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Abstract This paper presents a methodology to solve
the problem of robustification of Interconnection and
Damping Assignment-Passivity Based Control (IDA-
PBC) scheme for the case of under-actuated systems
with inertia matrix dependent of the unactuated coor-
dinates. Specifically, we analyze the robustness of the
IDA-PBC strategy with respect to constant external
disturbances. This algorithm requires adding an inte-
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gral action with a particular change of coordinates in
an outer-loop to the IDA-PBC strategy to reject con-
stant external disturbances. The asymptotic stability
of the proposed controller despite constant external
disturbances is proved using the closed-loop Hamil-
tonian as a Lyapunov candidate function and LaSalle’s
invariance principle. Finally, as a proof of concept, we
have applied the proposed robust IDA-PBC strategy
to an Unmanned Aerial vehicle that transports a pay-
load suspended by a cable, which is a class of under-
actuated system with inertia matrix dependent of the
unactuated coordinate. Satisfactory results in numer-
ical experiments demonstrate the applicability of the
method.

Keywords Robust nonlinear control ·Robust passivity
based control · Disturbance rejection · Underactuated
systems · UAV load transportation

1 Introduction

The main objective of the Interconnection and Damp-
ing Assignment-Passivity Based Control (IDA-PBC)
is to stabilize systems described by Port-controlled
Hamiltonian (PCH) structures [1]. It is well-known
that the IDA-PBC strategy is robust with respect to
unmodeled dynamics and parametric uncertainty, in the
sense that the stability is preserved [2–4]. However, its
robustness with respect to external disturbances has not
been fully investigated, particularly for the case when
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the dynamical system is under-actuated, which is very
common in different physical systems. Thus, the IDA-
PBC robustness with respect to external disturbances,
for the case of under-actuated systems described by
PCH models, is an open problem that has attracted the
research interest in recent years.

For the case of fully actuated PCH systems, the liter-
ature reports several works, for example, [5] presents
a method allowing to endow, to a PCH system with
dissipation (PCHD), an integral action control depend-
ing on variables of relative degree higher than one.
A drawback of this approach is that a set of alge-
braic equations must be solved to find a change of
variables that allow building an extended PCHD pre-
serving the form of the Hamiltonian function and the
characteristic matrices of the original PCHD system.
Also, a robust integral control to unmatched distur-
bances is proposed in [6] for the regulation of non-
passive outputs. However, this approach is limited to
the case of fully actuated PCH systems. Moreover,
the authors in [7] discuss the robustness of nonlin-
ear feedback systems with unknown perturbations con-
sidering the robust right coprime factorization and the
passivity property. Also, an adaptive and integral con-
trol scheme of PermanentMagnet SynchronousMotors
(PMSM) in thePCHframework is designed in [8]. First,
a speed tracking controller is developed for the nomi-
nal PMSM model with the IDA-PBC approach. Then,
a second control term is designed to deal with errors
caused by unknown or uncertain parameters. Finally, a
third integral control term is provided to compensate
the unknown disturbances. The robustness of energy
shaping controllers was enhanced for fully actuated
mechanical systems with external disturbances in [9],
by embedding in the dynamic state feedback, an inte-
gral action, along with the gyroscopic and damping
forces. These previous works provide alternative solu-
tions to the IDA-PBC robustification problem only for
fully actuated systems. Unfortunately, the extension of
these approaches for the case of underactuated systems
is not straightforward.

For the case of under-actuated PCH systems, on the
one hand, there exist works dedicated to systems with
a constant inertia matrix. For example, [10] presents
experimental results of an IDA-PBC controller in an
inertia wheel inverted pendulum platform. The results
show the robustness of the controller with respect to
external disturbances, however, it can also be appreci-
ated that the controller cannot deal with static errors

in the presence of unmatched disturbances. Ryalat et
al. [11] proposes to solve the robustification of IDA-
PBC with respect to constant external disturbances for
an under-actuated mechanical system. Nevertheless,
only a simplified case is considered, where the system
has two degrees of freedom, constant inertia matrix,
and under-actuation degree one. Moreover, in [12] the
robustness improvement to vis-à-vismatched input dis-
turbances is addressed for an IDA-PBC with applica-
tion to a class of under-actuated mechanical system.
This was achieved with the combination of the IDA-
PBC algorithm with an adaptive control technique.

On the other hand, to the best of our knowledge,
there exist only two works that provide a possible solu-
tion to the problemof robustification for under-actuated
systems with variable inertia matrix: [13,14], more-
over, [15] presents a correction to the paper [14]. These
works address the design of a robust IDA-PBC for
under-actuated mechanical systems subject to vis-à-vis
matched, constant, and unknown disturbances. How-
ever, the design is only applicable for under-actuated
PCH systems where the closed-loop mass matrix is
constant, and the mass matrix is independent of the
unactuated coordinates. This disadvantage means that
the design cannot be used for a wide range of applica-
tions, where the inertiamatrix is dependent of the unac-
tuated coordinates, for example: the cart-pole system,
ball and beam, pendubot, overhead crane, Unmanned
Aerial Vehicle (UAV) transporting a cable-suspended
payload, among others.

In summary, methods for under-actuated systems,
where the mathematical models have a constant inertia
matrix or an inertia matrix independent of the unac-
tuated coordinates, have been proposed recently in the
literature. Nevertheless, the above is only a partial solu-
tion to the problem of robustification of IDA-PBC to
reject constant external disturbances due to the fact that
there exists a wide range of systems that do not sat-
isfy these conditions, i.e., that the mathematical mod-
els have an inertia matrix dependent of the unactuated
coordinates and the effect of disturbances may reduce
the efficiency of the control algorithm. Such systems,
to the best of our knowledge, have not been studied in
previous works. The main contribution of this work is
to propose a solution to the aforementioned problem.

Motivated by the previous considerations, in this
paper, we offer a robust IDA-PBC approach to solve
the problem of constant external disturbances rejec-
tion for under-actuated systems, where the mathemat-
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ical models have either inertia matrices dependent of
the unactuated coordinates or constant inertia matrices.
Taking also into account that the IDA-PBC strategy
has been successfully applied for Unmanned Aerial
Vehicles such as quadrotors [16–19] and for quadro-
tors transporting a suspended payload [20–22], in this
work, as a case of study, the proposed robust control
algorithm is applied to a UAV transporting a cable-
suspended payload, which is an under-actuated system
with inertia matrix dependent of the unactuated coor-
dinates. It is important to mention that previous works
[20–22] have only applied the IDA-PBC control strat-
egy in order to control a UAV with suspended load
and have not solved any robustification problem. The
purpose of our current manuscript is to provide a solu-
tion to the more general problem of robustification for
under-actuated systemswith variable inertiamatrix and
not only to control the UAV with suspended load, here
this system is only used as a case of study.

In line with the works of [11,13] and with a particu-
lar change of coordinates, in this paper, we prove using
the Lyapunov second method and LaSalle’s invariance
principle that an integral controller can be added in
an outer-loop to the IDA-PBC strategy to reject con-
stant external disturbances. The proposed control algo-
rithm works for under-actuated Hamiltonian systems
with constant or variable inertia matrices, with an arbi-
trary under-actuation degree andwith n degrees of free-
dom. It should be highlighted that compared with the
obtained results in [11,13], our algorithm is applica-
ble for under-actuated PCH systems with inertia matri-
ces dependent of the unactuated coordinates. In other
words, the contribution of our work is to add an integral
action that preserves the port-Hamiltonian structure of
the closed-loop system, and that also ensures asymp-
totic stability of the desired equilibrium despite the
presence of constant disturbances for systems where
the mass matrix is dependent of the unactuated coordi-
nates.

The remainder of the paper is organized as follows:
Section 2 presents a brief background of the main con-
cepts of the IDA-PBCalgorithm. Section 3 develops the
proposed control strategy: Robust IDA-PBC. Section 4
presents numerical results of the robust control algo-
rithm applied to a UAV transporting a cable-suspended
payload. Finally, conclusions and future work are dis-
cussed in Sect. 5.

2 IDA-PBC background

Theobjective of the IDA-PBC is to controlHamiltonian
systems of the form[
q̇
ṗ

]
=

[
0n×n In×n

−In×n 0n×n

] [ ∇q H
∇ pH

]
+

[
0n×m

B

]
u

(1)

with total energy

H(q, p) = 1

2
pTM−1(q) p + V (q) (2)

where q ∈ R
n , p ∈ R

n , denote the generalized
position and momentum respectively, u ∈ R

m is
the control vector, In×n ∈ R

n×n expresses an iden-
tity matrix, 0n×n ∈ R

n×n represents a null matrix,
∇q H = ∂H/∂q, ∇ pH = ∂H/∂ p are the gradi-
ents of the total energy with respect to the general-
ized position and momentum, respectively, B is the
input matrix, H(q, p) ∈ R represents the Hamilto-
nian, M(q) = MT (q) is a symmetric inertia matrix
and V (q) ∈ R is the potential energy.

Applying the standard IDA-PBC strategy [1,2], we
obtain the desired port-controlled Hamiltonian dynam-
ics as follows:[
q̇
ṗ

]
= [

Jd(q, p) − Rd(q, p)
] [ ∇q Hd

∇ pHd

]
(3)

with the desired interconnection and dissipation matri-
ces

Jd = −Jd
T =

[
0 M−1Md

−MdM−1 J2(q, p)

]
,

Rd = Rd
T =

[
0 0
0 R2

]
≥ 0

respectively,where the submatrix J2 is skew-symmetric,
also

R2 = BK vBT and K v = KT
v > 0.

The desired energy function takes the form

Hd(q, p) = 1

2
pTMd

−1(q) p + Vd(q) (4)

where Md = Md
T > 0 represents the desired

closed-loop inertia matrix. Vd stands for the desired
potential energy function, and has by design an iso-
lated minimum at q∗, i.e.,

q∗ = argmin Vd(q) (5)

System (3) is equivalent to system (1) with

u = ues(q, p) + udi (q, p) (6)
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where the first term is designed to achieve the energy-
shaping and the second one injects the damping.

The energy-shaping term is given by

ues(q, p)

=
(
BTB

)−1
BT

(
∇q H−MdM−1∇q Hd

+J2Md
−1 p

)
(7)

and the damping injection by

udi (q, p) = −KvBT∇ pHd (8)

where Md , Vd and J2 satisfy the following matching
equations

B⊥[∇q( pTM−1 p)

−MdM−1∇q( pTMd
−1 p)

+2J2Md
−1 p] = 0 (9)

B⊥ [
∇qV − MdM−1∇qVd

]
= 0 (10)

where B⊥ is a full rank left annihilator of B, i.e.,
B⊥B = 0.

3 Robust IDA-PBC strategy

System (1) perturbed by a constant external disturbance
d is represented by

[
q̇
ṗ

]
=

[
0 In×n

−In×n 0

] [ ∇q H
∇ pH

]
+

[
0
B

]
(uT + d)

(11)

where uT = u+ v is the total control law, v represents
an outer-loop control formed by an integral action, and
u an IDA-PBC. Applying the controller (6) with an
added outer-loop control to (11), we obtain the follow-
ing closed-loop disturbed system:[
q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 J2 − R2

]
∇Hd

+
[

0
B

]
(v + d) (12)

with the Hamiltonian function

Hd = pTMd
−1 p + Vd(q)

In thiswork,wepropose anewprocedure to solve the
problem of constant disturbances rejection for under-
actuated systems with either inertia matrix dependent

of the unactuated coordinates or constant inertiamatrix.
This approach is applicable to under-actuated systems
where the input matrix B and the closed-loop inertia
matrixMd are constant. In the following, consider the
perturbed Hamiltonian system (12) with constant iner-
tia matrix or inertia matrix dependent of the unactuated
coordinates.

Remember that the main difficulty in the matching
equations is the solution of the kinetic energymatching
equation. Under the above conditions, we can rewrite
the Partial Differential Equation (PDE) (9) as [2]

B⊥ [
∇q

(
pTM−1 p

)
+ 2J2Md

−1 p
]

= 0 (13)

Remark 1 WhenM is constant∇q
(
pTM−1 p

) = 0n
and J2 is a null matrix.

Without loss of generality, we assume that

q = [
qa qu

]T
,

where qa ∈ R
na denotes the actuated coordinates and

qu ∈R
nu the unactuated coordinates, otherwise we can

reorder the coordinates to come up with this structure.
Note that in this case:

B = [
Ina×na 0nu×na

]T
and B⊥ = [

0nu×na Inu×nu
]
,

which complies with B⊥B = 0nu×na . Therefore, we
can represent (13) as follows

[
0nu×na Inu×nu

] [∇qa
(
pTM−1 p

)
∇qu

(
pTM−1 p

) + 2J2Md
−1 p

]

= 0nu (14)

where na denotes the order of actuated coordinates and
nu of unactuated coordinates.

Now, we define the skew-symmetric matrix J2 as a
partitioned matrix, i.e.,

J2 =
[

0na×nu A( j2)
− j2 0nu×na

]
(15)

where A( j2) and j2 represent square matrices of order
na and nu , respectively,

A( j2) =
[

0nu×(na−nu) j2
0(na−nu)×nu 0(na−nu)×(na−nu)

]
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The matrix Md
−1 can be partitioned into 4 blocks

as follows

Md
−1 =

[Md
−1
1

Md
−1
2

]
=

[Md
−1
11 Md

−1
12

Md
−1
21 Md

−1
22

]

with Md
−1
1 ∈ R

nu×n , Md
−1
2 ∈ R

na×n , Md
−1
11 ∈

R
nu×na , Md

−1
12 ∈ R

nu×nu , Md
−1
21 ∈ R

na×na and
Md

−1
22 ∈ R

na×nu .
Substituting J2 and Md

−1 into (14), it yields
[

0nu×na Inu×nu
] [

0na
∇qu

(
pTM−1 p

)

+2

[
A( j2)Md

−1
21 A( j2)Md

−1
22

− j2Md
−1
11 − j2Md

−1
12

]
p
]

= 0nu

Then, we obtain

∇qu

(
pTM−1 p

)
− 2 j2Md

−1
1 p = 0nu

For the case when nu = 1,

j2 = 1

2
∇qu

(
pTM−1 p

) [
Md

−1
1 p

]−1
(16)

For the case when nu > 1,

j2 =1

2
∇qu

(
pTM−1 p

)[[
Md

−1
1 p

]T[Md
−1
1 p

]]−1

[
Md

−1
1 p

]T
(17)

3.1 Augmented PCH system

Now, consider the following state transformation:

z1 = q

z2 = p + BKi (w − λ)

z3 = w (18)

wherew represents the augmented state, λ depends on
the disturbance d and Ki = Ki

T > 0 is a gain matrix.
With the coordinates transformation, the new

extended PCH system can be represented by

⎡
⎣ ż1
ż2
ż3

⎤
⎦

=
⎡
⎣ 0n×n M−1Md −M−1BKi

−MdM−1 J2 − BK pBT −J2Md
−1BKi

Ki BTM−1 Ki BTMd
−1J2

T 0m×n

⎤
⎦∇Hz

(19)

with

Hz = 1

2
z2

TMd
−1z2 + Vd (z1)

+1

2
(z3 − λ)T (z3 − λ) (20)

From (19) and (20), it can be observed that the
closed-loop extended system with the change of coor-
dinates conserves the PCH structure.

In order to obtain the integral controller v, systems
(12) and (19) are compared. The rows of the desired
PCH system (19) are:

ż1 = M−1Md∇z2 Hz − M−1BKi∇z3 Hz

= M−1MdMd
−1z2

− M−1MdMd
−1BKi (z3 − λ)

= M−1MdMd
−1 (z2 − BKi (z3 − λ))

= M−1MdMd
−1 p

= M−1Md∇ pHd

= q̇ (21)
ż2 = ṗ + BKi ẇ

= −MdM−1∇q Hd +
(
J2 − BK pBT

)
∇ pHd

+ B(v + d) + BKi ẇ

= −MdM−1∇z1Vd +
(
J2 − BK pBT

) (Md
−1 p

)
+ B(v + d) + BKi ż3

= −MdM−1∇z1Vd

+
(
J2 − BK pBT

) (Md
−1) (z2 − BKi (w − λ))

+ B(v + d) + BKi ż3

= −MdM−1∇z1Vd +
(
J2 − BK pBT

)
Md

−1z2

−
(
J2 − BK pBT

)
Md

−1BKi (w − λ)

+ B(v + d) + BKi ż3

= −MdM−1∇z1Vd +
(
J2 − BK pBT

)
∇z2 Hz

− J2Md
−1BKi (w − λ)

+ BK pBTMd
−1BKi (w − λ)

+ B(v + d) + BKi ż3

= − MdM−1∇z1Vd +
(
J2 − BK pBT

)
∇z2 Hz

− J2Md
−1BKi (z3 − λ)

+ BK pBTMd
−1BKi (z3 − λ)

+ B(v + d) + BKi ż3

= − MdM−1∇z1Vd +
(
J2 − BK pBT

)
∇z2 Hz
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− J2Md
−1BKi∇z3 Hz + BK pBTMd

−1BKi z3

− BK pBTMd
−1BKiλ + Bv + Bd + BKi ż3

(22)

In Eqs. (21) and (22), it can be seen that the first row
of such systems is clearly satisfied. Nevertheless, the
second row is only satisfied if:

K pBTMd
−1BKi z3 − K pBTMd

−1BKiλ

+v + d + Ki ż3 = 0 (23)

Now, λ is chosen as follows

λ =
(
K pBTMd

−1BKi

)−1
d (24)

Then, substitutingλ into (23), Eq. (23) can be expressed
as

K pBTMd
−1BKi z3 + v + Ki ż3 = 0 (25)

From (25), the resulting control law v is given as

v = −K pBTMd
−1BKi z3 − Ki ż3 (26)

where

ż3 = Ki BTM−1∇z1 Hz + Ki BTMd
−1 J2

T∇z2 Hz

From (26) and ż3, it can be observed that the outer-
loop control law v has two actions, an integral action
and a proportional action. The objective of this con-
troller is to reject constant external disturbances. The
overall scheme of the control strategy is depicted in
Fig. 1.

3.2 Stability analysis

Theorem 1 Considering the closed-loop disturbed
system with inertia matrix dependent of the unactu-
ated coordinates (12), along with the state transforma-
tion (18), there exists a control lawv = −K pBTMd

−1

BKi z3 − Ki ż3, such that the augmented PCH sys-
tem (19) with the Hamiltonian function (20) guar-
antees asymptotic stability at the equilibrium point
ze = (z1∗, 0, z3∗) despite the presence of constant
external disturbances.

Proof The Hamiltonian function (20) is proposed as a
Lyapunov candidate function for (19). Then, differen-
tiating (20) along the trajectories of the system

Ḣz = z2
TMd

−1 ż2 + [∇z1Vd
]T ż1 + (z3 − λ)T ż3

(27)

Introducing (19) into (27):

Ḣz =z2
TMd

−1 (−MdM−1∇z1Vd

+
(
J2 − BK pBT

)
∇z2 Hz

−J2Md
−1BKi∇z3 Hz

)
+[∇z1Vd ]T

(M−1Md∇z2 Hz−M−1BKi∇z3 Hz
)

+ (z3 − λ)T
(
Ki BTM−1∇z1 Hz

+Ki BTMd
−1 J2

T∇z2 Hz

)

=z2
TMd

−1 (−MdM−1∇z1Vd

+
(
J2 − BK pBT

) (Md
−1z2

)
−J2Md

−1BKi (z3 − λ)
)

+ [∇z1Vd ]T
(M−1z2 − M−1BKi (z3 − λ)

)
+ (z3 − λ)T

(
Ki BTM−1∇z1 Hz

+Ki BTMd
−1 J2

T∇z2 Hz

)

= − z2
TM−1∇z1Vd

+ z2
TMd

−1
(
J2 − BK pBT

) (
Md

−1z2

)

− z2
TMd

−1 J2Md
−1BKi (z3 − λ)

+ [∇z1Vd]TM−1z2 − ∇z1Vd
TM−1BKi (z3 − λ)

+ (z3 − λ)T Ki BTM−1∇z1 Hz

+ (z3 − λ)T
(
Ki BTMd

−1 J2
TMd

−1z2

)

=z2
TMd

−1 J2

(
Md

−1z2

)

− z2
TMd

−1
(
BK pBT

) (
Md

−1z2

)

= − z2
TMd

−1
(
BK pBT

) (
Md

−1z2

)

= − z2
TMd

−1R2Md
−1z2 (28)

since J2 is skew-symmetric and K p is positive-definite.
From expression (28), it can be observed that Ḣz � 0,
i.e., the stability is preserved for this type of sys-
tem (under-actuated system with either inertia matrix
dependent of the unactuated coordinates or constant
inertia matrix). Now, using the LaSalle’s invariance
principle, it is possible to prove that all the trajecto-
ries of the system converge at the equilibrium point,
which implies asymptotic stability.

Let Ω ⊂ R
n be a compact positively invariant set

with respect to the system (19). Let X be the set of all
points in Ω where Ḣz = 0. If Ḣz = 0 → X = {(z2)
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Fig. 1 Robust IDA-PBC control scheme

| Ḣz (z2) = 0} → −z2
TMd

−1R2Md
−1z2 = 0 →

z2 = 0. In the equilibrium point ze = (z1∗, 0, z3∗),
z2 = 0 → ż2 = 0.

From (19),

ż2 = −MdM−1∇z1Vd +
(
J2 − BK pBT

)
∇z2 Hz

−J2Md
−1BKi∇z3 Hz,

therefore if z2 = 0 ∧ ż2 = 0 → −MdM−1∇z1Vd

−J2Md
−1BKi ∇z3 Hz = 0 → ∇z1Vd = 0 ∧

∇z3 Hz = 0 → ∇z1 Hz = 0 ∧ ∇z3 Hz = 0.
The IDA-PBC strategy requires that Vd has an iso-

lated minimum at q∗, i.e., q∗ = argmin Vd(q). Thus,

∇z1Vd → ∇z1Vd
∣∣
z1∗ = 0

Hence, the conditions of the invariance principle are
satisfied and the proof is complete. Therefore, the
asymptotic stability is guaranteed, and the system con-
verges to the equilibrium point ze = (z1∗, 0, z3∗). �	

In summary, the novelty of the proposed Robust
IDA-PBC approach in this paper is that it provides a
solution to the up to now still open problem in the liter-
ature for under-actuated systems with inertia matrices
dependent of the unactuated coordinates. In this new
algorithm, it is proven that the disturbance rejection
is achieved for some class of under-actuated systems,
by satisfying the two properties that must be required
for all extended PCH systems in closed-loop: preserv-
ing the structure of a PCH system and the asymptotic
stability.

Fig. 2 PVTOL transporting a suspended payload

4 Case Study: robust IDA-PBC for a PVTOL
carrying a suspended load

In this section, the newRobust IDA-PBC approach pre-
sented in Sect. 3 for under-actuated systemswith inertia
matrix dependent on the unactuated variables is applied
to a Planar Vertical Take-Off and Landing (PVTOL)
transporting a load suspended by a cable, as depicted
in Fig. 2, which is a kind of under-actuated systemwith
inertia matrix dependent of the unactuated coordinates.
The Robust IDA-PBCmethodology is used to stabilize
the vehicle and the load swing. These goals should be
achieved despite constant external disturbances acting
on the system.
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4.1 Mathematical model

The dynamic behavior of a UAV transporting a cable-
suspended payload is described in [20–22]. The pre-
sented mathematical model in this work is based on
[19]; nevertheless, due to the presented complexity,
and in order to achieve the main goal of illustrating
the validity of the proposed Robust IDA-PBC, some
assumptions are made:

– The cable connecting payload and UAV fuselage is
rigid, massless, and inelastic.

– The length of the connecting cable is constant and
known.

– The swing angle α of the payload is not actuated
and constrained to −π/2 < α < π/2.

– The payload can be considered as a point-mass.
– The aerodynamic effects on the load are neglected.
– The vehicle orientation dynamics will be neglected
in this paper to have a constant input matrix B.

Considering the above, we have obtained a reduced
system with 3 degrees of freedom and two control
inputs, i.e., n = 3 andm = 2. The mathematical model
can be expressed in the form

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu (29)

with the following matrices:

M =
⎡
⎣ M + m 0 ml cosα

0 M + m ml sin α

ml cosα ml sin α ml2

⎤
⎦ ,

C =
⎡
⎣0 0 −ml sin αα̇

0 0 ml cosαα̇

0 0 0

⎤
⎦ , G =

⎡
⎣ 0

(M + m)g
mlg sin α

⎤
⎦ ,

B =
⎡
⎣ 1 0
0 cos θ

0 0

⎤
⎦

where M is the mass of the UAV, m is the mass of the
load, the length of the cable is represented by l, the

gravitational acceleration is given by g, q = [
x z α

]T
denotes the state variables, x , z describe the position
of the UAV and α the swing angle of the payload. The

control input is defined as u = [
τθ f

]T
, where τθ rep-

resents the torque produced by the differential velocity
between opposite rotors, and f the total thrust magni-
tude. B ∈ R

3×2 is the input matrix where it can be seen
that the system is under-actuated.

Remark 2 Note that the system is third order and the
inertia matrix M depends on the unactuated coordi-
nate, i.e., the payload’s angle of oscillationα. The prob-
lem of robustification of IDA-PBC to reject constant
external disturbances in systems with these character-
istics had not been addressed in previous works.

4.2 Robust IDA-PBC strategy

TheRobust IDA-PBCstrategy is applied to thedynamic
model (29) of the PVTOL transporting a cable-
suspended payload.

The methodology for designing the control law uT
of the Robust IDA-PBC strategy consists of two main
stages. The first step of the Robust IDA-PBC algorithm
requires to develop a traditional IDA-PBC scheme for
the mathematical model (29).

Thus,Md is selected as a constant matrix with the
following structure:

Md =
⎡
⎣a1 0 0

0 a2 0
0 0 a3

⎤
⎦ , a1a2a3 > 0

From (15) and (16)

J2 =
⎡
⎣ 0 0 j2

0 0 0
− j2 0 0

⎤
⎦ ,

j2 = a1m sin (2α)
(
p23 − p21

)
2M(M + m)p1

+ a1 sin α p5
Ml

+a1m cos (2α) p3
M(M + m)

− a1 cosα p3 p5
Ml p1

where p = [ p1 p3 p5 ].
With B⊥ = [

0 0 1
]
, the potential energy PDE (10)

takes the form:

glm sin α − (M + m) a3
Ml2m

∇αVd

+ a3
Ml

cosα∇x Vd + a3
Ml

sin α∇zVd = 0 (30)

which is solved and thus the desired potential energy
is obtained by

Vd = − Ml3m2g

(M + m) a3
cosα + Φ (x, z, α)

We choose Φ(x, z, α), to be a quadratic function
which leads to
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Vd = − Ml3m2g

(M + m) a3
cosα

+kpx
2

(
x − xd + lm

M + m
sin α

)2

+kpz
2

(
z − zd − lm

M + m
cosα

)2

(31)

where kpx > 0 and kpz > 0 are constant gains.
Then, from (4) and (31) the Hamiltonian function is

obtained

Hd = p21
2a1

+ p23
2a2

+ p25
2a3

− Ml3m2g

(M + m) a3
cosα

+kpx
2

(
x − xd + lm

M + m
sin α

)2

+kpz
2

(
z − zd − lm

M + m
cosα

)2

(32)

To compute the control law u = ues + udi of
the IDA-PBC strategy, we first determine the energy-
shaping term ues from (7) and then, we determine the
damping injection term udi from (8).

After completing the first stage, we continue to the
second stage. In this stage, the presented methodology
in Sect. 3 is used to find the term v of the total con-
trol law uT of the Robust IDA-PBC strategy, which
corresponds to the proportional-integral action.

Now, we obtain a Hamiltonian representation of the
system (29), for this, we propose the following coordi-
nate transformation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11
z12
z13
z21
z22
z23
z31
z32
z33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
z
α

p1 + k11 (ω1 − λ1)

p3 + k22 (ω2 − λ2)

p5 + k33 (ω3 − λ3)

ω1

ω2

ω3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The extended PCH model of the PVTOL transport-
ing a payload has the form (19) with the Hamiltonian
function defined as follows:

Hz = z221
2a1

+ z222
2a2

+ z223
2a3

+ (z31 − λ1)
2

2
+ (z32 − λ2)

2

2

+ (z33 − λ3)
2

2
− Ml3m2g

(M + m) a3
cos z13

+kpx
2

(
z11 − zd11 + lm

M + m
sin z13

)2

+kpz
2

(
z12 − zd12 − m

M + m
cos z13

)2

(33)

From (26) and (33), we obtain the outer-loop control
law v, which corresponds to the proportional-integral
action.Remember that this part of theRobust IDA-PBC
algorithm rejects the external disturbances.

v =
[

− ki1kp1
a1

z31 − ki1 ż31

− ki2kp2
a2

z32 − ki2 ż32

]
(34)

where ki1 > 0, ki2 > 0 are components of the gain
matrix Ki and kp1 > 0, kp2 > 0 of the matrix K p.

Finally, we compute the final control law uT of the
Robust IDA-PBC strategy as the sum of two terms.
The first term due to the traditional IDA-PBC strategy
is given by the sum of (7) and (8), and the second term
is obtained from the new proposed approach due to the
addition of the proportional-integral action (34).

In summary, as a direct consequence of Theorem 1
given in Sect. 3, the total control law uT applied to a
PVTOL transporting a suspended payload, guarantees
the following points:

– Asymptotic stability at the equilibrium point.
– Rejection of constant external disturbances.
– Stabilizationof the cable-suspendedpayload swing.

Remark 3 Note that the same model and control
methodology can be applied analogously for move-
ments in the xy plane.

4.3 Simulations and results with external disturbances

In order to analyze the performance and versatility of
the proposed control scheme, some simulations have

Table 1 Model parameters

Parameter Value [units]

M 0.4 [kg]

m 0.03 [kg]

l 0.35 [m]

Iψ 0.345 [kgm2]

Iθ , Iφ 0.177 [kgm2]

g 9.8 [m/s2]
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(b) Payload swing angle.
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(c) Vehicle orientation.
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(d) Integral states.

0 5 10 15 20 25 30 35 40 45
Time [sec]

-10

0

10

20

30

In
pu

t t
or

qu
e 

[N
m

] 10NM

15NM

20NM

0 5 10 15 20 25 30 35 40 45
Time [sec]

-10

0

10

20

30

40

In
pu

t t
ot

al
 th

ru
st

 [N
] f

10N

f
20N

f
30N

Disturbance effect in 

Disturbance effect in f 

(e) Control inputs.

Fig. 3 Robustness analysis under different disturbance values
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(b) Vehicle orientation and swing angle.
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(c) Control inputs.

Fig. 4 Comparison results for the proposed robust IDA-PBC with the controller of [22]

been carried out. In this subsection, we present the per-
formance of the Robust IDA-PBC algorithm applied to
a UAV transporting a payload in the presence of con-
stant disturbances.

The initial conditions of the Hamiltonian system are
z11(0) = z12(0) = z13(0) = z21(0) = z22(0) =
z23(0) = z31(0) = z32(0) = z33(0) = 0. The goal
is to move the vehicle transporting a payload to the
desired position of 1 meter up and 2 meters forward
along the coordinate x . In simulations, we used model
parameters close to small-scale real aerial platforms,
such parameters are shown on Table 1.

The control objective is to stabilize the vehicle’s
position and attenuate the oscillations on the swing
angle of the payload, despite the presence of constant
external disturbances.

The considered disturbances are:

– A constant force of 10N, 20N, and 30N injected in
the total thrust force f at t = 15s.

– A constant torque of 10Nm, 15Nm, and 20Nm
injected in the torque τθ at t = 25s.

Figure 3a shows the x and z positions of the vehicle
during the validation. We can see that the position for
each axis is stabilized according to the desired reference
points xd = 2m and zd = 1m. It is also very important
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Table 2 Qualitative comparison of robust IDA-PBC algorithms

Characteristic References
[11] [13] [14] Our work

Under-actuated systems � � � �
Constant inertia matrix � � � �
Variable inertia matrix X � � �
Inertia matrix dependent of the unactuated coord. X X X �
Sub-matrix J2 �= 0 X X � �
Application to a system of order greater than 2 X X X �
Application to a system with more than one input X X X �
Constant external disturbances � � � �
n degrees of freedom X � * �
An augmented matrix B is not required X � � �

*It is not mentioned

to appreciate that the control law stabilizes the positions
to their desired references, despite the existence of the
external matched perturbations occurring at 15s and
25s.

Figure 3b presents the payload swing angle α. It
is clear that the proposed control law exhibits good
performance since the payload swing angle is rapidly
regulated to 0o despite of the existence of the constant
external disturbances.

Figure 3c displays the vehicle orientation. We can
observe that the attitude converges to the desired points
with a null steady-state error despite the strong external
disturbances induced to the system.

Figure 3d illustrates the states produced by the inte-
gral action. The dynamics of the states have variations,
which after a few seconds remain constant. This con-
siderably helps the control system to reject the constant
disturbances present in the inputs f and τθ .

In Fig. 3e, it can be seen that the total thrust force and
the torque are smooth signals. Also, Fig. 3e shows that
the controller produces the necessary control inputs to
reject constant disturbances at time 15s and 25s and
thus maintain the output desired values.

4.3.1 Comparison with other control strategy

The proposed robust IDA-PBC algorithm was com-
pared with respect to the second control law from [22].
The responses of both algorithms are shown in Fig.
4. For better understanding the figures, the subscript

p indicates the proposed IDA-PBC robust controller
while the subscript c associates the controller from [22].
It is clear that the proposed controller rejects the distur-
bances at 20s and 60s. In contrast, the controller from
[22] fails to reject the disturbances and presents a huge
change in the x and z positions when they occur, man-
ifesting a very large steady-state error, i.e., it presents
an offset of twice the reference in z andmore than three
times the reference in the case of the position x .

Finally, in order to compare this work with the
robust IDA-PBC strategies available in the literature,
we provide Table 2. Several characteristics are con-
sidered to discuss the generality and efficiency of the
proposed robust IDA-PBC technique. From Table 2 we
can observe that all presented controllers have advan-
tages and disadvantages. However, we consider that the
main limitations are: the previous algorithms can not be
applied to systems with inertia matrix dependent of the
unactuated coordinates, and the presented applications
have only been studied with second-order systems with
a single input.

5 Conclusions

An algorithm to design a robust IDA-PBC strategy for
the case of under-actuated PCH systems with inertia
matrix dependent of the unactuated coordinates has
been presented in this work. The proposed method-
ology requires adding an outer-loop to the IDA-PBC
strategy to reject external disturbances.We have proved
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that an integral action with a particular change of coor-
dinates can be added in an outer-loop to the IDA-PBC
strategy to reject constant external disturbances. The
asymptotic stability of the proposed controller despite
the constant external disturbances is guaranteed using
the closed-loop Hamiltonian as a Lyapunov candidate
function and LaSalle’s invariance principle.

As a proof of concept, the control scheme has been
applied to a PVTOL transporting a cable-suspended
payload. The objective was to stabilize the PVTOL
position and attenuate the swing angle of the payload.
Simulations have shown that the performance of the
proposed robust control strategy is satisfactory, despite
of the existence of the constant external disturbances,
illustrating the potential of this control scheme. Future
work includes extending the scheme for the case of
variable external disturbances and unmatched distur-
bances. Also, to apply the proposed methodology to
other cases of study such as a quadrotor. Themain chal-
lenge in the case of variable external disturbances lies
in proposing the appropriate state transformation that
retains the PCH structure in the closed-loop extended
system with the change of coordinates, while preserv-
ing the asymptotic stability.

Funding Thisworkhas been supportedbyTecnológicoNacional
deMéxico grant number 9992.21-P. Additional funding was pro-
vided by Conacyt under the program Cátedras Patrimoniales
Projects 88 and 2759.

Data availability This manuscript has no associated data.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein,
G.: Stabilization of a class of underactuated mechanical sys-
tems via interconnection and damping assignment. IEEE
Trans. Autom. Control 47(8), 1218–1233 (2002)

2. Ortega, R., Van Der Schaft, A., Maschke, B., Escobar, G.:
Interconnection and damping assignment passivity-based
control of port-controlled hamiltonian systems. Automatica
38(4), 585–596 (2002)

3. Gómez-Estern, F., Van der Schaft, A.J.: Physical damping in
ida-pbc controlled underactuated mechanical systems. Eur.
J. Control. 10(5), 451–468 (2004)

4. Ortega, R., Garcia-Canseco, E.: Interconnection and damp-
ing assignment passivity-based control: A survey. Eur. J.
Control. 10(5), 432–450 (2004)

5. Donaire, A., Junco, S.: On the addition of integral action
to port-controlled hamiltonian systems. Automatica 45(8),
1910–1916 (2009)

6. Ortega, R., Romero, J.G.: Robust integral control of port-
hamiltonian systems: The case of non-passive outputs with
unmatched disturbances. Syst. Control Lett. 61(1), 11–17
(2012)

7. Deng, M., Bu, N.: Robust control for nonlinear systems
using passivity-based robust right coprime factorization.
IEEE Trans. Autom. Control 57(10), 2599–2604 (2012)

8. Jin, L., Yu, S., Du, J.: Adaptive and integral control of pmsm
with uncertainties and disturbances in the port-controlled
hamiltonian framework. In: Proceedings of the 32nd Chi-
nese Control Conference, pp. 1081–1086. IEEE (2013)

9. Romero, J.G., Donaire, A., Ortega, R.: Robust energy shap-
ing control of mechanical systems. Syst. Control Lett. 62(9),
770–780 (2013)

10. Haddad, N.K., Chemori, A., Belghith, S.: External distur-
bance rejection in IDA-PBC controller for underactuated
mechanical systems: From theory to real-time experiments.
In: 2014 IEEE conference on control applications (CCA),
pp. 1747–1752. IEEE (2014)

11. Ryalat, M., Laila, D.S., Torbati, M.M.: Integral IDA-PBC
and PID-like control for port-controlled hamiltonian sys-
tems. In: 2015 American Control Conference (ACC), pp.
5365–5370. IEEE (2015)

12. Haddad, N.K., Chemori, A., Belghith, S.: Robustness
enhancement of IDA-PBCcontroller in stabilising the inertia
wheel inverted pendulum: theory and real-time experiments.
Int. J. Control 91(12), 2657–2672 (2018)

13. Donaire, A., Romero, J.G., Ortega, R., Siciliano, B., Crespo,
M.: Robust IDA-PBC for underactuatedmechanical systems
subject to matched disturbances. Int. J. Robust Nonlinear
Control 27(6), 1000–1016 (2017)

14. Ryalat, M., Laila, D.S.: A robust IDA-PBC approach for
handling uncertainties in underactuated mechanical sys-
tems. IEEE Trans. Autom. Control 63(10), 3495–3502
(2018)

15. Donaire, A., Romero, J.G., Ortega, R.: Correction to the
paper “A robust IDA-PBC approach for handling uncertain-
ties in underactuated mechanical systems”. arXiv preprint
arXiv:1909.04856 (2019)

16. Acosta, J.Á., Sanchez, M., Ollero, A.: Robust control of
underactuated aerial manipulators via IDA-PBC. In: 53rd
IEEE Conference on Decision and Control, pp. 673–678.
IEEE (2014)

17. Souza, C., Raffo, G.V., Castelan, E.B.: Passivity-based con-
trol of a quadrotor UAV. IFAC Proc. Vol. 47(3), 3196–3201
(2014)

18. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y., Zareb, M.:
Energy-based 3D autopilot for VTOL UAV under guidance
&navigation constraints. J. Intell. Rob. Syst. 87(2), 341–362
(2017)

19. Guerrero-Sánchez, M.E., Abaunza, H., Castillo, P., Lozano,
R., García-Beltrán, C.D.: Quadrotor energy-based control
laws: a unit-quaternion approach. J. Intell. Rob. Syst. 88(2),
347–377 (2017)

20. Guerrero-Sánchez, M.E., Mercado-Ravell, D.A., Lozano,
R., García-Beltrán, C.D.: Swing-attenuation for a quadro-
tor transporting a cable-suspended payload. ISA Trans. 68,
433–449 (2017)

123

http://arxiv.org/abs/1909.04856


3238 M. E. Guerrero-Sánchez et al.

21. Guerrero-Sánchez,M.E., Hernández-González, O., Lozano,
R., García-Beltrán, C.D., Valencia-Palomo, G., López-
Estrada, F.R.: Energy-based control and LMI-based control
for a quadrotor transporting a payload. Mathematics 7(11),
1090 (2019)

22. Guerrero-Sánchez, M.E., Lozano, R., Castillo, P.,
Hernández-González, O., García-Beltrán, C., Valencia-
Palomo, G.: Nonlinear control strategies for a UAV carrying
a load with swing attenuation. Appl. Math. Model. 91,
709–722 (2020)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load
	Abstract
	1 Introduction
	2 IDA-PBC background
	3 Robust IDA-PBC strategy
	3.1 Augmented PCH system
	3.2 Stability analysis

	4 Case Study: robust IDA-PBC for a PVTOL carrying a suspended load
	4.1 Mathematical model
	4.2 Robust IDA-PBC strategy
	4.3 Simulations and results with external disturbances
	4.3.1 Comparison with other control strategy


	5 Conclusions
	References




