results about jib/trolley positioning and
payload sway suppression by experimental validation.
Zhang et al. [38] reported an adaptive sway reduction
controller for the tower crane, and the anti-sway effect
is enhanced compared with PD controller.

After illustrating the recent existing researches,
there are still some intractable problems that need to
be solve:

(1) Traditional underactuated crane positioning and
anti-sway control is usually aimed at overhead
crane systems [6,15,20]. Even if overhead cranes
with multiple DOF move in 3D space, the drive-
able mechanism is still work in linear force, the
dynamic characteristics are still simple, and the
corresponding controllers design is relatively con-
venient. However, when different driving forces
appear in the crane transportation task, such as in
tower crane control, one direction is the translation
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force of the trolley, and the other direction is the
jib torque. At this time, due to the participation of
eccentric motion for payload, the system dynamics
becomes very complicated. At the same time, when
the payload is lifted and lowered, the natural fre-
quency of the payload swing will change. Hence,
the failure of the controller designed for the ordi-
nary single-pendulum will inevitably occur.

(2) For traditional controllers, on the one hand, only
positioning can be achieved under normal circum-
stances [22,31], but the swing suppression effect
is not good, and the overall convergence speed is
slow; on the other hand, most controllers use regu-
lation control methods [38] for the target position,
but in practical applications, the regulation control
will produce a great initial output value of the con-
troller, causing inevitable initial fluctuations, dam-
aging the life of drivers and affecting the effect of
anti-swing.

(3) In real applications, many factors, such as the fric-
tionof input channel, unmodeledpart effect, param-
eter uncertainties and full DOF external distur-
bances, inevitably appear in motion process, while
many control strategies do not fully consider and
restrain their adverse effects. Under these circum-
stances, it is a very challenging problem to achieve
accurate positioning of the actuated mechanism
while quickly suppressing the swing of the pay-
load.

The above problems are clearly stated, and the main
contributions of this paper are as follows:

(1) Linearizedmodel is not needed in the proposed con-
troller, and a sliding mode surface vector with non-
linear variable gains and nonzero initial reference
trajectories is designed.As long as there exists error
in the system, the variable gains will continue to be
changed adaptively, so that the stable convergence
speed of the tower crane system is improved com-
pared with traditional SMC methods.

(2) Adaptive technology is used to suppress the influ-
ence of friction, unmodeled parts, parameter uncer-
tainties and external disturbances, and specially, in
order to solve the problem that the unknown pay-
load mass has an impact on the rope lifting motion,
the mass value is also self-adapted. Hence, the pro-
posed controller presents both good control perfor-
mance and extreme robustness in simulations.

Compared to the existingmethods, the contributions
are detailedly illustrated. Firstly, the sliding model sur-
faces in previous SMC controllers (e.g., [7–9]) are all
changeless; however, the proposed controller RASMC
has nonlinear variable gains for better convergence per-
formance. And, many previous researches about adap-
tive control for cranes (e.g., [16,18,19]) only used
adaptive technique to estimate frictional parameters or
unknown model parameters, where not only the struc-
ture of the adaptive part is complicated, but also the
external disturbances and the unmodeled nonlinear-
ity factors are not considered in theory. In addition,
although the new method reported in [38] addressed
the unknown friction for the varying rope tower cranes,
the disturbance and unknown m were not taken into
account.

A robust adaptive sliding mode control (RASMC)
method is proposed in this paper. Firstly, in Sect. 2,
the control problems of time-varying underactuated
systems considering friction, model parameters uncer-
tainties, the unconsidered nonlinear factors and exter-
nal disturbances are introduced. Then, the properties
of nonzero initial reference trajectories are shown. In
Sect. 3, a demonstrative example is presented. The
model of a tower crane with time-varying rope length
is shown, and specific model parameters is listed. In
Sect. 4, to improve the convergence speed of tradi-
tional slidingmode control, a slidingmode surfacewith
variable gains is designed, and the gains are changed
by error adaptively. The friction, lumped disturbance
and unknown payload mass are estimated by adaptive
technique. The control system stability is proved by
Lyapunov technique and LaSalle’s invariance princi-
ple strictly. In Sect. 5, many representative simulations
are conducted to demonstrate its effectiveness on tra-
jectory tracking, swing elimination, friction compen-
sation, lumped disturbances suppression and payload
mass estimation. And, Sect. 6 is conclusion of this
paper.

2 Problem statement

This paper is aimed to solve the control problems of
time-varying underactuated crane systems, where a
typical underactuated system can be described as fol-
lows [39]:
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M(q)q̈ + C(q, q̇)q̇ + G(q)

= U − Fs(q̇) + D, (1)

where the dimensions of the actuated mechanism and
DOF arem and n, respectively, q = [q1, ..., qn]T ∈ Rn

is the system generalized coordinates, M(q) ∈ Rn×n

denotes the inertia matrix, C(q, q̇) ∈ Rn×n repre-
sents the centripetal-Coriolis matrix, G(q) ∈ Rn is the
gravity-relatedvector,U = [u1, ..., um, 0(n−m)×1]T ∈
Rn is the input vector, Fs(q̇)=[F1 f , ..., Fm f , 0(n−m)×1]T ∈
Rn denotes the nonlinear friction-related vector, D =
[d1, ..., dn]T ∈ Rn represents the disturbance vector,
including model parameters uncertainties, the uncon-
sidered nonlinear factors and external disturbances, etc.

The following assumption needs to be declared for
ease of analysis:

Assumption 1 The disturbance vector D includes
model parameters uncertainties, unconsidered nonlin-
ear factors and external disturbances, etc., and D is
usually assumed to be limited, that is [15,40],

|di | ≤ νi , i = 1, ..., n, (2)

where νi denotes the upper limit of the aggregate uncer-
tainties of each DOF. To quickly suppress the vibration
of the underactuated mechanism and meanwhile drive
actuated mechanism from the initial positions to the
target values are the control objective, which can be
presented mathematically as follows:

lim
t→∞ q = qd , (3)

where qd = [q1d , ..., qmd 0(n−m)×1]T , with qid , i =
1, ...,m representing the target position.

To avoid problems, big initial actuators output values
and unsmooth running process, the RASMC method
tracks the reference trajectories to implement position-
ing, which have the following properties:

(1) The final values for velocity and acceleration of the
actuated part should be zero after td ,

ri (t)=qid, ṙi (t)=0, r̈i (t)=0, t≥td , i = 1, ...,m,

(4)

where ri (t) means the reference trajectory.
(2) For safety reasons and actual situations, the refer-

ence trajectories do not have infinite values state,

that is,

ri (t), ṙi (t), r̈i (t) ∈ L∞, i = 1, ...,m, (5)

(3) The definition of initial values for each target tra-
jectories are as follows:

ri (0) = qi0, ṙi (0) = 0, r̈i (0) = 0, i = 1, ...,m,

(6)

whereqi0 denotes the initial position of the actuated
part.

After the above analysis, the following reference tra-
jectories that satisfy the requirements (4)–(6) are uti-
lized:

ri =

⎧
⎪⎪⎨

⎪⎪⎩

(qid − qi0)

(
t
td

− sin( 2π ttd
)

2π

)

+qi0, t ∈ [0, td)
qid, t ∈ [td ,+∞]

, i = 1, ...,m, (7)

where it is found that the reference trajectories are a
kind of cycloidal curve, and positioning time, initial
position and target position can be adjusted freely.

Remark 1 According to someprevious researches about
crane anti-swing control, we know that trajectory plan-
ning method [41–43] is a kind of effective control
scheme, which shows that reference trajectory has
great effect on the swing-reduction performance. Thus,
for closed-loop tracking control (e.g., the proposed
method), choosing feasible reference trajectories is a
certain necessity for improving control effect. Theo-
retically, any type of trajectory, such as step, cycloidal
curve (e.g., the trajectory in (7)) and input shaped tra-
jectory, can be applied to crane systems to evaluate the
control performance of the designedmethod. However,
because of the discontinuity of the step trajectory, it is
not usually used in practical crane operation. As for the
input shaped trajectory, when the natural frequency of
the payload swinging system changes greatly, it has to
be re-designed. However, the cycloidal curve trajectory
not only meets the requirements of (4)–(6), but also has
zero acceleration at both the starting point and the end
point, which can smooth the start and stop. Therefore,
the cycloidal curve like (7) has been widely used in
industrial applications.

Remark 2 The initial values setting of all reference tra-
jectories is essential in actual tower cranes operation
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circumstances. Firstly, the position of the trolley and
the length of the rope cannot be zero considering tower
cranes physical structure and safety. On the other hand,
the values of the jib angle, the trolley position and the
rope length are always changed in continuous position-
ing tasks; thus, to set reference trajectories initial values
are more practical.

3 Demonstrative example

In this section, a demonstrative example is reported.
The model diagram of tower cranes with time-varying
rope length is presented as shown inFig. 1,whosemath-
ematical model is built by the Lagrange’s kinematics
equations, and the relations are as follows [39]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = U − Fs(q̇) + D, (8)

where the detailed internal terms of (8) are included
in Appendix A. Noting that the system equation in (8)
describes only the tower crane model in Fig. 1, but
(1) describes typical underactuated systems, which is
not the same. In (8), m and Mt denote the payload
mass and the trolley mass, respectively. J0 is the rota-
tional inertia of the jib, and g is the earth accelera-
tion. α(t), x(t), l(t), θ1(t) and θ2(t) (i.e., q1, ..., q5),
respectively, represent the jib rotational angle, the trol-
ley position, the rope length, the payload swing angle
in the jib vertical plane and the payload swing angle
out of that plane as shown in Fig. 1. Defining q =
[α(t) x(t) l(t) θ1(t) θ2(t)]T ∈ R5 is the tower
crane system generalized coordinates, M(q) ∈ R5×5

denotes the inertia matrix, C(q, q̇) ∈ R5×5 repre-
sents the centripetal-Coriolis matrix, G(q) ∈ R5 is the
gravity-related vector, U = [T Fx Fl 0 0]T ∈ R5 is
the input vector, Fs(q̇) = [T f Fx f Fl f 0 0]T ∈ R5

denotes the nonlinear friction-related vector, D =
[d1 d2 d3 d4 d5]T ∈ R5 represents the disturbance
vector, including model parameters uncertainties, the
unconsidered nonlinear factors and external distur-
bances, etc. And, the model parameters of the tower
crane are shown in Table 1. Besides, for ease of read-
ing, we set Si = sin θi and Ci = cos θi (i = 1, 2) in the
full paper.

In addition, T f , Fx f and Fl f (i.e., F1 f , F2 f and F3 f )
are produced by the motion of the jib, trolley, and the
rope hoisting/lowing, respectively. The following feed-

forward friction compensation model is used [39]:

Fi f = fi1 tanh

(
q̇i
ε

)

+ fi2|q̇i |q̇i , i = 1, 2, 3, (9)

where fi1, fi2, ε denote the friction-related coefficients,
noticing that the precise values of them are difficult
to be chosen unless by cumbersome and unpractical
repetition test.

4 Main results

4.1 Controller design

After simple mathematic operations, (8) changes its
form to the following result:

q̈ = M(q)−1
(
U − Fs(q̇) + D − C(q, q̇)q̇ − G(q)

)
,

(10)

and (10) extracts q̈ from dynamic equation (8). Then,
the item of D is separated, and we have

q̈ = M(q)−1
(
U − Fs(q̇) − C(q, q̇)q̇

− G′
c(q) − G′(q)

)
+ M(q)−1D, (11)

where G′
c = [0 0 − mgC1C2 0 0]T ∈ R5, G′(q) =

[0 0 0 mglC2S1 mglC1S2]T ∈ R5.
Taking out the driving force/torque and then com-

posing a new input vector Ua = [T Fx Fl ]T ∈ R3 to
analysis, the following equation is derived:

q̈ = Γ (q, q̇) + Φ(q)
(
Ua − Fsa(q̇) − Gc(q)

)

+ M(q)−1D, (12)

where Fsa(q̇) = [T f Fx f Fl f ]T ∈ R3, Gc = [0 0 −
mgC1C2]T ∈ R3, besides, Γ (q, q̇) ∈ R5 and Φ(q) ∈
R5×3 are as follows:

Γ (q, q̇) = [a1 a2 a3 a4 a5]T , (13)

Φ(q) =
⎡

⎣
b11 b21 b31 b41 b51
b12 b22 b32 b42 b52
b13 b23 b33 b43 b53

⎤

⎦

T

, (14)

123



3154 Z. Tian et al.

Fig. 1 Tower crane model
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Table 1 Tower crane model parameters

Symbol Description Unit Value

Mt Mass of the trolley kg 3.6

J0 Rotational inertia of the jib kg · m2 6.8

m Mass of the payload kg 1.0

g Earth acceleration m/s2 9.8

α0 Initial slew angle of the jib deg 15.0

x0 Initial position of the trolley m 0.3

l0 Initial length of the rope m 0.5

where the specific expressions in above (13) and (14)
are included in Appendix B.

Recalling reference trajectories in (7), we redefine
r1 = αr (t), r2 = xr (t), r3 = lr (t), q1d = αd , q2d =
xd , q3d = ld ≤ lu , q10 = α0, q20 = x0, q30 = l0 ≥ ll ,
and ll ≤ l ≤ lu for ease of understanding, in which ll is
a positive value that represents the lower limiting value
of the rope length, and lu denotes the upper limit value.
In addition, we define qr (t) = [αr (t) xr (t) lr (t) 0 0]T .

To achieve smooth and fast convergence effect, the
following adaptive slidingmode surface is constructed,

S = ė + ΛΔ̂(t)e, (15)

where S ∈ R5, e = [eα ex el θ1 θ2]T =
q − qr (t) ∈ R5, Λ = diag{k1, ..., k5} ∈ R5×5

where its diagonal elements are all positive, Δ̂(t) =
diag{λ̂1(t), ..., λ̂5(t)} ∈ R5×5 is the adaptive diagonal
matrix where its diagonal elements is time-varying by
system condition. Note that the sliding surface S has
the following properties: (1) it is a vector in five dimen-
sions; (2) it contains a constant gain and an adaptive
gain diagonal matrix; (3) it contains reference trajecto-
ries. In a word, the sliding surface is adaptive andmeets
trajectory tracking demand of all DOF.
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The following slidingmode reaching law is selected,

Ṡ = −IS − Hsgn(S)

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

μ1(ėα + k1λ̂1(t)eα)

μ2(ėx + k2λ̂2(t)ex )
μ3(ėl + k3λ̂3(t)el)
μ4(θ̇1 + k4λ̂4(t)θ1)
μ5(θ̇2 + k5λ̂5(t)θ2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

γ1sgn(ėα + k1λ̂1(t)eα)

γ2sgn(ėx + k2λ̂2(t)ex )
γ3sgn(ėl + k3λ̂3(t)el)
γ4sgn(θ̇1 + k4λ̂4(t)θ1)
γ5sgn(θ̇2 + k5λ̂5(t)θ2)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (16)

where I = diag{μ1, ..., μ5} ∈ R5×5 in which its diag-
onal elements are all positive numbers to be designed,
H = diag{γ1, ..., γ5} ∈ R5×5 where its diagonal ele-
ments are also positive and to be determined. Therefore,
the sliding mode converging condition is that

ST Ṡ = ST
(

− IS − Hsgn(S)
)

= −ST IS − STHsgn(S) ≤ 0. (17)

Taking the derivative of S with respect to time, and
substituting (12) into it, the result is that

Ṡ = ë + Λ
˙̂
Δ(t)e + ΛΔ̂(t)ė

= q̈ − q̈r (t) + Λ
˙̂
Δ(t)e + ΛΔ̂(t)ė

= Γ (q, q̇) + Φ(q)
(
Ua − Fsa(q̇) − Gc(q)

)

+ M(q)−1D − q̈r (t) + Λ
˙̂
Δ(t)e + ΛΔ̂(t)ė. (18)

The input vector Ua is composed of two parts, and
it is that

Ua = Ueq + U sw, (19)

Ueq = (Φ(q)TΦ(q))−1Φ(q)T (−Γ (q, q̇) − M−1D

+ q̈r (t) − Λ
˙̂
Δ(t)e − ΛΔ̂(t)ė) + Fsa + Gc(q),

(20)

U sw = (Φ(q)TΦ(q))−1Φ(q)T
(

− IS − Hsgn(S)
)
.

(21)

Remark 3 It can be seen that the control law Ua (19)
includes two components. Ueq is designed to make the

control system be more robust in external disturbances
and parametric uncertainties. U sw is used to make sure
that in any case, the system state far from or close to
the sliding mode surface, fast convergence is feasible.

However, the frictional parameters and aggregate
disturbances are unmeasured, which means that the
controller cannot contain these unknown parameters.
Thus, we have to design adaptive terms to estimate
them. Firstly, the estimated frictional model is pre-
sented as follows:

F̂if = f̂i1 tanh

(
q̇i
ε

)

+ f̂i2|q̇i |q̇i , i = 1, 2, 3, (22)

and to facilitate design, the following form is presented:

F̂sa = υ1(q̇)Υ̂ 1 + υ2(q̇)Υ̂ 2,

withΥ̂ 1 = [ f̂11 f̂21 f̂31]T , Υ̂ 2 = [ f̂12 f̂22 f̂32]T ,

f̂ij(t0) = f̄ij > 0 ∈ R+, i = 1, 2, 3, j = 1, 2, (23)

where f̄ij is a positive constant representing the ini-
tial estimated value. υ1(q̇) = diag {tanh( α̇

ε
), tanh( ẋ

ε
),

tanh( l̇
ε
)}, υ2(q̇) = diag{|α̇|α̇, |ẋ |ẋ, |l̇|l̇}. It means the

adaptive term f̂ij will update from a set positive value to
some value, and f̄ij can be approximately chosen close
to real friction parameters through experience.

Hence, Ueq and U sw are reconstructed as follows:

Ueq = (Φ(q)TΦ(q))−1Φ(q)T (−Γ (q, q̇) − M−1 D̂

+ q̈r (t) − Λ
˙̂
Δ(t)e − ΛΔ̂(t)ė)

+ υ1(q̇)Υ̂ 1 + υ2(q̇)Υ̂ 2 + Ĝc(q), (24)

U sw = (Φ(q)TΦ(q))−1Φ(q)T
(

− IS − Hsgn(S)
)
,

(25)

where Ĝc(q) = [0 0 − m̂gC1C2]T ∈ R3, m̂ repre-
sents the estimated value of payloadmasswith m̂(t0) =
m̄ > 0 ∈ R+, m̄ denotes the initial estimated value.

In (15), we present an adaptive variable gain matrix
Δ̂(t), and the change law of its diagonal elements are
designed as follows:

˙̂
λi (t) =

ei
(
r̈i (t) − ai − ki λ̂i (t)ėi

)

(|ei |2 + ε)ki
, i = 1, ..., 5, (26)
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where ei , i = 1, ..., 5 denotes the element of e and
ε is a pimping positive constant to avoid zeros in the
denominator. This is an adaptive term related to e in
the sliding surface vector S. On one aspect, λ̂i (t) is the
gain of ei , i = 1, ..., 5, which affects the convergence
time of error, on the other aspect, the adaptive law of
λ̂i (t) contains ei and ėi , whichmeans its value is always
adaptively changed until ei = 0 and ėi = 0. This char-
acteristic reflects the adaptive gain λ̂i (t) is sensitive to
error and can improve error convergence effect to some
extent.

Remark 4 The design of ˙̂
λi (t) in (26) is based on (24).

It is not hard to find some nonlinear terms in (24) are
designed into (26), which is to guarantee eliminating
the influence of these nonlinear terms for stability, and
meanwhile make λ̂i (t) become an adaptive variable.
λ̂i (t) meets the requirement of gain variation in the
field of automatic control (i.e., “large error with small
gain, small error with large gain” (as shown in Fig. 5))
for avoiding large overshoot and keeping steady-state
performance [44]. The explanation is that r̈i (t) plays

a lead role (i.e., ˙̂
λi (t) ≈ ei r̈i (t)/((|ei |2 + ε)ki )) in the

initial control time interval; therefore, λ̂i (t) becomes
smaller according to the relation ei r̈i (t) < 0. Similarly,
it can be inferred that the gain λ̂i (t) will increase in the
end time interval. Besides, the tunable constant gain

ki in
˙̂
λi (t) is related to (15), and it has two kinds of

purposes. Firstly, as the gain of the update law, ki can
adjust the change rate of λ̂i (t). The another aspect is
that ki is a positive constant gain element of Λ in (15)
for the sliding mode surface S.

Reformatting the RASMC method in (24) and (25)
and adding the gains adaptive update laws in (26), we
have

Ua = (Φ(q)TΦ(q))−1Φ(q)T
(

− IS − Hsgn(S)

− M−1 D̂
)

+ υ1(q̇)Υ̂ 1 + υ2(q̇)Υ̂ 2 + Ĝc(q),

(27)

To minimize the chattering effect of sliding mode
control, the signum function is replaced by the hyper-
bolic tangent function, that is,

Ua = (Φ(q)TΦ(q))−1Φ(q)T
(

− IS − H tanh(S)

− M−1 D̂
)

+ υ1(q̇)Υ̂ 1 + υ2(q̇)Υ̂ 2 + m̂G∗
c(q),

(28)

where G∗
c(q) = [0 0 − C1C2g]T and the update laws

of adaptive terms are as follows:

˙̂
Υ 1 = −Π−1

1 υ1(q̇)TΦ(q)T S, (29)

˙̂
Υ 2 = −Π−1

2 υ2(q̇)TΦ(q)T S, (30)

˙̂D = Π−1
d (M(q)−1)T S, (31)

˙̂m = − 1

ϕm
STΦ(q)G∗

c(q), (32)

where Πd = diag{ϕd1, ..., ϕd5} ∈ R5×5, Π1 = diag
{ϕ11, ϕ12, ϕ13} ∈ R3×3 and Π2 = diag{ϕ21, ϕ22, ϕ23}
∈ R3×3 are all positive diagonal matrices, and, ϕm is a
positive gain.

Remark 5 Many previous researches about adaptive
control for cranes (e.g., [16,18,19]) only used adaptive
technique to estimate frictional parameters or unknown
model parameters, where not only the structure of the
adaptive part is complicated, but also the external dis-
turbances and the unmodeled nonlinearity factors are
not considered in theory.

4.2 Stability analysis

Theorem 1 The RASMC method is effective in the
positioning of the actuated part (i.e., α, x and l), and
meanwhile capable of payload swing angles (i.e., θ1
and θ2) suppression. Thus, its mathematical expression
is as follows:

lim
t→∞ [α x l θ1 θ2 α̇ ẋ l̇ θ̇1 θ̇2 α̈ ẍ l̈ θ̈1 θ̈2]T

= [αd xd ld 0 0 0 0 0 0 0 0 0 0 0 0]T . (33)

Proof The following positive definite function V is
designed:

V = 1

2
ST S + 1

2

5∑

i=1

ϕdi d̃
2
i + 1

2

3∑

i=1

ϕi1 f̃
2
i1

+ 1

2

3∑

i=1

ϕi2 f̃
2
i2 + 1

2
ϕmm̃

2, (34)

where d̃i = di − d̂i , f̃i1 = fi1 − f̂i1, f̃i2 = fi2 − f̂i2
and m̃ = m−m̂ denote the estimated error of unknown
parameters.
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Then, by taking the time derivative of (34) and con-
sidering (18), (23), (26) and (27), we have

V̇ = ST Ṡ −
3∑

i=1

ϕi1 f̃i1
˙̂fi1 −

3∑

i=1

ϕi2 f̃i2
˙̂fi2

−
5∑

i=1

ϕdi d̃i
˙̂di − ϕmm̃ ˙̂m

= ST Ṡ − D̃
T
Πd

˙̂D − Υ̃
T
1 Π1

˙̂
Υ 1

− Υ̃
T
2 Π2

˙̂
Υ 2 − ϕmm̃ ˙̂m

= ST
(
Γ (q, q̇) + Φ(q)(Ua − Fsa − Gc(q))

+ M−1D − q̈r (t) + Λ
˙̂
Δ(t)e + ΛΔ̂(t)ė

)

− D̃
T
Πd

˙̂D − Υ̃
T
1 Π1

˙̂
Υ 1 − Υ̃

T
2 Π2

˙̂
Υ 2 − ϕmm̃ ˙̂m

= ST
(

− IS − Hsgn(S) − M−1 D̂

+ Φ(q)(υ1(q̇)Υ̂ 1 + υ2(q̇)Υ̂ 2 − Fsa + m̂G∗
c(q)

− Gc(q)) + M−1D
)

− D̃
T
Πd

˙̂D
− Υ̃

T
1 Π1

˙̂
Υ 1 − Υ̃

T
2 Π2

˙̂
Υ 2 − ϕmm̃ ˙̂m, (35)

where D̃ = D− D̂, Υ̃ 1 = Υ 1 − Υ̂ 1, Υ̃ 2 = Υ 2 − Υ̂ 2,
with D̂ = [d̂i ] ∈ R5, i = 1, ..., 5, Υ̂ 1 = [ f̂ j1] ∈ R3,
Υ̂ 2 = [ f̂ j2] ∈ R3, j = 1, 2, 3.

Arranging the form of V̇ , it is that

V̇ = ST
(

− IS − Hsgn(S) − Φ(q)(υ1(q̇)Υ̃ 1

+ υ2(q̇)Υ̃ 2 + m̃G∗
c(q)) + M−1 D̃

)

− D̃
T
Πd

˙̂D − Υ̃
T
1 Π1

˙̂
Υ 1 − Υ̃

T
2 Π2

˙̂
Υ 2 − ϕmm̃ ˙̂m

= ST
(

− IS − Hsgn(S)
)

− Υ̃
T
1 (STΦ(q)υ1(q̇))T

− Υ̃
T
2 (STΦ(q)υ2(q̇))T − m̃STΦ(q)G∗

c(q)

+ D̃
T
(ST M−1)T − D̃

T
Πd

˙̂D
− Υ̃

T
1 Π1

˙̂
Υ 1 − Υ̃

T
2 Π2

˙̂
Υ 2 − ϕmm̃ ˙̂m

= ST
(

− IS − Hsgn(S)
)

− Υ̃
T
1

(
(STΦ(q)υ1(q̇))

T + Π1
˙̂
Υ 1

)

− Υ̃
T
2

(
(STΦ(q)υ2(q̇))

T + Π2
˙̂
Υ 2

)

+ D̃
T
(
(ST M−1)

T − Πd
˙̂D
)

− m̃
(
STΦ(q)G∗

c(q) + ϕm
˙̂m
)
. (36)

Then, substituting (29)–(31) into the above equation,
the result is as follows:

V̇ = −ST IS − STHsgn(S) ≤ 0. (37)

From (37) and (34), it is implied that S ∈ L∞, and
combining (16), yields, Ṡ ∈ L∞. To further prove it, the
following invariant and compact set Ξ with its largest
invariant set Ω is utilized:

Ξ = {(S(q, q̇, qr , q̇r ), Ṡ(q, q̇, qr , q̇r )|V̇ = 0}. (38)

In Ω , the following relations S = 0, Ṡ = 0 are
derived. Thus, combining (15) and (18), the following
equations are correct:

ė + ΛΔ̂(t)e = 0, (39)

ë + Λ
˙̂
Δ(t)e + ΛΔ̂(t)ė = 0. (40)

From (39), we have

lim
t→∞ e = 0, lim

t→∞ ė = 0, (41)

then, the conclusions in (40) and (41) produce lim
t→∞ ë =

0.
Considering (4), the following relationship equa-

tions about reference trajectories are obvious,

lim
t→∞ α = αd , lim

t→∞ x = xd , lim
t→∞ l = ld , (42)

lim
t→∞ α̇ = 0, lim

t→∞ ẋ = 0, lim
t→∞ l̇ = 0, (43)

lim
t→∞ α̈ = 0, lim

t→∞ ẍ = 0, lim
t→∞ l̈ = 0. (44)

Besides, from (34) and (37), we can infer that
lim
t→∞ f̃i j = 0, i = 1, 2, 3, j = 1, 2, lim

t→∞ d̃k =
0, k = 1, ..., 5, lim

t→∞ m̃ = 0, which means the esti-

mated parameters are consistent to the real values based
on Lyapunov stability.

Therefore, through the above analysis, the system
state at infinite time can be described as the following
equation:

lim
t→∞ [α x l θ1 θ2 α̇ ẋ l̇ θ̇1 θ̇2 α̈ ẍ l̈ θ̈1 θ̈2]T

= [αd xd ld 0 0 0 0 0 0 0 0 0 0 0 0]T , (45)
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which distinctlymeans thatΩ only includes the desired
equilibrium point of the tower cranes closed-loop con-
trol system. Hence, Theorem 1 is completely proved
under Lyapunov technique and LaSalle’s invariance
principle [45]. 
�

5 Simulation results and discussion

In this section, MATLAB& Simulink was used, which
verified the control effectiveness and strong robustness
of the RASMC method. First of all, to compare with
the RASMC method, an SMC, an LQR and an ASRC
[38] method were applied to the tower crane control
system. Then, the extremely strong robustness of the
RASMC method was convincingly verified aiming at
external disturbances of every DOF and model param-
eters uncertainties.

5.1 Simulation conditions

The model parameters of the tower crane given in
Table 1 are used in simulations, and the controller
parameters of the RASMC method were presented as
follows:

k1 = 0.19, k2 = 0.1, k3 = 5.5, k4 = 7.8, k5 = 7.8,

μ1 = μ2 = μ3 = μ4 = μ5 = 280,

γ1 = γ2 = γ3 = γ4 = γ5 = 80,

ϕ11 = 0.01, ϕ12 = 0.01, ϕ13 = 0.3,

ϕ21 = 0.1, ϕ22 = 0.1, ϕ23 = 0.5,

ϕd1 = 0.5, ϕd2 = 0.5, ϕd3 = 0.5,

ϕd4 = 0.0005, ϕd5 = 0.0005, ε = 0.5. (46)

Remark 6 Thechoice of controller gains in theRASMC
method needs to satisfy the following rules: in the
sliding mode surface vector S of (15), the element ki
in the diagonal matrix Λ = diag{k1, ..., k5} is posi-
tive, which determines the slope of the sliding surface
S and the update rate of λ̂i (t); in the sliding mode
reaching law of (16), elements μi and γi in matrices
(I = diag{μ1, ..., μ5} and H = diag{γ1, ..., γ5}) are
both positive, where the principle of increasing conver-
gence rate and reducing chattering should be followed;

in the adaptive gain update law ˙̂
λi (t) of (26), in order to

prevent the meaningless in the denominator, there is ε,
which is a small enough positive scalar adjusted freely
in the practical application; in the frictional force adap-
tive compensation component (29) and (30), the ele-
ments of matricesΠ1 = diag{ϕ11, ϕ12, ϕ13} andΠ2 =
diag{ϕ21, ϕ22, ϕ23} are both positive, and the smaller
the value is, the faster the friction gain is updated (this
rule also applies to the matrixΠd = diag{ϕd1, ..., ϕd5}
in (31) and ϕm in (32).

In addition, the reference trajectories parameters
(i.e., αd , xd , ld , td ) were, respectively, set as 45.0[deg],
0.8[m], 1.0[m], 5[s], respectively.

5.2 Comparative simulations

In this section, an SMC, an LQR and an ASRC
method were presented, which were compared with the
RASMC method.

Compared controller 1: The SMCmethodwas intro-
duced as follows:

Ua = (Φ(q)TΦ(q))−1Φ(q)T
(

− Γ (q, q̇) + q̈r (t)

− Θ ė − IS − H tanh(S)
)
, (47)

where S = ė+Θe,Θ = diag{ς1 ς2 ς3 ς4 ς5} ∈ R5×5,
and ς1 = 0.8, ς2 = 0.8, ς3 = 0.9, ς4 = 2.5, ς5 = 2.9.

Compared controller 2: To design the LQR method,
the tower crane system model was linearized in equi-
librium point firstly, and it was designed as follows:

T = −k11eα − k12 ėα − k13θ2 − k14θ̇2, (48)

Fx = −k21ex − k22 ėx − k23θ1 − k24θ̇1, (49)

Fl = −k31el − k32 ėl , (50)

where [eα, ėα, ex , ėx , el , ėl , θ1, θ̇1, θ2, θ̇2]T is state
vector, andQ = diag{1000, 1, 1000, 1, 500, 1, 5, 1, 5, 1},
R=1. Thus, the controller gains k11 = 31.62, k12 =
24.89, k13 = −0.41, k14 = 0.92, k21 = 31.62,
k22 = 16.83, k23 = 1.33, k24 = 2.00, k31 = 22.36,
k32 = 6.76.

Compared controller 3: The form of ASRC method
is as follows:

Fα = −kpαeαd − kdαα̇ + ηTα ω̂α − kα

(
θ̇21 + θ̇22

)
α̇,

(51)

123



Sway and disturbance rejection control for varying rope tower 3159

Fx = −kpxexd − kdx ẋ + ηTx ω̂x − kx
(
θ̇21 + θ̇22

)
ẋ,

(52)

Fl = −kpleld − kdl l̇ − mpg + ηl ω̂l − kl
(
θ̇21 + θ̇22

)
l̇,

(53)

where eαd = α − αd , exd = x − xd , eld = l − ld , and
other terms are as follows:

ηα =
[

tanh

(
α̇

εα

)

|α̇|α̇
]T

,

ηx =
[

tanh

(
ẋ

εx

)

|ẋ |ẋ
]T

, ηl = l̇,

˙̂ωα = −ΓαηTα α̇, ˙̂ωx = −Γxη
T
x ẋ,

˙̂ωl = −Γlηl l̇,

with kpα = 6, kdα = 15, kpx = 6, kdx = 15, kpl = 12,
kdl = 18, kα = 200, kx = 200, kl = 200, Γα =
diag{5, 5}, Γx = diag{2, 2}, Γl = 1.5.

Remark 7 Traditional methods are unable to cope with
disturbances andmodel uncertainties, as shown inSMC
(47) and LQR (48)–(50), where they all do not have
the frictional compensation, gravity compensation and
disturbance suppression terms. Especially, although the
ASRC (51)–(53) copes with the unknown friction, dis-
turbances and unknown m are not considered. Thus,
the control system loses stability easily by using the
compared methods.

In the comparative simulations, the disturbances
were not considered, and the system only had fric-
tion condition. Figure 2 shows the comparative results,
which contain the system state and controller outputs
values. And meanwhile, the quantified control index
data are presented in Table 2 for the sake of compar-
ison of control effects directly. In Table 2, tαr and tαc
represent the reaching time and computational time of
the jib, respectively, and, the subscripts with x and l are
for the trolley and the rope, respectively. eαs , exs and
els represent the steady-state error of the jib, the trolley
and the rope, respectively. And, θ1m and θ2m denote the
amplitude of θ1 and θ2 in the control process, respec-
tively.

Firstly, the positioning effect aspect is discussed.
On account of friction, the LQR method was hard to
accomplish positioning tasks, and thus leaded to arrive
target values after very long time. For rope length vary-
ing motion, because of gravity, the payload is left at a
unexpected height by LQR,which is completely loss of

control. However in the RASMC method, it estimated
the frictional force as shown in Fig. 3; thus, the control
speed was fast in achieving positioning. And for l, the
value of m is estimated, where the result is in Fig. 4.
Thus, the positioning subsystem of l is stable. For the
SMC method, it is obvious that its sliding mode sur-
face gains matrixΘ was invariable, which would result
in that the control-related gains were difficult to tune
and the convergence speed was inflexible; however, in
the RASMC, λ̂i (t) was adaptive, as shown in Fig. 5. In
Fig. 2, it can be found that the SMCmethod had evident
overshoot in positioning and its outputs valueswere not
close to zero until about 15 [s]. For the ASRC method,
because of the unknown value of payload mass m, the
payload lowering motion produced an obvious steady-
state error. Also, because ASRC is a regulation control
method, the movement of the actuated part was fast
and then slow under large initial force, which came out
poor initial state and long settling time. All in all, the
RASMCmethod generated fast and steady positioning
process benefited by the adaptive compensation com-
ponent and adaptive gains.

Then, the swing angle suppression results of the
SMC and LQR method were pale by comparison. In
Table 2, it is shown that the maximum swing angles
were smallest under the RASMC. In Fig. 2, the LQR
controller was almost impossible to suppress the swing
angles, where the oscillation phenomenon kept appear-
ing. And, the convergence speed of the swing angles by
using the SMC controller was slower than the RASMC
method. Because of lacking of effective payload anti-
sway component in controller, the ASRC also presents
a underdamping response about swing suppression.
And, due to regulation control mode of ASRC, the pay-
load presents intense swing phenomenon earlier than
other controllers.

Finally, the control advantages of the RASMC are
analyzed quantitatively. In regard to the maximum of
reaching time, the RASMC is 5.07 [s], which is 0.94
[s], 11.24 [s] and 0.91 [s] faster than the compared
controllers, and approximately 15.64%, 68.91% and
15.22%of positioning time is saved, respectively. Also,
the computational time of RASMC is saved about
46.69%, 62.15% and 31.49%, respectively. The steady-
state positioning error of RASMC is very small, one or
even several orders of magnitude less than other con-
trollers. Moreover, the positioning error can be lim-
ited to 0.006 [deg] or 0.002 [m] by RASMC, which
is only 0.02% or 0.4% of the total slew/displacement.
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Fig. 2 Comparative
simulation results
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Table 2 Quantified analysis data

RASMC SMC LQR ASRC

tαr [s] 4.78 5.61 16.31 5.79

txr [s] 5.07 6.01 13.43 5.98

tlr [s] 4.77 4.79 7.03 4.56

tαc [s] 7.55 14.12 >20.00 10.66

txc [s] 7.57 14.20 >20.00 11.05

tlc [s] 5.01 6.01 16.32 8.93

eαs [deg] 0.0057 0.0688 − 2.9335 − 0.0057

exs [m] 0.0017 0.0021 − 0.0362 0.0001

els [m] 0.0001 0.0010 0.4355 − 0.0817

θ1m [deg] 0.69 1.47 2.10 2.68

θ2m [deg] 0.33 0.68 1.09 0.81

Fig. 3 Simulation results of
estimation of friction
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Fig. 4 Simulation results of
estimation of m
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Fig. 5 Simulation results of
λ̂i
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The amplitude suppression effect of swing angles is
very effective by RASMC. For θ1m , there is 53.06%,
67.14% and 74.25% reduction by using RASMC com-
pared to other controllers, respectively.And for θ2m , the
reduction is 51.47%, 69.72% and 59.26%, respectively.

5.3 Robust performance

In this section, the strong robustness of the RASMC
method was verified in regard to disturbances of all
DOF and model parameters uncertainties.

The external disturbances were added, which were
asynchronous, unordered, various and intense. Even
though under such disturbances, the positioning and
swing suppression aspect almost had none negative
impacts, which were benefited by the adaptive com-
pensation. For the RASMC, the compensation effect
can be seen obviously in Fig. 6 where the controller
outputs compensated the disturbance timely.

Different model parameters condition was consid-
ered, which is shown in Fig. 7. In this simulation, we
changed the model parameters from that in Table 1 to
m = 0.8 [kg], Mt = 5.6 [kg] and J0 = 4.8 [kg · m2]
but still used the model parameters in Table 1 for the
RASMC. It is found that the control effect did not have
marked difference, and the adaptive part had work in
compensating different m. Therefore, the RASMC is
insensitive to unknown model parameters.

6 Conclusion

In this paper, we presented a robust adaptive sliding
mode controller for the tower crane with time-varying

rope length, which has nonlinear adaptive sliding sur-
face and adaptive compensation for frictions, distur-
bances and unknown payload mass to effectively real-
ize the positioning of the jib, trolley and rope andmean-
while achieve swing elimination. It is worth noting that
the controller was designed and analyzed without a lin-
earizedmodel. And at the same time, the nonzero initial
reference trajectories were used, leading to the con-
troller is more practical and safer, and also do not have
big initial output values even though in large control
gains cases. Lyapunov technique and LaSalle’s invari-
ance principle were detailed utilized to prove the con-
trol system stability theoretically. Sufficient simula-
tions were applied, which showed that the tower crane
control system is better and has strong robustness with
respect to disturbances and model uncertainties under
the RASMC.

Through this paper, the following conclusions are
obtained: (1) compared with the existing SMC con-
trollers, we find that if the gains in the sliding mode
surface can change with the error, it is of great prac-
tical significance to improve the convergence perfor-
mance of the sliding mode control; (2) when designing
the controller, the operation without model lineariza-
tion is more beneficial to the global stability of the con-
trol system; (3) the nonzero initial reference trajectories
are more practical in actual; (4) in practice, frictions,
model uncertainties and external disturbances are com-
mon cases; thus, solving these problems can promote
the practical application of crane control methods; (5)
the payload mass is always changeable; therefore, it is
necessary to identify its value in real time to overcome
the adverse effects.

In the future, the solution of the dynamic–static fric-
tion compensation and the finite-time stability con-
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Fig. 6 Simulation results
with external disturbances
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Fig. 7 Simulation results
with model uncertainties
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trol are two directions worth studying. It can be seen
from this paper that although the friction model related
to velocities has been used in many studies, it leads
to the static friction cannot be compensated reason-
ably and effectively. In addition, the control scheme
RASMC designed in this paper can only improve the
convergence speed of the sliding mode surface, which
is asymptotically stable, but the finite time stability can
guarantee the efficiency of the control task theoreti-
cally, and the practical significance is greater.
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Appendix A

The detailed expressions of (8) are as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = U − Fs(q̇) + D,

M(q) =

⎡

⎢
⎢
⎢
⎢
⎣

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55

⎤

⎥
⎥
⎥
⎥
⎦

,

m11 = J0 + mx2 + Mt x
2 + ml2 − ml2C1

2C2
2

+ 2mxlC2S1,m12 = −mlS2,m13 = mxS2,

m14 = −ml2C1C2S2,m15 = ml2S1 + mxlC2,

m21 = −mlS2,m22 = Mt + m,m23 = mC2S1,

m24 = mlC1C2,m25 = −mlS1S2,m31 = mxS2,

m32 = mC2S1,m33 = m,m34 = m35 = 0,

m41 = −ml2C1C2S2,m42 = mlC1C2,m43 = 0,

m44 = ml2C2
2,m45 = 0,m51 = ml2S1 + mxlC2,

m52 = −mlS1S2,m53 = m54 = 0,m55 = ml2,

C(q, q̇) =

⎡

⎢
⎢
⎢
⎢
⎣

c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

⎤

⎥
⎥
⎥
⎥
⎦

,

c11 = mxẋ + Mt x ẋ + mlC2S1 ẋ + mll̇

− mlC1
2C2

2l̇ + mxC2S1l̇ + ml2C1C2
2S1θ̇1

+ mxlC1C2θ̇1 + ml2C1
2C2S2θ̇2 − mxlS1S2θ̇2,

c12 = mx α̇ + Mt x α̇ + mlC2S1α̇, c13 = mlα̇

− mlC1
2C2

2α̇ + mxC2S1α̇ − mlC1C2S2θ̇1

+ mxC2θ̇2 + mlS1θ̇2, c14 = ml2C1C2
2S1α̇

+ mxlC1C2α̇ − mlC1C2S2l̇ + ml2C2S1S2θ̇1

+ ml2C1θ̇2 − ml2C1C2
2θ̇2,

c15 = ml2C1
2C2S2α̇ − mxlS1S2α̇ + mxC2l̇

+ mlS1l̇ + ml2C1θ̇1 − ml2C1C
2
2θ̇1

− mxlS2θ̇2, c21 = −mx α̇ − Mx α̇

− mlC2S1α̇ − mS2l̇ − mlC2θ̇2, c22 = 0,

c23 = −mS2α̇ + mC1C2θ̇1 − mS1S2θ̇2,

c24 = mC1C2l̇ − mlC2S1θ̇1 − mlC1S2θ̇2,

c25 = −mlC2α̇ − mS1S2l̇ − mlC1S2θ̇1

− mlC2S1θ̇2, c31 = −mlα̇ + mlC1
2C2

2α̇

− mxC2S1α̇ + mS2 ẋ + mlC1C2S2θ̇1 − mlS1θ̇2,

c32 = mS2α̇, c33 = 0, c34 = mlC1C2S2α̇

− mlC2
2θ̇1, c35 = −mlS1α̇ − ml θ̇2,

c41 = −ml2C1C2
2S1α̇ − mxlC1C2α̇

− mlC1C2S2l̇ − ml2C1C2
2θ̇2, c42 = 0,

c43 = −mlC1C2S2α̇ + mlC2
2θ̇1,

c44 = mlC2
2l̇ − ml2C2S2θ̇2,

c45 = −ml2C1C2
2α̇ − ml2C2S2θ̇1,

c51 = −ml2C1
2C2S2α̇ + mlxS1S2α̇ + mlC2 ẋ

+ mlS1l̇ + ml2C1C2
2θ̇1, c52 = mlC2α̇,

c53 = ml θ̇2 + mlS1α̇, c54 = ml2C1C2
2α̇

+ ml2C2S2θ̇1, c55 = mll̇,

G(q) = [g1 g2 g3 g4 g5]T ,

g1 = 0, g2 = 0, g3 = −mgC1C2, g4 = mglC2S1,

g5 = mglC1S2. (54)
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Appendix B

The detailed terms in (13) and (14) are shown as fol-
lows:

Γ (q, q̇) = [a1 a2 a3 a4 a5]T ,

a1 = −2Mt α̇ ẋ x

Mt x2 + J0
, a2 = x α̇2,

a3 = 1

Mt x2 + J0
(Mt θ̇

2
2 lx

2 + Mt α̇
2lx2 + J0θ̇

2
2 lm

+ J0α̇
2l + Mt θ̇

2
1 lx

2C2
2 + J0θ̇

2
1 lC2

2

− 2J0α̇ ẋ S2 − 2Mt θ̇1α̇lx
2C1C2S2

+ 2Mt θ̇2α̇lx
2S1 + 2J0θ̇2α̇l S1

− Mt α̇
2lx2C1

2C2
2 − J0α̇

2lC1
2C2

2

− 2J0θ̇1α̇lC1C2S2),

a4 = 1

lC2(Mtx2 + J0)
(−Mtgx

2S1 − J0gS1

− 2Mt θ̇1l̇ x
2C2 − 2J0θ̇1l̇C2 + 2Mt α̇l̇ x

2C1S2

+ 2J0α̇l̇C1S2 + 2Mt θ̇1θ̇2lx
2S2

+ 2J0θ̇1θ̇2l S2 − 2Mt α̇ ẋlxC1S2

+ Mt α̇
2lx2C1C2S1 + J0α̇

2lC1C2S1

+ 2Mt θ̇2α̇lx
2C1C2 + 2J0θ̇2α̇lC1C2),

a5 = 1

l(Mt x2 + J0)
(−2Mt θ̇2l̇ x

2 − 2J0α̇ ẋC2

− 2Mt θ̇1α̇lx
2C1C2

2 − Mt θ̇
2
1 lx

2S2C2

− J0θ̇
2
1 l S2C2 − 2Mt α̇l̇ x

2S1

− 2J0θ̇1α̇lC1C2
2

− 2J0θ̇2l̇ + Mt α̇
2lx2C1

2C2S2

− Mtgx
2C1S2 + 2Mt α̇ ẋlx S1

− 2J0α̇l̇ S1 + J0α̇
2lC1

2C2S2), (55)

Φ(q) =
⎡

⎣
b11 b21 b31 b41 b51
b12 b22 b32 b42 b52
b13 b23 b33 b43 b53

⎤

⎦

T

,

b11 = 1

Mtx2 + J0
, b12 = 0, b13 = −xS2

Mt x2 + J0
,

b21 = 0, b22 = 1

Mt
, b23 = −C2S1

Mt
,

b31 = −xS2
Mtx2 + J0

, b32 = −S1C2

Mt
,

b33 = 1

Mtm(Mt x2 + J0)
(Mt

2x2 + J0mC2
2

− J0mC1
2C2

2 − Mtmx2C1
2C2

2

+ J0Mt + Mtmx2),

b41 = C1S2
C2(Mt x2 + J0)

, b42 = −C1

MtlC2
,

b43 = C1

MtlC2(Mt x2 + J0)
(−Mtlx + J0C2S1

+ MtlxC2
2 + Mtx

2C2S1)

b51 = −xC2 − l S1
l(Mt x2 + J0)

, b52 = S1S2
Mtl

,

b53 = S2
Mtl(Mt x2 + J0)

(−J0C2 + J0C1
2C2

+ Mt x
2C1

2C2 + Mtlx S1). (56)
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