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Abstract We propose a new epidemic model consid-
ering the partial mapping relationship in a two-layered
time-varying network, which aims to study the influ-
ence of information diffusion on epidemic spreading.
In the model, one layer represents the epidemic-related
information diffusion in the social networks, while the
other layer denotes the epidemic spreading in physical
networks. In addition, there just existmapping relation-
ships between partial pairs of nodes in the two-layered
network, which characterizes the interaction between
information diffusion and epidemic spreading. Mean-
while, the information and epidemics canonly spread in
their own layers. Afterwards, starting from the micro-
scopic Markov chain (MMC) method, we can estab-
lish the dynamic equation of epidemic spreading and
then analytically deduce its epidemic threshold, which
demonstrates that the ratio of correspondence between
two layers has a significant effect on the epidemic
threshold of the proposed model. Finally, it is found
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that MMC method can well match with Monte Carlo
(MC) simulations, and the relevant results can be help-
ful to understand the epidemic spreading properties in
depth.
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1 Introduction

Emerging epidemics can create the heavy harm to
human health [1,2], such as SARS [3], Ebola [4] and
COVID-19 [5]. How to prevent large-scale outbreaks
of infectious diseases has always been a challenging
topic in the area of disease intervention and public
health [6]. Therefore, it is particularly important to
use effective methods to prevent and control the dif-
fusion of infectious epidemics. For that matter, experts
in various fields begin to focus on the spread of infec-
tious diseases by establishing infectious diseasemodels
[7–9], which try to characterize the spreading law and
present some effective measures to fight against large-
scale pandemics.

Some classical propagation dynamical models were
proposed [10], such as susceptible–infective (SI),
susceptible–infective–susceptible (SIS) and suscepti-
ble–infective–recovery (SIR) models. An important
indicator of epidemic transmission is the critical thresh-
old for the epidemic spreading, which denotes the min-
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imum transmission rate to induce an extensive out-
break [11,12]. Among them, Parshani et al. [13] pre-
sented an analytic expression of threshold for (SIS)
model over a random network. To be notable, multiple
factors may affect the threshold of epidemic spread-
ing process within the population. As an example, Wu
et al. [14] investigated the effect of global, local and
contact awareness on the propagation threshold of the
SIS model in scale-free network. They proved that the
global awareness decreased the epidemic prevalence,
while the other two types of awareness increased the
epidemic threshold.

After more than 20 years of development, complex
network theory has made great achievements [15–19],
which provides a new framework to favor the study
of epidemic transmission. In the epidemic dynamics,
the multilayer network structure offers a novel topol-
ogy foundation to model the epidemic spreading since
the spread of epidemic is often coupled with the diffu-
sion of epidemic-related information, such as rumors
and knowledges [20–22], risk perception [23,24] and
fear [25,26], which is usually spread by means of
online social networking platforms, (e.g., WeChat, QQ
and Twitter) [27,28]. Any individual will take preven-
tive steps to prevent themselves from being infected
after they know the relevant information of the epi-
demics, for instance, wearing masks, reducing out-
door activities and paying attention to the personal
hygiene. Infected individuals also spread information
on social networks. Thus, epidemic-related informa-
tion plays a significant role in the spread of epidemics.
For example, individuals who are aware of the epi-
demics may reduce the probability of being infected,
and infected individuals who spread information facil-
itate the diffusion of information, and thereby, the
probability of susceptible individuals being infected is
reduced. Some studies have shown that epidemic infor-
mation can greatly affect epidemic outbreaks, such as
reducing the size of outbreaks and raising the epidemic
threshold [29–34]. In particular, Granell et al. [35] put
forward a novel UAU-SIS (unaware/aware/unaware–
susceptible/infected/susceptible) model to investigate
the coupling characteristics between information diffu-
sion and spread of epidemic dynamics, and they found
that epidemic threshold is correlated with the infor-
mation transmission property on the diffusion layer
as well as the network topology of epidemic propa-
gation layer. Also, there is a critical value of infor-
mation transmission rate; starting from this point, the

threshold increases and the outbreak size is reduced.
Furthermore, they improved their model [36] to take
into account the impact of mass media on epidemic
transmission, and the tipping point that had appeared
in previous studies disappeared under the influence of
mass media. Xia et al. [37] further explored the charac-
teristics of the coupled transmission of information and
SIR-type epidemics under the influence of mass media,
and they found that the increase of the transmission rate
of mass media could significantly reduce the size of
epidemic outbreak and increase the epidemic thresh-
old. In addition, Wang et al. [38] discussed the epi-
demic transmission behaviors under positive and neg-
ative prevention information, and they proved that the
coexistence of positive and negative prevention infor-
mation can substantially modify the epidemic outbreak
size and the critical threshold giving rise to the large-
scale diffusion of epidemics. As a further step, they
improved the model to explore the influence of mass
media on the spread of the epidemic, indicating that
mass media has an impact on the size and threshold of
the epidemics [39].

However, in the related studies mentioned above,
it is usually assumed that each node in one layer pre-
cisely corresponds to one node in the other layer; that is,
there exists one-to-one mapping relationship between
two layers for any node pair. It is also hypothesized
that any individual can effectively avoid being infected
once he obtains the epidemic-related information; at the
same time, infected individuals will carry out the infor-
mation transmission in the information layer. Never-
theless, during the real outbreaks, infected agents may
not transmit epidemic messages in time due to vari-
ous reasons. As an example, AIDS patients are usually
not willing to actively report their sexual partners of
their HIV infection [40]. Meanwhile, there may exist
some individuals who have the information about epi-
demics, while they are still reluctant to adopt the effec-
tive prevention measures, which renders the infectious
diseases to be further spread. Taking an example, a con-
siderable number of students in a university in South
Africa have knowledge about HIV, but most of them
have not adopted the preventive measures to protect
themselves [41]. Henceforth, it is necessary to inves-
tigate the impact of the mapping relationship between
partial node pairs on epidemic transmission, in which
epidemics and epidemic-related information are con-
sidered simultaneously. It is worth mentioning that we
have firstly discussed the impact of partial mapping of
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node pairs between two-layered networks based on the
static multiplex network topology [42], and it is indi-
cated that ratio of correspondence between two layers
of networks has greatly influenced the critical thresh-
old of proposed epidemic model. However, informa-
tion diffusion and epidemic transmission usually occur
in time-varying networks in reality, and then, the static
networks often ignore the time-varying characteristics
of individual connection patterns. In order to more
reasonably describe the transmission dynamics of epi-
demics in the real world, time-varying networks need
to be considered in the modeling of epidemic spread
[43–46].

For this reason, we try to utilize the activity-driven
network to describe the network structure of informa-
tion diffusion and epidemic propagation. Furthermore,
beginning from the framework of two-layered net-
works, we put forward one coupled epidemic model to
delineate the interaction between epidemics and infor-
mation associated with epidemics, where one layer
stands for the epidemic-related information diffusion
network, while another one is used as the underly-
ing network for the epidemic transmission. However,
different from previous works [35–39], we only con-
sider that there exists the mapping relationship for par-
tial node pairs between two layers. On the contrary,
they will propagate independently if the corresponding
nodes have no suchmapping relationships. Particularly,
we take use of the microscopic Markov chain (MMC)
method to analytically acquire the critical threshold of
epidemics for the proposed model. Meanwhile, large
quantities of MC simulations are used to demonstrate
the efficacy of MMC approach.

The remaining sections of this paper are organized
as follows. First of all, the proposed epidemic model
is introduced in detail in Sect. 2. Secondly, in Sect. 3,
MMC method is used to analyze the model and derive
the analytical expression of the epidemic threshold, and
then, extensive simulations are conducted to explore
the influence of correspondence rate on the epidemic
spreading dynamics. Finally, we conclude the paper
and perform some outlooks in Sect. 4.

2 The UAU-SIS epidemic model

In this work, starting from an activity-driven network
model, time-varying network is used to characterize
the coupling transmission and interaction of informa-

tion diffusion and epidemics transmission. In order
to make our introduction to the proposed epidemic
model clearer, we list the definitions of key quanti-
ties or parameters of the epidemic model in Table 1.
As shown in Fig. 1, Layer (V) denotes the diffusion of
epidemic-related information on virtual online social
networking platforms (e.g., WeChat and Weibo), and
Layer (R) describes the epidemic transmission in real
social networks (say, friends and family) [47]. There
is a mapping relationship between partial node pairs,
which indicates that only some individuals will change
their behavior once they are infected or receive the
epidemic-related information. At each layer, the net-
work is generated by the actively driven model [48],
which includes N nodes. Each node has a fixed activ-
ity level, denoting the probability of this node being
activated to build links with other ones at each time
step. On the upper layer (i.e., Layer V), the activity
level for every node is expressed as ai = ηVxi ; while
for the lower layer (that is, Layer R) the activity level
of each node is assumed to be bi = ηRyi , where xi and
yi are a set of sequences following the power-law dis-
tribution FV(x) and FR(y), that is FV(x) ∝ x−γV and
FR(y) ∝ y−γR , and meanwhile, they satisfy the condi-
tions ε ≤ xi ≤ 1 and ε ≤ yi ≤ 1, where ε represents
the minimum value of xi or yi , we set ε = 5 × 10−4,
and γV and γR represent the activity index of Layer (V)
and Layer (R), respectively. The smaller activity index
γV or γR means the more heterogeneous node activity
distribution on Layer V or Layer R.

Figure 1 depicts one basic step of time-varying net-
work construction on Layer (V) or Layer (R), which
are divided into the following three steps. 1) At the
beginning of time step t , both Layer (V) and Layer
(R) are composed of N isolated nodes, and there just
exist the mapping relationships between partial node
pairs for two-layered networks; 2) the node at layer V
(R) becomes the active state with probability ai (bi )
and randomly selects other mV (mR) nodes to estab-
lish the links; and 3) at the next time step t + 1, all
links on Layer (V) or Layer (R) are removed, the cor-
responding layer is restored to N separated nodes,
and repeat the previous two steps until the propaga-
tion of the two layers reaches a stable state. At each
iterating time step, the average degree of Layer (V)
and Layer (R) is 〈kV〉 = 2mV〈a〉 = 2mVηV〈x〉 and
〈kR〉 = 2mR〈b〉 = 2mRηR〈y〉, respectively.

Next, the epidemics and information spreading
model is defined in detail. The process of information
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Table 1 Definitions of some key quantities or parameters in the proposed epidemic model

Symbol Definition

N Network size on each layer in the proposed epidemic model

t Time step

λ Probability of an unaware agent receiving information from one of his neighbors

δ Probability of an aware individual forgetting information

β Probability of a susceptible agent being infected by one of his neighbors

μ Probability of an infected individual recovering to susceptible state

βU Probability of an unaware susceptible agent being infected by one of his infected neighbors

β A Probability of an aware susceptible agent being infected by one of his infected neighbors

mV Number of links built by an active node on Layer (V)

mR Number of links built by an active node on Layer (R)

xi Node i’s activity potential on Layer (V)

yi Node i’s activity potential on Layer (R)

ai Node i’s activity level on Layer (V)

bi Node i’s activity level on Layer (R)

ηV Rescaling factor on Layer (V)

ηR Rescaling factor on Layer (R)

FV(x) Distribution of activity potential for nodes on Layer (V)

FR(y) Distribution of activity potential for nodes on Layer (R)

γV Exponent of activity level on Layer (V)

γR Exponent of actively level on Layer (R)

ε The lower limit of activity potential distribution

〈kV〉 Average degree of nodes on Layer (V)

〈kR〉 Average degree of nodes on Layer (R)

li Mapping relationship between Layer (V) and Layer (R)

ωi Attenuation coefficient β when an individual is aware of epidemic-related information

Θ Correspondence rate between two layers

PX
i Probability of individual i is X-state

ri (t) Probability that an individual i on Layer (V) is not informed by his neighbors at time step t

q A
i (t) Probability that an aware individual i is not infected by his neighbors at time step t

qUi (t) Probability that an unaware individual i is not infected by his neighbors at time step t

transmission on Layer (V) is described by UAU-type
dynamics, in which individuals may be at the unaware
(U) or aware (A) state. Among them, an unaware agent
will acquire the epidemic-related information with the
probability λ from his neighbors, and an aware individ-
ual will forget the related information with probability
δ. In addition, the classical SIS-type model is used to
describe the epidemic transmission at Layer (R), where
each individual may be susceptible (S) or infected (I).
A susceptible individual is transformed into an infected
one with probability β, and the infected individual
returns to the susceptible state with probability μ. Dif-

ferent from the classic SIS model, information trans-
mission will affect the probability of being infected
when the two-layered network is coupled.Accordingly,
under the case of two-layered network and partial node-
pair mapping, there exist 4 possible states for any node
pair in the currentmodel,which includeUS,UI,AS and
AI. Furthermore, any one of 4 states can be transformed
into other possible ones with a certain probability, and
corresponding state transition can be shown in Fig. 2.

In this model, in order to characterize the partial
mapping of node pairs between layers, we use the vec-
tor L = [l1, l2, . . . , lN ] to describe the mapping rela-
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Fig. 1 The UAU-SIS epidemic model with partial node pairs
mapping in time-varying network. Layer (V) denotes the
epidemic-related information diffusion network, and there are
two kinds of node states including aware (A) and unaware (U);
Layer (R) network represents the spread of epidemics, and there
are susceptible (S) and infected (I) states in the Layer (R). A
virtual connection between two layers means that partial node
pairs hold the mapping relationship. Individuals in Layer (V) are
represented by a circle, while individuals in Layer (R) are repre-
sented by a square. The size of the circle and the square indicates
the level of individual activity. The larger the size, the higher
the level of activity. Firstly, in panel a, two layers are, respec-
tively, composed of N isolated nodes. As an example, node 6 is
in the aware state on Layer (V) , and infected state on Layer (R).
Secondly, in panel b, nodes 2, 7 and 10 in Layer (V) are active
nodes, and they randomly select nodes at Layer (V) to establish
two links (mV = 2). In addition, nodes 1, 6 and 9 in Layer (R) are
active, and they randomly select nodes at Layer (R) to establish
two links (mR = 2). At this step, node 5 in Layer (R) is infected
by neighbor node of 6, and the corresponding node in Layer (V)
becomes aware. At the same time, node 4 is also infected by
neighbor node 6, while the state of node 4 in Layer (V) remains
unaware since there is no mapping relationship between layers.
In Layer (V), node 10 becomes aware by acquiring the informa-
tion from its neighbor of node 6. At the next step, all links are
deleted and each layer is still composed of N independent nodes,
and then, the processes in panel b are repeated until the diffusion
dynamics in the two layers tend to be stable

Fig. 2 The probability transition tree for four states (US, AS, AI
and UI). Nodes that are unaware of the information will not be
transmitted by their neighbors with probability ri , and individu-
als that are aware of the information will forget the information
with probability δ. The probability that the node i is unaware
of the information will not be infected by its neighbors which is
qUi , while the probability is q A

i if the individual is aware of infor-
mation. In addition, the infected node returns to the susceptible
state with probability μ. li denotes whether the node pairs on
two layers of networks correspond to each other; when the nodes
in two layers correspond to each other, li = 1; on the contrary,
there is no correspondence between the node pairs, and infor-
mation diffusion and epidemic transmission are independent of
each other and so li = 0

tionship: If there is nomapping between a pair of nodes,
li = 0; otherwise, li = 1. The rate of infection (β)
will decay with an attenuation factor ωi when a sus-
ceptible individual i obtains the information related to
epidemics, that is, β A

i = ωiβ, where ωi can be defined
in the following way,

ωi =
{

α(0 ≤ α < 1), li = 1

1, li = 0.
(1)

In the model, βU = β is used to denote the rate of
infection for an unaware susceptible to be one infected
neighbor. In addition, when li = 1, we assume that
the epidemic-related information will be immediately
spread once a US-type individual is infected. However,
the individual state on the Layer (V) will not be infected
if there is no mapping between node pairs (i.e., li = 0).

At any time step t , PUS
i (t), PU I

i (t), PAS
i (t) and

PAI
i (t) can be used to denote the probabilities for

an individual i at the states of US, UI, AS and AI,
respectively. For each node i , the normalized condition
PUS
i (t) + PU I

i (t) + PAS
i (t) + PAI

i (t) = 1 must be
satisfied. The activity levels of nodes in Layer (V) and
Layer (R) are represented by vectorsA = [a1, a2, . . . ,

aN ] and B = [b1, b2, . . . , bN ], respectively. Further-
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more, ri (t) denotes the probability that any unaware
node i at Layer (V) will not propagate the information
at time step t . Similarly, for the node in Layer (R), if
the state of this node in Layer (V) is unaware, then the
probability that the individual will not be infected by
any infected neighbor at step t is qUi (t); Otherwise, the
probability is q A

i (t). Thus, we can get the following
equations,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ri (t) = ∏
j

(
1 − λ

mV
N

[
ai P A

j (t) + a j P A
j (t)

])
q A
i (t) = ∏

j

(
1 − β A

i
mR
N

[
bi P I

j (t) + b j P I
j (t)

])
qUi (t) = ∏

j

(
1 − β

mR
N

[
bi P I

j (t) + b j P I
j (t)

])
,

(2)

where PA
j = PAS

j + PAI
j , P I

j = PU I
j + PAI

j .
Starting from the state transition trees in Fig. 2,

the dynamical equations of four states for the propose
model are obtained as Eq. (3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PUS
i (t + 1) = PUS

i (t)ri (t)qUi (t)

+PAS
i (t)δqUi (t)

+PAI
i (t)δμ

+PU I
i (t)ri (t)μ

PAS
i (t + 1) = PUS

i (t)
[
1 − ri (t)

]
q A
i (t)

+PAS
i (t)(1 − δ)q A

i (t)

+PAI
i (t)(1 − δ)μ

+PU I
i (t)

[
1 − ri (t)

]
μ

PU I
i (t + 1) = PUS

i (t)ri (t)
[
1 − qUi (t)

]
(1 − li )

+PAS
i (t)δ

[
1 − qUi (t)

]
(1 − li )

+PAI
i (t)δ(1 − μ)(1 − li )

+PU I
i (t)ri (t)(1 − μ)

PAI
i (t + 1) = PUS

i (t)ri (t)
[
1 − qUi (t)

]
li

+PUS
i (t)

[
1 − ri (t)

][
1 − q A

i (t)
]

+PAS
i (t)(1 − δ)

[
1 − q A

i (t)
]

+PAS
i (t)δ

[
1 − qUi (t)

]
li

+PAI
i (t)δ(1 − μ)li

+PAI
i (t)(1 − δ)(1 − μ)

+PU I
i (t)

[
1 − ri (t)

]
(1 − μ)

(3)

When the system arrives at the steady state, the fol-
lowing equations can be obtained:

⎧⎪⎪⎨
⎪⎪⎩

PUS
i (t + 1) = PUS

i (t) = PUS
i

P AS
i (t + 1) = PAS

i (t) = PAS
i

PU I
i (t + 1) = PU I

i (t) = PU I
i

P AI
i (t + 1) = PAI

i (t) = PAI
i .

(4)

3 Analytical and experimental results

3.1 Analytical results from MMC method

Epidemic outbreak threshold is an important indicator
to characterize whether the disease outbreaks can hap-
pen in the field of infection disease modeling. In this
section, the dynamic process of Eq. (3) is analyzed by
MMC method, and we deduce the epidemic threshold
of the proposed model by using Theorem 1.

Theorem 1 Suppose that the actively level vectors of
two-layered networks are A = [a1, a2, . . . , aN ] and
B = [b1, b2, . . . , bN ], and the formulas of epi-
demic and related information dynamics are shown
in Eq. (3). The threshold of epidemic outbreak can
be expressed as βc = μ

mRΛmax(H)
, where Λmax(H) is

the maximum eigenvalue of matrix H. Among then,

matrix H is going to be

[
Z A
b T A

Z A
b2

Z A
b

]
, where Z A

b =
1
N

N∑
i=1

bi [1−(1−ωi )PA
i ], T A = 1

N

N∑
i=1

[1−(1−ωi )PA
i ]

and Z A
b2

= 1
N

N∑
i=1

b2i [1 − (1 − ωi )PA
i ].

Proof Whenβ is near the threshold, the probability that
the node is infected is almost 0. Hence, let P I

i = PAI
i +

PU I
i = εi � 1, then Eq. (2) can be approximated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q A
i = ∏

j
(1 − β A

i
mR
N

[
bi P I

j (t) + b j P I
j (t)

]
)

≈ 1 − ∑
j

β A
i

mR
N (bi P I

j + b j P I
j )

= 1 − mRβ A
i (biρ I + θ I

b )

= 1 − mRωiβ(biρ I + θ I
b )

qUi = ∏
j

(1 − β
mR
N

[
bi P I

j (t) + b j P I
j (t)

]
)

= 1 − ∑
j

β
mR
N (bi P I

j + b j P I
j )

= 1 − mRβ(biρ I + θ I
b ),

(5)
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where ρ I =
N∑
j=1

P I
j , θ

I
b =

N∑
j=1

b j P I
j . When β is near

epidemic threshold, Eq. (3) at the steady state can be
further simplified as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PUS
i = PUS

i ri (1 − mRβ(biρ
I + θ I

b ))

+ PAS
i δ(1 − mRβ(biρ

I + θ I
b ))

+ PAI
i δμ + PU I

i riμ

PAS
i = PUS

i (1 − ri )(1 − ωimRβ(biρ
I + θ I

b ))

+ PAS
i (1 − δ)(1 − ωimRβ(biρ

I + θ I
b ))

+ PAI
i (1 − δ)μ + PU I

i (1 − ri )μ

εi = εi (1 − μ) + PUS
i [rimRβ(biρ

I + θ I
b )

+ (1 − ri )ωimRβ(biρ
I + θ I

b )]
+ PAS

i [δmRβ(biρ
I + θ I

b )

+ (1 − δ)ωimRβ(biρ
I + θ I

b )].
(6)

Since P I
i = PAI

i + PU I
i = εi � 1, we can assume

PU
i = PU I

i + PUS
i ≈ PUS

i and PA
i = PAI

i + PAS
i ≈

PAS
i . After that, the first and second equations inEq. (6)

can be further approximated by removing the higher-
order terms O(εi ) as{
PU
i = PU

i ri + PA
i δ

PA
i = PU

i (1 − ri ) + PA
i (1 − δ).

(7)

Henceforth, we can further simplify the last term in
Eq. (6) into the following equation,

εi = εi (1 − μ) + (PUS
i ri + PAS

i δ)mRβ(biρ
I + θ I

b )

+ [PUS
i (1 − ri )+PAS

i (1 − δ)]ωimRβ(biρ
I+θ I

b )

= εi (1 − μ) + PU
i mRβ(biρ

I + θ I
b )

+ PA
i ωimRβ(biρ

I + θ I
b )

= εi (1 − μ) + (PU
i + PA

i ωi )mRβ(biρ
I + θ I

b ).

(8)

Since PU
i + PA

i = 1, we can reconstruct Eq. (8) as
follows,

μP I
i = mRβ(biρ

I + θ I
b )[1 − (1 − ωi )P

A
i ]. (9)

Taking the average value of all nodes into account,
we calculate the infectiondensity to beρ I = 1

N

∑N
j=1 P

I
j .

Then, Eq. (9) can be written as follows,

μρ I = mRβ(ρ I Z A
b + θ I

b T
A). (10)

Multiply both sides of Eq. (9) by bi and take the aver-
age value of all nodes to obtain the following equation:

μθ I
b = mRβ(ρ I Z A

b2 + θ I
b Z

A
b ), (11)

where Z A
b = 1

N

N∑
i=1

bi [1 − (1 − ωi )PA
i ], T A =

1
N

N∑
i=1

[1 − (1 − ωi )PA
i ] and Z A

b2
= 1

N

N∑
i=1

b2i [1 − (1 −
ωi )PA

i ].
Thus, we can rewrite Eq. (10) and (11) into the

matrix form as follows,

H

[
ρ I

θ I
b

]
= μ

mRβ

[
ρ I

θ I
b

]
, (12)

where

H =
[
Z A
b T A

Z A
b2 Z A

b

]
. (13)

The network system satisfies

[
ρ I

θ I
b

]
�= −→

0 when the

epidemic is greatly transmitted. When the epidemic
breaks out in a networked system, βc is the minimum β

value satisfying the formula Eq. (12) such that μ
mRβc

is
equal to Λmax(H), which is the maximum eigenvalue
of matrix H and can be defined as

Λmax(H) =
√
Z A
b2
T A + Z A

b . (14)

As a consequence, we can characterize the epidemic
threshold as

βc = μ

mRΛmax (H)
= μ

mR

{√
Z A
b2
T A + Z A

b

}−1

.

(15)


�
It is worth noting that in Eq. (15), the epidemic

threshold is related to the diffusion of the information,
the rate of epidemic recovery, the correspondence rate
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between the Layer (V) and Layer (R) and attenuation
factor ωi . In addition, the level of node activity and
connectivity in the Layer (V) and Layer (R) will also
vary threshold according to Eq. (15).

3.2 Experimental results based on Monte Carlo
simulations

In this subsection, extensive Monte Carlo simulation
experiments are carried out to validate the theoretical
predictions inTheorem1. For all experiments, the num-
ber of nodes at each layer is set to be N = 10000,
and the vector L is used to describe whether there
exists the mapping relationship between correspond-
ing pairs. Once the vector L is determined, it will
remain unchanged in subsequent experiments. There-
fore, we define the mapping rate between two lay-
ers as Θ = (

∑
i li )/N × 100%, where li ∈ L .

In addition, ρ I represents the proportion of infected
individuals at the stable state. In the iterative calcula-
tion of MMC, the proportion of I-state is written as
ρ I = [∑i (P

U I
i + PAI

i )]/N , while it can be denoted
as ρ I = [(NU I +NAI )/N ] in the numerical simulation
of MC, where NU I and NAI represent the number of
UI andAI agent pairs at the steady state. In addition, ρ I

is initialized to be 0.01 when t = 0. To be specific, at
the beginning of MC simulations, we randomly select
100 node pairs to initialize to AI-state. That is to say,
the number of initial node pairs states in US, UI, AS
and AI is 9900, 0, 0 and 100, respectively. In addition,
in the calculation of MMC, the state of each node pair
is PUS

i = 0.99, PU I
i = 0, PAS

i = 0 and PAI
i = 0.01

when t = 0, respectively.
Firstly, the results of the MMC are compared with

the MC simulation results to verify the effectiveness
of the analysis based on MMC. Figure 3 depicts the
results of the number of I-state individuals changing
with the probability of infection at different correspon-
dence rates in MMC and MC. The average relative
error between MMC and MC can be calculated as∣∣ρ I

MC − ρ I
MMC

∣∣ /ρ I
MC . In Fig. 3, the relative error is

4.1% when Θ = 40%; similarly, they are 3.7%, 3.5%
and 4.5%whenmapping rates are 60%, 80%and 100%,
respectively. Therefore, MMC method can be accu-
rately used to depict the epidemic spreading behaviors
of the model described above.

Secondly, in Fig. 4 we consider the effect of Θ on
ρ I in the case of different combinations of β and λ .

Fig. 3 Comparing the results obtained fromMMC andMCwith
β for differentΘ .ρ I denotes the density of infected individuals at
the steady state. In the figure, solid nodes denote the simulation
results of MC, while hollow nodes represent the experimental
results of MMC. The remaining parameters are set to be as fol-
lows: λ = 0.4, δ = 0.2, μ = 0.2, α = 0, γV = γR = 2.1,mV =
mR = 4. Each group of ρ I obtained through MC and MMC is
averaged over 50 independent runs

There is no doubt that the value of ρ I increases with
the rise of β when λ ∈ [0, 1] is constant. However, this
increasing tendency weakens when Θ is varied from
40% to 100%. This is because when the value of β is
larger, the disease propagation may play a significant
role so as to promote the information diffusion. In the
case of the higher corresponding rate, more individu-
als have opportunities to take the preventive measures
to avoid being infected once they receive the disease-
related information. Meanwhile, larger λ leads to the
reduction of ρ I , but the level of reduction is not obvi-
ous. For example, in the case of Θ = 40%, the value
of ρ I changes from 0.5164 to 0.4124 when λ changes
from0 to 1,while it declines from0.3886 to 0.015when
Θ = 100%. In addition, the effect on ρ I by increasing
λ is inferior to change the value of Θ . For instance, the
value of ρ I in Fig. 4a is around 0.4831, 0.4562, 0.4349
and 0.4234 for different values of λ = 0.2, 0.4, 0.6 and
0.8 when we fix the infection rate β = 0.5. However,
ρ I in Fig. 4b–d is 0.4141, 0.3412 and 0.2688 when
β = 0.5 and λ = 0.2. Therefore, we may obtain the
conclusion that the increase in the correspondence rate
has a greater impact on information dissemination than
increasing λ during the epidemic outbreaks.

In the proposed model, the following three param-
eters can affect the structure of the two-layered time-
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Fig. 4 ρ I at the steady state is plotted as a function of β and
λ. Other parameters are assumed to be δ = 0.2, μ = 0.2, α =
0, γV = γR = 2.1,mV = mR = 4

varying networks: activity distribution index γ , contact
abilitym and the correlation coefficientC of node activ-
ity between two layers. Specifically, the activity indexγ

represents the heterogeneity of individual activity dis-
tribution, and the smaller the value of γ , the stronger
the heterogeneity of nodes activity distribution. Mean-
while, the contact capacity means the average number
of links established by an active node, and the activity
correlation between two layers describes how nodes at
different activity levels in Layer (V) and Layer (R) are
coupled to each other. Next, we will explore the impact
of these three factors on epidemic transmission in a
partially mapping two-layered time-varying networks.

The influence of activity heterogeneity of the node
at Layer (V) with different correspondence rate Θ is
plotted in Fig. 5. As can be seen from Fig. 5, the value
of Θ can affect the epidemic size and epidemic thresh-
old. For example, ρ I in Fig.5a is 0.40, 0.31, 0.24 and
0.14 when Θ is varied from 40% to 100%, and the
outbreak thresholds in Fig.5b are around 0.16, 0.18,
0.21 and 0.25 when γV = 3.0. This may be because
in the case of higher value of Θ , more people have
chances to take preventive measures once they know
the epidemic-related information. At the same time,
they choose to spread the information after they are
infected, thus effectively inhibiting the spread of the
epidemics and modestly reducing the threshold of epi-
demic outbreak. The activity heterogeneity of Layer
(V) has little effect on epidemics when Θ is lower.
For example, when γV = 2.0, 2.5, 3.0, 3.5, ρ I at the
steady state is 0.3871, 0.3956, 0.4034, 0.4057, respec-
tively, and epidemic threshold βc is 0.1658, 0.1618,
0.1600, 0.1569, respectively, when Θ = 40%, while
ρ I is 0.1078, 0.1247, 0.1478, 0.1579, and the thresh-
old βc is 0.2925, 0.1618, 0.1600, 0.1569, respectively,
when Θ = 100%. This may be because in the case
of low correspondence rate, individuals who know the
information and take effective measures become fewer.
In this case, increasing node activity can affect and pro-
mote the further spread of information, but there are
still fewer individuals who take preventive measures,
and thus, the inhibition effect on epidemic transmis-
sion is not obvious. Moreover, with the activity hetero-
geneity of nodes in Layer (V) being strengthened (say,
decreases of γV ) , the epidemic size decreases and the
threshold increases for different correspondence rates.
Because the decrease of γV leads to the increase of
the average activity potential 〈x〉 of nodes in Layer
(V), which further induces the mean degree of nodes in
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Fig. 5 Results of ρ I and βc as a function γV for differentΘ . The
panel a shows the evolution of ρ I with the changes of γV, and
the panel b shows the evolution of βc. The relevant parameters
are set as follows: λ = 0.4, δ = 0.2, μ = 0.2, α = 0, γR =
2.1,mV = mR = 4. In addition, β = 0.4 in panel a

Layer (V) to be increased, thereby the epidemic-related
information diffusion is promoted and the chance of
individuals taking preventive measures is also enlarged
to inhibit the spread of epidemics.

Figure 6 depicts the effect of activity heterogeneity
of the node at Layer (R) at different correspondence
rates Θ . We find that, for different corresponding rates

Θ , the change of the activity heterogeneity of nodes in
Layer (R) has a substantial influence on the density of
infected individuals at the steady state and the threshold
of epidemic outbreaks. For instance, the steady-state
values of ρ I are 0.32, 0.24, 0.15 and 0.06 in Fig. 6a,
and the outbreak thresholds are 0.19, 0.22, 0.27 and
0.33 in Fig. 6b when Θ varies from 40% to 100% and
γR = 3.0, which may be because when the mapping
rate is high, infected individuals are willing to actively
spread this information, and at the same time, more
individuals will know the epidemic-related informa-
tion and take preventive measures, thus slowing down
the spread of the epidemic. In addition, in the case of
different correspondence ratesΘ , changing the activity
heterogeneity of nodes in Layer (R) has a certain influ-
ence on epidemic transmission. As an example, when
γR = 2.0, 2.5, 3.0, 3.5, the density of infected individ-
uals is 0.3941, 0.3563, 0.3236, 0.2935, and threshold
is 0.1615, 0.1784, 0.1917, 0.2052, respectively, when
Θ = 40%. Likewise, the ρ I is 0.1189, 0.0851, 0.0588,
0.0365, and the threshold is 0.2802, 0.3090, 0.3335,
0.3556, respectively, when Θ = 100%. We can know
that the activity heterogeneity of node in Layer (R) is
enhanced, the average activity potential 〈y〉 of nodes
in Layer (R) increases, and leading to an increase in
the average degree of the network in Layer (R), it
is conducive to epidemic transmission in Layer (R).
Meanwhile, when the corresponding rate Θ gradually
decreases, the influence on the trend of epidemic trans-
mission does not weaken.

Figure 7 describes the changes of ρ I and βc in
the case of different correspondence rates Θ with the
number of links mV established by the active node
in Layer (V). The change of mV at different corre-
spondence rates has a great difference as far as the
density of infected individuals and the threshold are
concerned. For instance, when mV changes from 1 to
8, ρ I decreases from 0.4439 to 0.3524 when Θ =
40%, while it declines from 0.2766 to 0.004 when
Θ = 100%. Furthermore, βc increases from 0.1289 to
0.1800 and from 0.1291 to 0.4434, respectively. With
mV continuing to increase, the change of ρ I and βc

gradually decreases. The increase of mV is conducive
the 〈kV〉 to increase, leading to the spread of epidemic
information in Layer (V), and thus effectively inhibits
the spread of epidemic. When the correspondence rate
is higher, increasing the number of links created by
an active node in Layer (V) can rapidly reduce the
infection density and increase the threshold of epi-

123



Impact of information diffusion on epidemic spreading 3829

Fig. 6 Results of ρ I and βc as a function γR for differentΘ . The
panel a shows the evolution of ρ I with the changes of γR, and
the panel b shows the evolution of βc. The relevant parameters
are set as follows: λ = 0.4, δ = 0.2, μ = 0.2, α = 0, γV =
2.1,mV = mR = 4. In addition, β = 0.4 in panel a

demic outbreaks, while, for the lower corresponding
rate Θ , the change ofmV has little effect on the thresh-
old. As an example, whenmV is varied from 1 to 8, the
threshold is slightly increased from 0.1289 to 0.1903
at Θ = 40%, while it rises from 0.1291 to 0.6587 for
Θ = 100%. Therefore, the increase of correspondence

Fig. 7 Results of ρ I and βc as a function mV for different. The
panel a shows the evolution of ρ I with the changes of mV, and
the panel b shows the evolution of βc. The relevant parameters
are set as follows: λ = 0.4, δ = 0.2, μ = 0.2, α = 0, γV =
γR = 2.1,mR = 4. In addition, β = 0.4 in panel a

rate Θ can effectively inhibit the spread of epidemic
and can enhance the threshold of epidemic outbreak
when mV is larger.

Next, we explore the impact of Θ on the epidemic
spreading when mR in Layer (R) is varied, and related
results are shown in Fig. 8. Similarly, mR is varied
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from 1 to 8, and ρ I is increased from 0 to 0.5354
when Θ = 40%, but it increases from 0 to 0.3058 if
Θ = 100%. Meanwhile, βc is reduced from 0.6292 to
0.0786 and from 0.9361 to 0.1173, respectively. AsmR
increases, the change of ρ I and βc gradually decreases
and tends to be stable. The increase ofmR leads to 〈kR〉
increase, which is conducive to the spread of epidemic
in Layer (R). Moreover, the corresponding rate Θ is
smaller, and the influence of infection density is greater
when mR is increased. For example, mR changes from
1 to 20, and the infection density changes from 0 to
0.6481 when Θ = 40%, while ρ I changes from 0 to
0.4353 when Θ = 100%. Since the correspondence
rateΘ is lower, fewer infected individuals in Layer (R)
have chances to spread information, which renders the
fewer individuals in Layer (V) to know the information.
Thus, fewer individuals will take effective prevention
measures, which leads to the further transmission of
the epidemic.WhenmR increases up to a certain value,
the change ofmR has little impact on the threshold, and
the difference between different correspondence rates
Θ becomes smaller. As an example, when mR = 20,
the correspondence rateΘ changes from 40% to 100%,
and the threshold values are 0.0315, 0.0354, 0.0403 and
0.0468, respectively. The higher the corresponding rate
Θ , the stronger the inhibitory effect on the epidemic
when mR changes.

Finally, in order to explore the influence of the pro-
portion of positive or negative correlation node pairs
on epidemic size and outbreak threshold in different
corresponding rate, we use C to describe the propor-
tion of positive or negative correlation between node
pairs. For example, C = 0.5 means that there are 5000
nodes in Layer (V) whose activity ability is positively
mapping with nodes of higher activity ability in Layer
(R). However,C = −0.5 represents that there are 5000
nodes with higher activity capacity in Layer (V) corre-
sponding to nodes with lower activity capacity in Layer
(R). And the remaining 5000 nodes are randomly map-
ping. As shown in Fig. 9, the influence of correlation
rateC on epidemic size and threshold is increased with
the corresponding rate Θ being raised. For instance,
the infection density ρ I and threshold βc change from
0.3928 to 0.3846 and from 0.1606 to 0.1695, respec-
tively, when Θ = 40%, while for Θ = 100%, ρ I

changes from 0.1379 to 0.0671 and βc changes from
0.2544 to 0.3307. Meanwhile, when the value of C
is positive, the infection density ρ I decreases and the
threshold βc increase as C increases. However, the

Fig. 8 (Color online) Results of ρ I and βc as a function mR
for different Θ . The panel a shows the evolution of ρ I with the
changes of mR, and the panel b shows the evolution of βc. The
relevant parameters are set as follows: λ = 0.4, δ = 0.2, μ =
0.2, α = 0, γV = γR = 2.1,mV = 3. In addition, β = 0.4 in
panel a

changes of ρ I and βc are distinct from those foregoing
phenomena when the value of C is negative. It is worth
mentioning that the change of infection density ρ I and
threshold βc is very obvious at the positive and nega-
tive boundary; nevertheless, they do not change much
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more when C is far from zero. It can be explained that
the number of nodes with strong activity is limited,
the mapping relationship between nodes with the rel-
atively lower activity ability has little influence on the
final results, and the positive correlation promotes the
spread of information and inhibits the spread of epi-
demic. Here, the individuals with high activity ability
both in Layer (V) and Layer (R) can enhance the trans-
mission of epidemic-relative information and inhibit
spread of the epidemic. As indicated in real life, the
behaviors of key individual may determine the evolu-
tion of epidemics.

4 Conclusions and outlooks

In summary, based on the framework of two-layered
time-varying networks, we present an improved epi-
demicmodel to study the interactions between epidemic-
related information and epidemics, where only partial
node pairs have the coupling or mapping relationships
on two-layered networks. In the proposed model, the
UAU model is used to depict the epidemic-relative
information diffusion in the first Layer (V), and the
SIS model is used to describe epidemic transmission
in the second Layer (R). In this model, only partial
individuals are considered to have the mapping rela-
tionship between two layers, and so only some indi-
viduals would take preventive measures after knowing
the epidemic-related information or respond to the state
of another layer after being infected. We utilize MMC
method to analyze and derive the epidemic threshold
of the model, in which the threshold is not only related
to the information transmission of Layer (V), but also
closely correlated with the ratio of correspondence of
node pairs between two layers. A great quantity of
Monte Carlo simulations are also performed to vali-
date the theoretical predictions. The currentmodel indi-
cates that the outbreak threshold and infection density
of Layer (R) are related to the information diffusion
dynamics of Layer (V), and high correspondence rates
are beneficial to the suppression of epidemic transmis-
sion. Our results are also qualitatively similar to these
cases in static network.

Different from the static two-layered network propa-
gationdynamics,we investigate how theunique activity
properties of the time-varying networks of Layer (V)
and Layer (R) and the coupling relationship between
the two layers affect the epidemic transmission at dif-

Fig. 9 (Color online) Results of ρ I and βc as a function of C
for different Θ . The panel a shows the evolution of ρ I with the
changes of C , and the panel b shows the evolution of βc. The
relevant parameters are set as follows: λ = 0.4, δ = 0.2, β =
0.4, μ = 0.2, α = 0, γV = γR = 2.1,mV = mR = 4

ferent corresponding rates. It is found that nodes in
Layer (V) with higher heterogeneity, which is con-
ducive to information diffusion, have an inhibitory
effect on epidemic, and this phenomenon is more obvi-
ous when the correspondence rate is higher. The activ-
ity heterogeneity of node in Layer (R) tends to reduce
the threshold and enhance the infection density, and the
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trend is consistent for different corresponding rates. In
addition, we also find that the increase of the contact
capacity of nodes in Layer (V) can reduce the infection
density, and the influence of contact capacity on the
spread of epidemic is significant when the correspon-
dence rate is higher. However, the increase of the con-
tact capacity of nodes in Layer (R) is conducive to the
transmission of epidemics, but the corresponding rate
has little effect on the threshold after the contact capac-
ity reaches a certain value. Finally, the influence of cor-
relation between two layers on epidemic transmission
is explained, it is found that there is an abrupt transi-
tion between positive and negative correlation coeffi-
cientC , and the positive correlation is conducive to the
suppression of epidemic transmission.

In the future, we will further explore the role of
individual heterogeneity in the awareness diffusion
under the framework of multiple time-varying net-
works, which can be helpful to realistically character-
ize its spreading course. In addition, how to model the
impact of mass media on the awareness diffusion will
also become very necessary since the media informa-
tion can confront the whole population. Meanwhile,
the disease propagation and corresponding prevention
measures may greatly change the population topology,
and then, probing into the influence of epidemic spread-
ing on the awareness diffusion will also make a differ-
ence from the current work.
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