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Abstract The article focuses on the issue of a spa-
tiotemporal excitable biophysical model that describes
the propagation of electrical potential called spikes to
model the diffusion-induced dynamics based on an ana-
lytical development of amplitude equations. Consid-
ering the Izhikevich neuron model consisting of cou-
pled systems of ODEs, we demonstrate various results
of spatiotemporal architecture (PDEs) using a suitable
parameter regime. We analytically perform the saddle-
node bifurcation and Hopf bifurcation analysis with
bifurcating periodic solutions that show the transition
phases in the system dynamics. We study different fir-
ing patterns both analytically and numerically by the
formation of Riccati differential equation. To exam-
ine the characteristics of diffusive instabilities, we use
Turing amplitude equations by multiscaling method.
The instabilities and Turing bifurcation are established
using theoretical analysis and numerical simulations.
The spatial dynamics has potential effects on the deter-
ministic system as a result of the diffusive matrices
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with various couplings, and the coupled oscillatorswith
this nearest-neighbor coupling show synchronization
measured by the synchronization factor analysis. Our
results qualitatively reproduce different phenomena of
the extended excitable system based with an efficient
analytical scheme.
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1 Introduction

To understand the various functional mechanisms in
different brain areas (especially in cortical region), we
definitely need the theoretical modeling and numerical
simulations with experimental studies [1,17,24,48].
There are a certain number of models for excitable
biophysical systems that are capable to reproduce the
observed results by mathematical analysis and that are
also computationally efficient [17,18,27,31,34]. The
models can generate rich dynamics often found in
real neurons for electrophysiological activities. When
a neuron receives a certain stimulus, it produces action
potential (electrical impulses) [16]. Single neurons pro-
duce a spike when they are in the vicinity of a bifur-
cation point from resting state to firing activity. The
following results show how the dynamics can be inves-
tigated for different characteristics. We are excited to
study an excitable spatiotemporal system that supports
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the wave propagation of nerve impulses [7,37]. From
the mathematical point of view, the model consists of a
coupled nonlinear reaction diffusion systems of partial
differential equations (PDEs) modeling the propaga-
tion of electrical potential. It is derived from a systemof
coupled ordinary differential equations (ODEs)model-
ing the cell membrane dynamics. The implementation
of the proper analytical and efficient numerical tech-
niques is important to study such spatially extended
systems.

Over the last few years, diverse firing activities
have been explored in some research articles with
the help of bifurcation analysis as the effects of
electromagnetic induction on different neuron mod-
els. Furthermore, many articles have been carried out
on the synchronization behavior of coupled neurons
[30,35,44,45]. Besides electromagnetic induction, the
researchers have studied the coexistence of firing pat-
terns by considering the asymmetric electrical synap-
tic connection between two neuronal oscillators [36].
Motivated by the above-mentioned articles and some
recent studies, that were investigated on spatiotem-
poral patterns away from the equilibriums, traveling
waves [6,28], spiral waves which frequently occur
in biological, chemical and other physical systems
[12,22,23,32,33,40,41,47], we introduce the solution
of the general amplitude equations and prove its well
posedness (for Hopf bifurcation [10,11] and Turing
instabilities [39,46]). In our study, we consider zero-
flux boundary condition to show that the excitable sys-
tem rests in an isolated condition [26]. Then, we will
examine the corresponding system. We are interested
to determine the variations in the firing potential aswell
as the stability analysis of the spatial system.

In this article, we are concerned with the analysis
of spatiotemporal dynamics in the Izhikevich model
[17,18,29] that plays a major role in the study of
the cortical neurons. The famous mathematician and
neuroscientist E. M. Izhikevich proposed an excitable
two-dimensional (2D) dynamical model that repro-
duces spiking–bursting activities [3,18,27,38]. Here,
we use this simple model that is biologically plausi-
ble and computationally efficient. The stability analy-
sis can be observed from bifurcation scenarios where
the predominant parameter is I (injected current stim-
ulus). Then, we focus on the local nonlinear excita-
tions in diffusively coupled Izhikevich model for dif-
ferent parameter regimes. Bifurcation scenarios have
been widely used to analyze the dynamical responses

that are modulated by uncoupled single model and
coupled systems with various injected inputs such as
synaptic coupling and current stimulus. We consider
three firing regimes: fast spiking, tonic spiking and
phasic spiking, and verify the firing activities analyti-
cally using the formation of Riccati differential equa-
tion [13,25]. Bifurcations are performed to show the
transition phases of oscillations. Moreover, the dynam-
ics behind it can generally be described through a
phase diagram. We present a methodology to charac-
terize the biophysics of this system, which takes into
account the temporal structures of complexfirings. This
provides us to accurately distinguish the fundamen-
tal characteristics of the intrinsic dynamics, and the
modeling approaches enrich the spiking network-level
activities such as synchronization and its measure with
synchronization factor [8,21,43]. For Hopf and Turing
instabilities, responsible for close to the homogeneous
fluctuations and the emergence of stationary and spa-
tial patterns, respectively, the corresponding amplitude
equations are referred as Turing amplitude equation
(TAE) [42,49] and complex Ginzburg–Landau equa-
tion (CGLE; it is responsible for the onset ofHopf insta-
bility in the case of homogeneous fluctuations) [2,19].

We used TAE equation to get the insight into the
nonequilibrium phenomenon in spatiotemporal sys-
tems. The analysis scheme [9,19,49] for the deriva-
tion of amplitude equations is based on the multiple
space and time scales. The method provides a Taylor-
series expansion of the original nonlinear equations
with many power operators, and further, it depends on
the expansion of the linear and nonlinear terms of a
small perturbation parameter close to the onset of dif-
fusive instability. The small parameter measures the
deviation from the diffusive instability region. It is used
in our case as the reaction diffusion system has diago-
nal diffusion matrices. The derivation of the procedure
based on Kuramoto’s method has been investigated to
the systems. The coefficients of the amplitude equa-
tions obtained in the present article may have their own
values, and it may consider to certain dynamical behav-
ior in the diffusive system of experimental conditions.
However, a systematic simulation is required to cap-
ture the dynamics of excitable models at a sufficient
level of accuracy and it requires the suitable discretiza-
tion scheme. The effects of diffusion in a biophysical
extended system and then collective dynamical forma-
tion have been studied. The results show that the reac-
tion diffusion system with different coupling charac-
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teristics that depend on the control parameters, partic-
ipates in a collective behavior with diffusive instabili-
ties.

The paper is organized as follows: In Sect. 2, we
briefly describe the dynamics of the excitable model
equations that shows the electrical potential called as
spikes and its bifurcation scenarios. We also verify
different types of oscillatory activities analytically. In
Sect. 3, we verify our bifurcation results analytically.
Wedemonstrate theTuring instability and spatiotempo-
ral dynamics of the model system with some basic pre-
liminaries. We derive the TAE and CGLE and find the
coefficients. We report the main features with numer-
ical simulations and analyzed the results to show the
qualitative dynamics. Finally, we conclude the results
with a discussion in Sect. 4.

2 Formulation of the excitable model and some
preliminaries

This article focuses on the complex dynamics of the two
variables excitable Izhikevich system over an appropri-
ate range of parameters. The model construction does
not account the biophysical behavior; however, the out-
put dynamics is very realistic and biophysically plausi-
ble. The time evolution of such a mathematical model
is described by the following set of ODEs [17,18]

dp
dt = (0.04p2 + 5p + 140 − q + I )/ε = f1(p, q),
dq
dt = a(bp − q) = f2(p, q),

(1)

where pmeasures themembrane voltage dynamics and
q, the recovery variable, that measures the activation
of K+ and inactivation of Na+ ionic currents, with
an after-spike resetting constraint, i.e., when the volt-
age, p reaches the peak value, the following relation is
applied: If p ≥ ppeak = 30, then p ← c, q ← q + d.
p is expressed in mV (millivolt) scale and time t is in
ms (millisecond) scale [17]. The values of the param-
eters a, b, c and d determine spiking–bursting activi-
ties. The resting potential depends on the parameter b,
indicating the sensitivity of q to the subthreshold fluc-
tuations of the voltage, p. The parameter a measures
the timescale of the recovery variable, q. The param-
eters c and d control the afterspike reset values of p
and q, respectively, for the uncoupled dynamics. The

function (0.04p2 + 5p + 140) was derived using the
spike initiationdynamics of a cortical cell. Thedifferent
suitable choices of parameters generate various types
of oscillations such as regular spiking, various bursting,
chattering and fast spiking, often found in neocortical
and thalamic neurons [3,20]. The stimulus currents are
injected using the constant variable, I .

The equilibrium point E = (p0, q0) of system
(1) can be found by solving f1(p0, q0) = 0 and
f2(p0, q0) = 0, that gives p0 =
−(5−b)±

√
(5−b)2−0.16(140+I )

0.08 and q0 = bp0. The Jaco-
bian matrix of system (1) at equilibrium point E =
(p0, q0) is given by

J =
(
J11 J12
J21 J22

)
,

where J11 = 0.08p0+5
ε

, J12 = −1
ε
, J21 = ab and J22 =

−a. The equilibrium point E = (p0, q0) of system (1)
is locally asymptotically stable if, Trace(J ) = J11 +
J22 < 0 and Det (J ) = J11 J22 − J12 J21 > 0. We have
considered the following parameter sets that produce
different qualitative firings for the deterministic model
[17,18,38] and depend on the dynamics with ε = 1
(shown in Fig. 1a, b and c for parameter sets I and II
) of system (1). Set I : a = 1, b = 1.5, c = −60,
d = 0; Set II : a = −0.02, b = −1, c = −60, d = 8
[17,18,38].

The numerical simulations of the excitable systems
are performed using the fourth-order Runge–Kutta
method with a time step of 0.001, and the initial con-
ditions are set to p = −63 and q = bp [17,18,38].
The simulation results with a smaller time step do not
show any significant differences. Bifurcation diagrams
of the dynamical model are computed using the Mat-
Cont software package [4].

2.1 Oscillatory activities and Bifurcation analysis

We consider three different regimes, i.e., fast spiking,
tonic spiking and phasic spiking with the steady state.
The bifurcation analysis of system (1) is presented for
parameter sets I and II by considering current stimulus,
I as a control parameter. System (1)with parameter set I
shows a subcritical Hopf bifurcation and a saddle-node
bifurcation at I = −65 and −63.4375, respectively
(Fig. 1d). For saddle-nodebifurcation, as themagnitude
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of the parameter I changes, a stable equilibrium corre-
sponding to the resting state condition is approached by
an unstable fixed point; then, they coalesce and annihi-
late each other. Since the resting state no longer exists
(bistable regime exists, as shown in Fig. 1d) with the
increase in I , the neuron starts to fire fast spiking (Fig.
1a, solid blue line). There is a coexistence of resting
and spiking states in the case of saddle-node bifurca-
tion. At lower current stimulus (I < 85) with set II,
it has two equilibrium points which collide at I = 85
(Fig. 1e marked by SN1 point) and vanishes together
for higher current stimulus I > 85. The system has a
saddle-node bifurcation at I = 85. Another interesting
behavior is the system changes its stability from stable
regime to unstable at I = 78.9975 (Fig. 1e marked by
HB1 point) with the transition from phasic spiking to
tonic spiking regime (Fig. 1b, c, solid blue lines). Sys-
tem (1) shows supercritical Hopf bifurcation (HB1) at
I = 78.9975. In Fig. 1d, e, dashed and thick blue lines
represent the stable and unstable equilibrium regions.

Now, we are interested to find the solution of system
(1) analytically to verify our numerical simulations,
i.e., different types of oscillatory activities. We begin
with the recovery variable q and find the solution of
the last equation of system (1) by considering p as a
constant between t0 and t , where t0 indicates the initial
time. The second equation of system (1) can be written
as:

dq
dt + aq = abp, (2)

which is a first-order linear ODE. In this context, we
can find the solution of Eq. (2) using the integrating
factor (I.F.) = eat and the solution is given by

q(t) = q(t0)e
−a(t−t0) + e−at

∫ t

t0
abpeaτdτ,

which can be written as:

q(t) = q(t0)e
−a(t−t0) + bp(1 − e−a(t−t0)).

For better result,we use small time step, i.e.,Δt = t−t0
is very small and replace t by t0 + Δt.

Now, we find the approximate solution of first equa-
tion of system (1) by considering q as a constant over
some small time interval as described earlier. The first

equation of system (1) can be written as:

dp
dt = 140−q+I

ε
+ 5

ε
p + 0.04

ε
p2, (3)

which is a first-order nonlinear ODE. It is impossible to
find the exact solution for most of the nonlinear ODEs,
fortunately above equation is a special type of ODE,
known as Riccati differential equation [13,25]. We can
find the solution of Riccati differential equation using
the transformation r = 1

p−p1
, where p1 is a particular

solution to dp
dt . In this context, the particular solution

p1 can be found from dp
dt = 0, which leads to

p1 = −5 ± √
25 − 0.16(140 − q + I )

0.08
.

Here, we are interested to find only one particular

solution, so we choose p1 = −5+√
25−0.16(140−q+I )

0.08 .
Now, using the transformation r = 1

p−p1
, system (3)

becomes

dr

dt
+ B

ε
r = −0.04

ε
,

where B = 5+ 0.08p1. To find the solution of system
(3), first we find the solution of above equation and then
use the transformation r = 1

p−p1
. So, the solution of

system (3) is given by

p(t) = p1+(−0.04

B
(1−e−B(t−t0)/ε)+e−B(t−t0)/ε

p(t0) − p1
)−1,

provided p1 is real, i.e., B is real. Complex value of
B indicates system (1) has no fixed point, and then,
let us consider B = i B1, U = −B1(t − t0)/ε and
V = p(t0) + 5

0.08 . Then, the solution of system (3) is
given by

p(t) = − 5

0.08

+ V cosU + (0.04V 2/B1)sinU − (B1/0.16)sinU
1
2 (1+cosU )+(0.08V/B1)sinU+0.0032V 2/B2

1 (1−cosU )
.

Now, we plot the membrane voltage variable p with
same time step as described earlier, i.e., Δt = 0.001,
which is shown in Fig. 1 a–c in dotted red lines. It is
clear from Fig. 1 a–c that analytical results are in good
agreement with the numerical results.
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Fig. 1 a Time series of system (1) for parameter set I with
I = −64 and set II b-c I = 78 and 80 are shown. Solid blue line
indicates numerical simulation results, where dotted red lines are
derived analytically. d-e Bifurcation diagrams with respect to I

for sets I and II, respectively. Thick and dashed blue lines repre-
sent the stability and instability of the fixed points. HB and HB1
indicate subcritical and supercritical Hopf bifurcation points. SN
and SN1 indicate saddle-node bifurcations

3 Coupled Izhikevich model with 1D diffusion

The general 1D reaction diffusion system with the
Izhikevich model is represented by the following two
equations:

∂p
∂t = f1(p, q) + D11

∂2 p
∂x2

,

∂q
∂t = f2(p, q) + D22

∂2q
∂x2

,
(4)

with the resetting constraint equationmentioned in sys-
tem (1), where p = p(x, t) and q = q(x, t) are
the unknown functions to be evaluated and the sub-
scripts t and x represent the differentiation with respect
to these variables. The initial conditions of the cou-
pled PDEs are considered with the known functions
p(x, t = 0) and q(x, t = 0) for x ∈ Ω , and the
boundary conditions show zero-flux boundary condi-
tions ∂p

∂n = ∂q
∂n = 0, x ∈ ∂Ω and t > 0, where n

measures the outward normal to ∂Ω , the boundary of
the interval and domain, and Ω is the bounded inter-
val or square domain for 1D and 2D diffusion, respec-
tively. In the 1D case, the length of the excitable cable is
x = 100. D11 and D22 are the strengths of the synaptic
couplings with positive values. One can explore the

similar dynamics with the large finite length of the
excitable cable by introducing more integrating space
points in the simulation. We use a finite-difference
scheme (with forward Euler method and central dif-
ference representation) with zero-flux boundary con-
ditions for numerical simulation of a cable of finite
length. The time step δt = 0.001, space step δx = 0.5
and the number of nodes N = x/δx = 200 are con-

sidered. The second-order partial derivatives ∂2 p
∂x2

and
∂2q
∂x2

are approximated as 1
(δx)2

(pi, j−1−2pi, j + pi, j+1)

and 1
(δx)2

(qi, j−1 − 2qi, j + qi, j+1), respectively, to find
the numerical solution of system (4). The initial con-
ditions are considered with suitable periodic perturba-
tions from the initial conditions as in the deterministic
case. It is fixed for all the simulations. Biologically, the
zero-flux boundary condition shows that the cell mem-
branes are impermeable at the boundaries and it acts as
an isolated cable [26].

To find the solution, we deviate system (4) around
the uniform steady-state condition and linearize it
around the nontrivial fixed point, and we obtain the
characteristic equation assuming the particular solution

as

(
p
q

)
=

(
p0
q0

)
+ ε

(
pk
qk

)
eλk t+ik.x + c.c. + o

(
ε2

)
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for model (4), where c.c. stands for the complex con-
jugate, λk is the wave length and k is the wave number
along the x direction (x is the directional vector). The
Jacobian matrix of Eq. (4) at the nontrivial equilibrium
point E = (p0, q0) is given by

JD = J − k2D =
(
J11 − D11k2 J12

J21 J22 − D22k2

)
,

where D =
(
D11 0
0 D22

)
. The stability conditions of

system (4) at E = (p0, q0) are given by Trace(JD) =
J11+ J22−D11k2−D22k2 < 0 and Det (JD) = (J11−
D11k2)(J22 − D22k2) − J12 J21 > 0. The eigenvalues
of the Jacobian matrix JD are given by

λ = 1

2
(Trace(JD) ±

√
(Trace(JD))2 − 4Det (JD)).

Now,we use the analytical approach to find theHopf
bifurcation point with its nature and the bifurcating
periodic solution. In Andronov–Hopf bifurcation case
[10,11], it produces a limit cycle from a fixed point or
equilibrium solution of the dynamical model of ODEs,
when the fixed point changes its stability through a
pair of purely imaginary eigenvalues. The bifurcation
can be supercritical or subcritical, resulting in stable
or unstable limit cycle, respectively. For supercriti-
cal Andronov–Hopf bifurcation, the stable equilibrium
loses its stability and gives birth to a small-amplitude
limit cycle attractor.When themagnitude of the param-
eter increases, the amplitude of the limit cycle increases
and it becomes a full-size spiking limit cycle. First, con-
sider model (1) with the predominant parameter I and
the equilibrium state E = (p0, q0) depends on the val-
ues of I . Let the eigenvalues of the linearized system at
the fixed point E become λ(I ), λ̄(I ) = α(I ) ± iβ(I ).
Suppose the following conditions are satisfied for a par-
ticular critical value of I , say I = IH .

– The Jacobian matrix has a simple pair of purely
imaginary eigenvalues at the critical value of I ,
around the fixed point, E , i.e., α(I = IH ) =
0, β(I = IH ) = w �= 0, where sgn(w) =
sgn[(∂ f2(p, q)/∂p)|p0,q0 ] at I = IH (i.e., known
as nonhyperbolicity condition). Then, there exists
a smooth curve of fixed point with the critical point
of I and the eigenvalues vary smoothly.

– Moreover, if dα(I )
d I

∣∣∣
I=IH

= m �= 0, (known as

transversality condition, the eigenvalues cross the
imaginary axis with nonzero speed).

– Finally, n �= 0, where n = (1/16)( f1 ppp +
f1 pqq + f2 ppq + f2qqq) + (1/16w)( f1 pq( f1 pp +
f1qq)− f2 pq( f2 pp+ f2qq)− f1 pp f2 pp+ f1qq f2qq)
with f1 pq = (∂2 f1(p, q)/∂p∂q)|p0,q0 at I = IH
(known as genericity condition). Then, a unique
curve of the periodic solutions bifurcates from the
equilibrium solution E , into the parameter region
I > IH , if the condition mn < 0 holds or I < IH ,
if mn > 0 holds. The fixed point E becomes sta-
ble if I > IH (respectively, I < IH ) and unstable
for I < IH (resp., I > IH ) for m < 0 (resp.,
m > 0), while the periodic solutions are stable
(resp., unstable) if the equilibrium point is unstable
(resp., stable) on the side of I = IH , where the peri-
odic solutions exist. It is called a supercritical Hopf
bifurcation if the bifurcating periodic solutions are
stable, and subcritical if they are unstable. To test
the Hopf bifurcation analysis, assume that the char-
acteristic equation has a pair of purely imaginary
roots λ1,2 = ±iβ where (β > 0).

System (4) in the absence of diffusion shows Hopf
bifurcation if Im(λ) �= 0 and Re(λ) = 0 with k = 0, i.e.,
J11+J22 =0,which gives 1

ε
(0.08p0+5)−a = 0,where

λ is the eigenvalue of the Jacobian matrix J . Thus, the
critical value for the Hopf instability is given by

IH = (5 − b)2 − (aε − b)2

0.16
− 140. (5)

For parameter sets I and II, we obtain the critical value
IH = −65 and 78.9975, respectively, which are in
good agreement with the numerical simulations. In the
following, we study the stability of periodic solutions
for Hopf bifurcation. The characteristic equation of the
linearized matrix J is

λ2+(a− 1

ε
(0.08p0+5))λ+ a

ε
(−0.08p0−5)+ab = 0.

(6)

For the occurrence of Hopf bifurcation, 1
ε
(0.08p0 +

5) − a = 0, Eq. (6) becomes

λ2 − a2 + ab = 0. (7)

Further simplification of Eq. (7) gives two purely imag-
inary roots as λ = ±i

√
ab − a2 = ±iβ. Differentiat-
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ing Eq. (6) with respect to I , we obtain

λ′ =
0.08
ε

(λ + a)
dp0
d I

2λ + a − 1
ε
(0.08p0 + 5)

. (8)

Now, substituting ±iβ for λ in Eq. (8), we have
Re

(
λ′) = 0.04 dp0

d I ,where
dp0
d I = ∓ 1√

(5−b)2−0.16(140+I )
.

Suppose η1 and η2 be the eigenvectors correspond-
ing to eigenvalues iβ and −iβ, respectively. Now, we
define a nonsingular matrix A = col(Re(η1), Im(η1)),

so that A−1
(

a −1
ab −a

)
A =

(
0 β

−β 0

)
, where β =

√
ab − a2 and η1 = (1, a − i

√
ab − a2). Then, A =(

1 0
a −√

ab − a2

)
and A−1 =

(
1 0
a√

ab−a2
−1√
ab−a2

)
.

Let Y = A−1V , where Y =
(
y1
y2

)
and V =

(
p
q

)
.

We have y1 = p and y2 = a√
ab−a2

p− 1√
ab−a2

q. Then,
system (1) becomes(

ẏ1
ẏ2

)
=

(
0

√
ab − a2

−√
ab − a2 0

) (
y1
y2

)

+
(
0.04y21
0.04a√
ab−a2

y21

)
. (9)

Writing Fi , i = 1, 2 for the nonlinear part of Eq. (9),
we have F1 = 0.04y21 and F2 = 0.04a√

ab−a2
y21 . Again,

we find F1
11 = 0.08, F2

11 = 0.08a√
ab−a2

and all other Fi
jk

are zero. Thus, from the genericity condition, we have
n = 1

16
√
ab−a2

(−F1
11F

2
11) = −0.04a

ab−a2
. Therefore, n < 0

for a > 0, which indicates that system (1) exhibits
subcritical Hopf bifurcation. System (1) shows super-
critical Hopf bifurcation if n > 0, i.e., a < 0. In our
study, system (1) shows a subcritical and a supercriti-
cal Hopf bifurcation for parameter sets I and II, respec-
tively, which also satisfy our numerical result. Now, we
study theTuring instability. In the presence of diffusion,
Turing instability breaks the spatial symmetry, i.e., the
uniform steady state is stable for system (1); however, it
is unstable for system (4). Thus, the conditions for Tur-
ing instability are given by (i) Trace(J ) = J11+ J22 <

0, (ii) Det (J ) = J11 J22 − J12 J21 > 0 and (iii)
Det (JD) = (J11−D11k2)(J22−D22k2)− J12 J21 < 0.

We can find the threshold values of Turing insta-
bility and Turing bifurcation using Det (JD) = 0 and
Im(λ)=0, Re(λ)=0 at k = kcrt �= 0, respectively. The
threshold value ofTuring bifurcation parameter is given

by

Icrt = (5 − b)2 − (A − b)2

0.16
− 140, (10)

where A = ε(J22D11−2
√−J12 J21D11D22)
D22

and correspond-

ing critical wave number is kcrt =
(

Det (J )
Det (D)

)1/4
i.e.,

k rmcrt =
(
ab − a(0.08p0 + I )

εD11D22

)1/4

.

If we consider D22 as a Turing parameter, then the
threshold value is given by

(D22)crt = D11

J 211
(Det (J ) − J12 J21

+2
√−J12 J21Det (J )). (11)

One can also evaluate the critical value of Turing
instability with respect to D11. Interestingly, it is clear
from the above calculations that synaptic coupling D22

plays a major role for Turing instability. In the absence
of D22, only the membrane voltage spatially interacts
in the excitable extended systems, and as a result of
it, there is no Turing instability in the reaction diffu-
sion system [5,26]. Now, we derive the procedure to
obtain the amplitude equations with the generalized
TAE equations that explore the characteristics of the
diffusive instability. We only consider constant dif-
fusion scheme as it has interesting phenomenon in
excitable spatial system. At the threshold of Turing
point, the spatial symmetry of the reaction diffusion
system is destroyed and arises a stationary form in time
and oscillatory dynamics in space. It is noted that in the
vicinity of a bifurcation point, the evolution of a spa-
tial system generates critical slowing down, that can be
described by an amplitude equation given in the fol-
lowing.

3.1 Turing amplitude equation (TAE)

For Turing instability, the dynamics of system (4) can
be described by the amplitude equations, which is
known as TAE. The general form of TAE is given by
[42,49]

∂W

∂t
= ηT W + gT |W |2W + DT

∂2W

∂x2
, (12)

where ηT , gT and DT are constants. The normalized
form of this equation with ηT = DT = 1 and gT = −1
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can be considered as the limiting condition of CGLE
equation [49]. The TAE equation is a valid efficient
tool in one spatial dimensional (1D) case. Here, we do
not consider the case of wave instability [28]. In the
following, we find the value of above parameters. At
the onset of Turing instability, for critical wave number
kcrt , the critical value εT is given by

εT = Det (D)(2b − J̇11 + 2
√
b(b − J̇11))

aD2
11

,

where J̇11 = ε J11 = 0.08po + 5 and J̇12 =
ε J12 = −1. First, we introduce a control param-
eter μ1 as normalized deviation from the critical
value εT , i.e., μ1 = ε−εT

εT
. The right and left eigen-

vectors of the matrix L0 = (JD)|μ1=0 are given

by PP =
(
PPp

PPq

)
=

(
1
α

)
eikcrt x and PP∗ =

(1 + αβ)−1
(
1, β

)
eikcrt x , respectively, where α =

k2crt D11− J̇11
εT

− 1
εT

and β = k2crt D11− J̇11
εT

ab =
−1
εT

k2crt D22+a
. The

matrix J 0 = J |μ1=0 is given by

J 0 =
(

J̇11
εT

− 1
εT

ab −a

)
.

Using the expressions J 1i j = d Ji j
dε

dε
dμ1

|ε=εT and γi j =
−J 0i j + 4k2crt Di j , the matrices J 1 and γ are given by

J 1 =
(

− J̇11
εT

1
εT

0 0

)
,

and

γ =
(

− J̇11
εT

+ 4k2crt D11
1
εT−ab a + 4k2crt D22,

)

respectively. Finally, ηT , DT and gT are given by [49]

ηT = 1

1 + αβ
(J 111 + α J 112 + β J 121 + αβ J 122)

= α − J̇11
εT (1 + αβ)

, (13)

DT = 4k2crt
(D21+αD22)(D12+βD22)

(1+αβ)(J 022−k2crt D22)

= − 4αβk2crt D
2
22

(1 + αβ)(a + k2crt D22)
, (14)

and

gT = ḡ

1 + αβ
, (15)

where ḡ = H pp
1 (− 2

Det J 0
G1 J 022 + 1

Detγ G1γ22), G1 =
H pp
1
2 and H pp

1 = ∂2 f1(p,q)

∂p2
= 0.08

εT
. We can observe that

effects of diffusion appear in the expressions of all the
coefficients of the TAE, since the parameters α and β

depend on diffusive couplings.
gT = 0 line separates the region between super-

critical and subcritical Turing instability. gT < (>)0
indicates supercritical (subcritical) Turing instability.
First, we consider parameter set I with I = −68 and
D11 = 1. The deterministic system (1) is bistable
around I = −68 (Fig. 1d), i.e., stable and unstable
equilibrium branch coexists. The stable equilibrium
point E = (−54.43,−81.645) becomes unstable for
system (4), i.e., Turing instability occurs for suitable
value of diffusion coefficient D22. The threshold value
for Turing instability is given by (D22)crt = 11.081
(from Eq. (11)), i.e., stable equilibrium point becomes
unstable for D22 > 11.081. For better understanding,
we have shown the real part of the eigenvalue λ for
different values of D22 in Fig. 2a. In Fig. 2a, Re(λ)=0
line separates the Turing and non-Turing domains.

As we already know that, system (4) shows Turing
instability at parameter set I, with I = −68 and D11 =
1 for D22 > (D22)crt = 11.081.Now,weare interested
to find the nature of the Turing instability, i.e., whether
it is supercritical or subcritical. In Fig 2b, we show the
value of gT is negative in Turing region. That indicates
the instability is supercritical.

3.2 Complex Ginzburg–Landau equation (CGLE)

The dynamics of the spatiotemporal system (4) nearly
to the Hopf instability can be described by the ampli-
tude equations, which is known as CGLE [14,15,49].
The general form of CGLE is given by

∂W

∂t
= (1+iC0)W+(1+iC1)∇2W−(1+iC2)|W |2W,

(16)

where i denotes the imaginary unit and ∇2 is the one
or two-dimensional Laplacian operator. When the real
parametersC0,C1 andC2 vary, the complex amplitude
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Fig. 2 a Relation between the real part of the eigenvalue λ and
k for parameter set I, with I = −68 and D11 = 1 for differ-
ent diffusion coefficients, D22. b The expression of gT is shown
graphically for set I, with I = −68 and D11 = 1 corresponding

to D22 to determine the nature of the Turing instability. c Rela-
tion between C1 + C2 and D22 for set II, with I = 78.9975 and
different D11

W shows rich dynamical behavior. First,we have tofind
the condition for Hopf instability and then the values of
C0, C1 and C2 using Kuramoto’s method [19,49]. The
manipulations are done usingCGLEequation, and only
the coefficientC1 depends on the diffusion. For the case
of Hopf instability, Trace(J ) = J11 + J22 = 0. The
critical value εH of ε at the onset of Hopf instability is
given by

εH = 0.08p0 + 5

a
.

Jacobian matrix J has purely imaginary eigenvalues
±iω0, in the case of Hopf instability, which givesω2

0 =
J11 J22 − J12 J21, i.e.,

ω2
0 = −a2 + ab

εH
.

To find the values of C0, C1 and C2, we introduce a
small parameter μ as normalized deviation from the
critical value εH , i.e., μ = ε−εH

εH
. The matrix J0 =

J |μ=0 is given by

J0 =
(

a
−a2−ω2

0
ab

ab −a

)
.

The left and right eigenvectors of the matrix J0 are

given by P∗ = 1
2

(
−i a

ω0
, 1
b + i a

bω0

)
and P =

(
Pp

Pq

)
=

(
1 + iω0

a
b

)
, respectively. The matrix J1 =

d J
dε

dε
dμ

|ε=εH is given by

J1 =
(−a 1

εH

0 0

)
.

Next, we compute P∗ J1P to find the value of constant
C0 in Eq. (16), which gives P∗ J1P = − a+iω0

2 = σ1 +
iω1. Now,

C0 = ω1

σ1
= ω0

a
. (17)

Next, we compute P∗DP to find the value of constant
C1 in Eq. (16), which gives P∗DP = − 1

2 (D11+D22+
i a
ω0

(D22 − D11)) = d1 + id2. Now,

C1 = d2
d1

= a

ω0

D22 − D11

D22 + D11
. (18)

To find C2 = g2
g1
, we calculate the vectors HXX and

N XXX . HXX and N XXX are quadratic and cubic
terms, respectively [14,49]. HXX is described by

(HXX)i = 1

2
[∂

2 fi (p, q)

∂p2
|p0,q0 PpPp

+2
∂2 fi (p, q)

∂p∂q
|p0,q0 PpPq ],

for i = 1, 2. (HXX)2 = 0 as f2(p, q) is a linear

function. ∂2 f1(p,q)
∂p∂q = 0 as in f1(p, q), no product term
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of p and q exists. Now, withμ = 0 the first component
(H0XX)1 is given by

(H0XX)1 = 1

2

∂2 fi (p, q)

∂p2
|p0,q0 PpPp

= (1 − ω2
0

a2
)
H pp
1

2
+ i

ω0

a
H pp
1 ,

where H pp
1 = ∂2 f1(p,q)

∂p2
= 0.08

εH
. Similarly, the first

component (H0X X̄)1 is given by

(H0X X̄)1 = 1

2

∂2 fi (p, q)

∂p2
|p0,q0 Pp P̄p

= (1 + ω2
0

a2
)
H pp
1

2
.

As f1(p, q) is a quadratic function and f2(p, q) is a
linear function, (N XXX)i = 0, for i = 1, 2. Next, we
compute the following expressions:

(J0 − 2iω0 I )
−1 = − 1

3ω2
0

(
−a − 2iω0

a2+ω2
0

ab−ab a − 2iω0

)
,

Y0 = −2J−1
0 H0X X̄ = (1 + ω2

0

a2
)
H pp
1

ω2
0

(
a
ab

)
,

Y+ = −(J0 − 2iω0 I )
−1H0XX

= − 1

3ω2
0

((1 − ω2
0

a2
)
H pp
1

2
+ i

ω0

a
H pp
1 )

×
(
a + 2iω0

ab

)
.

Now, (H0XY0)1 = H pp
1 PpY0p

2 , (H0XY0)2 = 0,

(H0 X̄Y+)1 = H pp
1 P̄pY+p

2 and (H0 X̄Y+)2 = 0. Next,
we calculate g as g = g1 + ig2 = −P∗(2H0XY0 +
2H0 X̄Y+ + 3N0XX X̄), which gives

g1 + ig2 = −2P∗H0XY0 − 2P∗H0 X̄Y+. (19)

Now,

−2P∗H0XY0 = 1

2ω3
0

(a2 + ω2
0)(H

pp
1 )2(−ω0

a
+ i),

(20)

and

− 2P∗H0 X̄Y+ = 1

12ω3
0a

2
(3aω0(a

2 + ω2
0)

+i(a2ω2
0 − a4 + 2ω4

0))(H
pp
1 )2. (21)

Using Eqs. (19), (20) and (21) with equating the com-
plex and real parts, we obtain

g1 = − 1

4ω2
0a

(a2 + ω2
0)(H

pp
1 )2, (22)

and

g2 = −ag1
ω0

+ 1

6ω3
0a

2
(a2 + ω2

0)
2(H pp

1 )2.

Finally,

C2 = g2
g1

= − a

ω0
− 2

3ω0a
(a2 + ω2

0). (23)

The CGLE is valid if g1 > 0. Hence, the Hopf
bifurcation is supercritical if g1 > 0 and subcritical
if g1 < 0. The phase waves spreading away from the
origin of perturbation and toward the origin of perturba-
tion are known aswave (W) and antiwave (AW) respec-
tively [49]. W and AW domains are separated by the
curve C1 + C2 = 0. W and AW domains are given by
C1 + C2 < 0 and C1 + C2 > 0, respectively.

It is clear fromEq. (22) that the sign of g1 depends on
a, and supercritical Hopf bifurcation exists for a < 0,
which is in good agreement with the above analytical
and numerical simulations. Now, we consider param-
eter sets I and II with I = −65 and I = 78.9975,
respectively. We derive the following values εH = 1,
ω0 = 0.7071, C0 = 0.7071, C1 = − 1.41421(D11−D22)

(D11+D22)
,

C2 = −2.8284, g1 = −0.0048 and εH = 1, ω0 =
0.14, C0 = −7, C1 = 0.142857(D11−D22)

(D11+D22)
, C2 = 4.9048,

g1 = 0.0816 > 0 for parameter sets I and II, respec-
tively. In Fig. 2c, we show the value of C1 + C2 is
positive for different values of D11, corresponding to
D22 for set II. Therefore, only antiwave exists.

3.3 Synchronization factor

Next, we have considered parameter set II with I = 78
and D11 = 0.001. At lower diffusion D22 = 0.00001,
system (4) produces a de-synchronized firing pattern
(Fig. 3a). For better understanding, we have presented
time series of different arbitrarily chosen oscillators in
Fig. 3d. At higher diffusion D22 = 0.01, we observed
more synchronized firing pattern (Fig. 3b–e). Finally, at
D22 = 20, all nodes are completely synchronized, i.e.,
all nodes show same firing behavior. To understand the
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Fig. 3 Spatiotemporal plots of the 2D Izhikevich cable for
parameter set II, with I=78 and D11 = 0.001, a, d D22 =
0.00001,b, (e) D22 = 0.01 and c, (f) D22=20.d-f the blue, green
and red lines indicate the corresponding time series of arbitrary

oscillators in the reaction diffusion coupled systems. At lower
diffusion, the system produces a de-synchronized firing pattern
and then converges to a synchronized firing pattern for higher
diffusion

synchronization behavior, we derive a statistical mea-
sure of synchronization, i.e., the synchronization factor
R, which is given by the following equation

R = 〈E2〉 − 〈E〉2
1
N

∑N
i=1[〈p2i 〉 − 〈pi 〉2]

,

where

E = 1

N

N∑
i=1

pi .

The symbol 〈∗〉 indicates themean value of the variable
over time. R takes the value between 0 and 1 [8,43],
where the valueone indicates that all nodes are synchro-
nized. We have shown the effect of the diffusion coeffi-
cient D22 on synchronization factor R in Fig 4 . Further,
if we consider a bursting regime, we obtained similar
results with no significant changes. All the nodes are
not synchronized for weak coupling. However, with
the increase in diffusion coefficient D, the value of R
tends to 1, which indicates all the nodes are completely
synchronized for higher coupling.

Fig. 4 Distribution for the synchronization factor of the 2D
Izhikevich cable with diffusion for the parameter set II with I=78
and D11 = 0.001

4 Conclusions

The effects of diffusion in a biophysical extended sys-
tem and then collective dynamical formation have been
an ongoing research theme. The diffusion can enhance
the spatial characteristics and even induce different
diffusive instabilities. We consider diverse excitabil-
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ities of the deterministic system and verify the ana-
lytics of the model using Riccati differential equation.
Next, the diffusion-induced characteristics can be eval-
uated on the basis of amplitude equations that provide
a mathematical analysis of reaction diffusion systems
nearly to the onset of instabilities [28,49].We report the
effects of the diffusion on the system dynamics in the
vicinity of Hopf and Turing instability. The 1D cable,
which is in steady state for uncoupled system, can pro-
duce irregular oscillatory patterns. We also study the
effects of diffusion on synchronization in oscillatory
regime. For the TAE equation, it is classified the Turing
instability and divided it into two domains. We verify
the numerical simulations with proper analytical treat-
ment for different firing patterns, Hopf bifurcation and
Turing instability. The diffusive coupling affects the
coefficient C1, whereas the term C2 is independent of
diffusion for CGLE equation. Note that the value of
the diffusion coefficient has strong effects on kT and
hence on the diffusive instabilities. The diffusive cou-
plings contribute to all the coefficients of the amplitude
equations. The approach demonstrates flexibility of our
methodology for various firing regions supported by
Hopf bifurcation analysis. Further, it requires the mod-
ification to observe the effects on spatially extended
fast–slow excitable dynamical system. The present arti-
cle reports the emergence of two types of bifurcations
in the temporal dynamics that control different oscil-
lations exhibited by the system. Neuronal oscillations
reflect various rhythmic activities and can be generated
either by mechanisms in single neurons or by network
of neurons connected in a complex fashion. The results
further show the dynamical behavior of the transition
phases in single model and the diffusion-induced sys-
tem by a suitable analytical treatment.
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