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Abstract In this work, the problem of hybrid control
strategy for delayed neural networks is investigated via
an impulsive-basedbilateral looped-functional (IBBLF)
approach. Firstly, a hybrid controller is introduced,
which includes feedback control and impulsive con-
trol, and the feedback control plays a vital role in the
case of impulsive perturbation. Secondly, an IBBLF is
constructed to relax the requirement of positive defi-
niteness and only satisfies it at the impulsive instants,
which reduces the conservatism of the stability results.
Thirdly, the construction of IBBLF takes full advantage
of the state information on both the intervals z(t+k ) to
z(t) and z(t) to z(tk+1), then combining with a pro-
posed lemma, exponential stability criteria with less
conservative are obtained. In addition, the obtained
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results are applied to nonlinear sampled-data systems.
Finally, two numerical examples are presented to cer-
tify the effectiveness and superiority of the theoretical
results.
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1 Introduction

With the heuristics of the biological nervous system,
neural networks (NNs) have been proven to be the key
to solving various difficult problems in many fields [1–
5]. The response of the NNs to the weak envelopemod-
ulation signal formed by the superposition of two peri-
odic signals with different frequencies was studied in
[6]. Artificial NNs, as a method of local search heuris-
tics, [7] proposed differential evolutionary hybridiza-
tion algorithms to predict the optimal strategy or to
generate better offspring from a set of differential evo-
lutionary strategies. In order to improve the classifi-
cation accuracy of diabetes diagnosis, [8] used Watts-
Strogatz small-world feedforwardNNs (SWFNNs) and
Newman-Watts SWFNNs for analysis, and proved that
Newman-Watts SWFNNs analysis method can obtain
the best output error parameters and the highest output
correlation.

In practical engineering, the communication time
and the switching speed of the amplifiers may be
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limited between neurons. Since the existence of time
delays is frequently a source of instability, weak per-
formance [9–11]. And the stability of the system is one
of the prerequisites to study the performance of the
system. Therefore, the stability analysis of DNNs is
important theoretical significance and practical value
[12–14].

In the natural and artificial world, only a few net-
works can adjust their system parameters to achieve
stability. In order to overcome this problem, most net-
works need to rely on some external force, that is,
controllers [15]. Thus, various control methods have
been introduced to stabilize the DNNs, such as inter-
mittent control [16], slidingmode control [17,18], state
feedback control [19,20], event-trigger-ed control [21],
impulsive control [22–25], sampled-data control [26–
29]. Among these commonly used control methods,
discontinuous control (including impulsive control and
intermittent control), are more effective than other con-
trol methods in terms of reducing control costs. The
control mechanism of these two discontinuous control
methods is: intermittent control is activated within a
certain time interval, that is, intermittent control con-
trols the state of the system within a specific interval,
while impulsive control is only activated at discrete
instants.

Obviously, the impulsive control mechanism is less
cost than intermittent control mechanism [30]. In addi-
tion, for many real networks, the state of nodes is often
disturbed instantaneously, and there will be sudden
changes at some instants. These sudden changes may
be produced by sudden noises, frequency changes or
other switchingphenomena. In otherwords, there exists
impulsive effects [31,32]. Therefore, impulsive control
is themost consistentwith the actual situation andmore
effective in reducing the control cost. Generally, in the
dynamic analysis of the DNNs, there are two types of
impulses: stable impulses and unstable impulses. If the
impulsive effects can destroy the stability of DNNs,
then the impulse sequence is called unstable impulse.
Meanwhile, if the corresponding impulsive effects can
promote the stability of DNNs, the impulse sequence
is called stable impulse. What’s more, when the impul-
sive effects are unstable impulse, the impulse should
not occur too frequently in order to achieve the goal
of stability. Similarly, when the impulsive effects are
stable impulse, the impulsive interval should not be
too long, otherwise it will affect the stability of the
DNNs. To solve this difficulty, many literatures used

the upper and lower bounds of the impulsive interval to
control the frequency of impulses occurring [33–37]. In
[22], authors proposed a unified criterion to investiga-
tive the synchronization of impulsive dynamical net-
works. Unfortunately, using the upper or lower bounds
to characterize the impulses frequencymay lead to con-
servative results. Thus, in order to get less conservative
results, what can we do to obtain more relax results for
the occurrence of the impulse and not even impose any
restrictions on the impulse? and it works for both stable
impulses and unstable impulses.

In most studies, the traditional Lyapunov functional
is used to obtain the stability/synchronization of the
impulsive systems. However, the drawback of the clas-
sical Lyapunov theory is that the constructed func-
tional must satisfy the positive definiteness characteri-
zation in thewhole impulsive interval, whichwill cause
the result to be quite conservative. Thus, a looped-
functional method (LFM) was developed [38] in order
to get a less conservative result. It’s shown that the
LFM satisfies the positive definiteness at the sampling
instants, which not only reduces the conservatism, but
also obtains a larger sampling interval. Then on this
basis, many studies used the LFM to study the asymp-
totic stability of the SDSs [39,40]. In [41–44], LFM
was applied to the impulsive systems, but these papers
have the following shortcomings: (1) The systems they
studied were linear impulse systems, and only stud-
ied the asymptotic stability of system. (2) Due to the
constructed one-sided looped-functional, the informa-
tion of the impulsive instant was not fully utilized,
resulting in a certain conservatism. Hence, the stability
problem of impulsive DNNs based on bilateral looped-
functional has not been fully investigated, and it is still
an open and challenging problem.

Motivated by the above analysis, the positive effects
and negative effects of impulses for DNNs are analyzed
in this work.When the impulse has a negative effect for
DNNs, the linear feedback control in the hybrid con-
troller can be used to balance the negative effect, and
then the system stability can be obtained by using the
IBBLF method. On the contrary, if the impulse plays a
positive role in the stability of the DNNs, then only the
impulsive controller can achieve the expected results
under IBBLF.

The main highlights of this work are shown as fol-
lows:
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Table 1 Notations

Notation Definition

N
+ The set of positive integers

R The set of real numbers

R+ The non-negative real numbers

Rn The Euclidean space of n−dimensional

Rm×n The set of m × n real matrices

QT The transpose of any square matrix Q
Q−1 The inverse of any square matrix Q
He

{
Q

}
The sum of Q and QT (Q + QT )

diag
{
...

}
The diagonal matrix

col
{
...

}
The column vector

I An identity matrix of suitable dimension

‖ · ‖ The induced matrix norm

� A symmetric block in any symmetric matrix

λmax(Q) The maximum eigenvalue of matrix Q
λmin(Q) The minimum eigenvalue of matrix Q
K The set of differentiable functions defined, as an

interval [0, T ] to Rn , where T ∈ R+

(1) In order to consider both stable and unstable
impulses at the same time, a hybrid controller is
developed, in which the feedback controller is used
to coordinate the impulsive controller.

(2) An improved IBBLF is constructed, which relaxes
the requirement of positive definiteness. In addi-
tion, the functional introduces the cross-terms of
the state and the integral of impulsive instants and
takes the information on both impulsive instants
z(t+k ) and z(tk+1) into account.

(3) A novel lemma is presented by using Cauchy-
Schwarz inequality andGronwall-Bellman inequal-
ity. Furthermore, discrete-time exponential stabil-
ity conditions are derived based on the constructed
IBBLF method, and less conservative exponential
stability criteria are obtained in the light of linear
matrix inequalities (LMIs).

(4) The exponential stability results of impulsive sys-
tems are applied to SDSs with variable sampling
and time-varying delay, and compared with the
Refs. [28,45,46], one can obtain a larger allowable
upper bound.

2 Preliminaries and problem statement

The following DNNs with external input are consid-
ered:
{
ż(t) = Az(t)+Bg(z(t))+Ch(z(t−τ(t)))+u(t),

z(s) = ϕ(s), s ∈ [−τ, 0],
(1)

where the state vector z(t)=col
{
z1(t), z2(t), ..., zn(t)

}∈
Rn , 0 ≤ τ(t) ≤ τ denotes the time-varying delay and
satisfies τ̇ (t) ≤ μ ≤ 1, g(z(t)) = col

{
g1(z1(t)),

g2(z2(t)), ..., gn(zn(t))
} ∈ Rn and h(z(t − τ(t))) =

col
{
h1(z1(t − τ(t))), h2(z2(t − τ(t))), ..., hn(zn(t −

τ(t)))
} ∈ Rn are the activation functions and sat-

isfy gi (0) = hi (0) = 0. A = diag
{
a1, a2, ..., an

} ∈
Rn×n denotes the self-inhibition matrix, where ai < 0
(i = 1, 2, ..., n),B, C ∈ Rn×n represent the connection
weight of the activation functions g(·), h(·), u(t) ∈ Rn

is the control input to be designed.

Assumption 1 [47]. The gi (·), hi (·) are Lipschitz’s
continuous activation functions, and there are constants
Gi > 0,Hi > 0, such that

0 ≤ gi (μ1) − gi (μ2)

μ1 − μ2
≤ Gi ,

0 ≤ hi (μ1) − hi (μ2)

μ1 − μ2
≤ Hi ,

where i = 1, 2, ..., n, μ1 �= μ2.
For system (1), the following hybrid control strategy

is considered:

u(t) = u1(t) + u2(t),

u1(t) = −�z(t), u2(t) =
∞∑

k=1

Qz(t)δ(t − tk), (2)

where � = diag
{
γ1, γ2, ..., γn

} ≥ 0 is the feedback
gain, Q means the strength of impulse, δ(·) is the
Dirac function and

{
tk

}∞
k=1, limk→∞ tk = ∞ is the

impulsive sequence. The impulsive interval is defined
as Tk = tk+1 − tk ∈ [Tm, TM ]. z(t) is supposed to be
left-continuous (that is: z(tk) = z(t−k )) and has right-
limits.
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Substituting (2) into (1), one has

⎧
⎪⎨

⎪⎩

ż(t)=(A−�)z(t)+Bg(z(t))+Ch(z(t−τ(t))), t �= tk,

	z(tk) = Qz(tk), t = tk, k ∈ N
+,

z(s) = ϕ(s), s ∈ [−τ, 0],
(3)

where 	z(tk) = z(t+k ) − z(t−k ). Next, some effective
lemmas and definition are introduced.

Definition 1 [41]. The functional f satisfies the fol-
lowing mapping

f : [0, TM ] × K[Tm ,TM ] × [Tm, TM ] → R,

where 0 < ε ≤ Tm ≤ TM < +∞. If the following
conditions are satisfied, then the functional f is called
looped-functional.

1. f satisfies the characteristics of periodic

f (0, x, Tk) = f (Tk, x, Tk), (4)

for ∀x ∈ C([0, Tk],Rn) ⊂ K[Tm ,TM ] , Tk ∈
[Tm, TM ].

2. It’s differentiable with respect to the first variable.

Lemma 1 [48]. Constants T > 0, c ≥ 0, r ≥ 0.
Let u(t) be a Borel measurement bounded nonnegative
function on [t0, T ], and g(t) be a nonnegative integral
function on [t0, T ]. If

u(t) ≤ c +
∫ t

t0
[g(s)u(s) + r ]ds, for ∀t0 ≤ t ≤ T,

then

u(t) ≤ [c + r(t − t0)] exp
( ∫ t

t0
g(s)ds

)
.

Lemma 2 For system (3), the following inequality
holds for t ∈ (t+k , tk+1]:

‖z(t)‖2 ≤ θ1‖z(tk)‖2 + θ2

∫ tk

tk−τ(tk )
‖z(s)‖2ds, (5)

where

G = diag
{
G1,G2, ...,Gn

}
,

H = diag
{
H1,H2, ...,Hn

}
,

θ1 = 4eσ ‖I + Q‖2,

θ2 = 4

1 − μ
eσTM‖C‖2‖H|2,

σ = 4T 2
M (‖A − �‖2 + ‖B‖2‖G‖2

+ ‖C‖2‖H‖2
1 − μ

).

Proof From system (3), we can obtain

z(t) = z(t+k ) +
∫ t

tk
(A − �)z(s)ds (6)

+
∫ t

tk
Bg(z(s))ds

+
∫ t

tk
Ch(z(s − τ(s)))ds.

According to inequalities‖Bg(z(t))‖2≤‖B‖2‖G‖2‖z(t)‖2,
‖Ch(z(t − τ(t)))‖2 ≤ ‖C‖2‖H‖2‖z(t − τ(t))‖2, and
by using Cauchy-Schwarz inequality, one can derive

‖z(t)‖2

≤ 4‖z(t+k )‖2 + 4

∥∥∥∥

∫ t

tk
(A − �)z(s)ds

∥∥∥∥

2

+ 4

∥∥∥∥

∫ t

tk
Bg(z(s))ds

∥∥∥∥

2

+4
∥∥∥∥

∫ t

tk
Ch(z(s−τ(s)))ds

∥∥∥∥

2

≤ 4‖I+Q‖2‖z(tk)‖2+4TM‖A−�‖2
∫ t

tk

∥∥z(s)
∥∥2ds

+ 4TM‖B‖2‖G‖2
∫ t

tk
‖z(s)‖2ds + 4TM‖C‖2‖H‖2

×
∫ t

tk−τ(tk )
‖z(s)‖2ds

= 4‖I+Q‖2‖z(tk)‖2+4TM
(

‖A−�‖2+‖B‖2‖G‖2

+ ‖C‖2‖H‖2
1 − μ

)∫ t

tk
‖z(s)‖2ds + 4TM‖C‖2‖H‖2

1 − μ

×
∫ tk

tk−τ(tk )
‖z(s)‖2ds. (7)

Then, for t ∈ (t+k , tk+1], applying Lemma 1, one has

‖z(t)‖2 ≤ θ1‖z(tk)‖2 + θ2

∫ tk

tk−τ(tk )
‖z(s)‖2ds. (8)
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3 Main results

3.1 The analysis of exponential stability based on an
IBBLF approach

For convenience, one will use the following notations
in Theorem 1.

π1(t) = 1

t−tk

∫ t

tk
z(s)ds,

π2(t) = 1

tk+1−t

∫ tk+1

t
z(s)ds,

η1(t) = col
{
z(t+k ), z(tk+1)

}
,

η2(t) = col
{
z(t) − z(t+k ), z(t) − z(tk+1)

}
,

η3(t)=col
{
(tk+1−t)(z(t)−z(t+k )), (t−tk)(z(t)−z(tk+1))

}
,

η4(t) = col
{
z(t), z(tk), z(tk+1)

}
,

η5(t) = col
{
π1(t), π2(t), g(z(t)), h(z(t−τ(t)))

}
,

ξ(t) = col
{
z(t), z(t−τ(t)), z(tk), z(tk+1), ż(t), η5(t)

}
,

e j = [0n×( j−1)n, In×n, 0n×( j−1)n], j = 1, 2, ..., 9.

Theorem 1 Given constants Tm > 0, TM > 0, α > 0,
the system (3) is exponential stable if there exist matri-
ces Pj > 0, X j > 0, M1 > 0, N1 > 0, diagonal
matrices � j > 0, symmetric matrix S and arbitrary
appropriate dimensions matrices Q j , R, L j , D j , Yι,
Zι Mκ , Nκ , j = 1, 2, ι = 1, 2, 3, κ = 2, 3, such that
the following LMIs hold:

[
P1 (I + Q)P1
� P1

]
> 0, (9)

L1 =
[
X1 L1

� X2

]
> 0, (10)

L2 =
[
3X1 L2

� 3X2

]
> 0, (11)

�1(Tk) = �1 + Tk�2 < 0, (12)

�2(Tk) = �1 + Tk�3 < 0, (13)

where �1, �2 and �3 are defined in Appendix A.

Proof Construct the following time-dependent IBBLF:

W(t) = V1(t) + V2(t), t ∈ (t+k , tk+1], (14)

where V1(t) = V1(t)+V2(t), V2(t) = ∑7
i=3 Vi (t) and

V1(t)d = zT (t)P1z(t),

V2(t) =
∫ t

t−τ(t)
e2α(s−t)zT (s)P2z(s)ds,

V3(t) = 2ηT3 (t)[Q1η1(t) + Q2η2(t)],
V4(t) = 2[z(t) − z(t+k )]T R[z(t) − z(tk+1)],
V5(t) = (tk+1 − t)(t − tk)η

T
1 (t)Sη1(t),

V6(t) = (tk+1 − t)(tk+1 − tk)
∫ t

tk
e2α(s−t) żT (s)X1 ż(s)ds

− (t − tk)(tk+1 − tk)
∫ tk+1

t
e2α(s−t) żT (s)X2 ż(s)ds,

V7(t) = (tk+1 − t)
∫ t

tk
e2α(s−t)ηT4 (s)M η4(s)ds

− (t − tk)
∫ tk+1

t
e2α(s−t)ηT4 (s)N η4(s)ds,

with

Q1=
[
Q11 Q12

Q13 Q14

]
, Q2=

[
Q21 Q22

Q23 Q24

]
, S=

[
S11 S12
� S22

]
,

M =
⎡

⎣
M1 Y1 Y2
� M2 Y3
� � M3

⎤

⎦ , N =
⎡

⎣
N1 Z1 Z2

� N2 Z3

� � N3

⎤

⎦ .

Taking the derivative ofW(t), one obtains

V̇1(t) + 2αV1(t)

= ξ T (t)He
{
eT1 P1e5 + αeT1 P1e1

}
ξ(t), (15)

V̇2(t) + 2αV2(t)

≤ ξ T (t)
{
eT1 P2e1 − (1 − μ)e−2ατ eT2 P2e2

}
ξ(t), (16)

V̇3(t) + 2αV3(t)

= ξ T (t)He
{
�T

6 Q1�1 + �T
6 Q2�2 + (t − tk)(�

T
8

× Q1�1 + �T
8 Q2�2 + �T

5 Q2�3 + 2α�T
5 Q1�1

+ 2α�T
5 Q2�2)+(tk+1−t)(�T

7 Q1�1 + �T
7 Q2�2

+ �T
4 Q2�3 + 2α�T

4 Q1�1 + 2α�T
4 Q2�2)

}
ξ(t),

(17)

V̇4(t) + 2αV4(t)

= ξ T (t)He
{
eT5 R(e1 − e4) + (e1 − (I + Q)e3)

T

×Re5 + 2α(e1 − (I + Q)e3)
T R(e1 − e4)

}
ξ(t),

(18)

V̇5(t) + 2αV5(t)

= ξ T (t)
{
(tk+1 − t)�T

1 S�1 − (t − tk)�
T
1 S�1

+ 2α(tk+1 − t)(t − tk)�
T
1 S�1

}
ξ(t), (19)

V̇6(t) + 2αV6(t)
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≤ ξ T (t)
{
(tk+1−t)TkeT5 X1e5

}
ξ(t) − Tk

∫ t

tk
e−2αTM

× żT (s)X1 ż(s)ds + ξ T (t)
{
(t − tk)TkeT5 X2e5

}

× ξ(t) − Tk
∫ tk+1

t
żT (s)X2 ż(s)ds, (20)

V̇7(t) + 2αV7(t)

≤−e−2αTM

∫ t

tk
zT (s)M1z(s)ds + (t−tk)ξ

T (t)�1ξ(t)

+ (tk+1−t)ξ T (t)�2ξ(t) −
∫ tk+1

t
zT (s)N1z(s)ds

+ (t − tk)ξ
T (t)�3ξ(t) + (tk+1 − t)ξ T (t)�4ξ(t).

(21)

For the integral terms of (20) and (21), one has

−Tk
∫ t

tk
e−2αTM żT (s)X1 ż(s)ds−Tk

∫ tk+1

t
żT (s)X2 ż(s)ds

≤ ξ T (t)
{ − �T

5 L1�5 − �T
6 L2�6

}
ξ(t), (22)

−e−2αTM

∫ t

tk
zT (s)M1z(s)ds−

∫ tk+1

t
zT (s)N1z(s)ds

≤ ξ T (t)
{ − (t − tk)e

−2αTM eT6 M1e6 − (tk+1 − t)

× eT7 N1e7
}
ξ(t). (23)

Therefore, one obtains

V̇6(t) + 2αV6(t)

≤ ξ T (t)
{
(tk+1 − t)TMeT5 X1e5 + (t − tk)TMeT5 X2e5

− �5L�5 − �T
6 L2�6

}
ξ(t), (24)

V̇7(t) + 2αV7(t)

≤ ξ T (t)
{
(t − tk)(�1 + �3 − e2αTM eT6 M1e6)

+ (tk+1 − t)(�2 + �4 − eT7 N1e7)
}
ξ(t). (25)

In addition, for any diagonal matrices�1 > 0,�2 > 0,
the following inequalities hold:

ξ T (t)He
{
eT8 �1(Ge1 − e8)

}
ξ(t) ≥ 0,

ξ T (t)He
{
eT9 �2(He2 − e9)

}
ξ(t) ≥ 0.

(26)

For any matrices D1 ∈ Rn×n , D2 ∈ Rn×n , one can
get:

ξ T (t)He
{
�T

7 �8
}
ξ(t) = 0. (27)

From (15–28), the estimation of Ẇ(t) + 2αW(t) will
be obtained:

Ẇ(t) + 2αW(t)

w1q ≤ ξ T (t)
{
�1 + (t − tk)�2 + (tk+1 − t)�3

}
ξ(t).
(28)

Then, one obtains

Ẇ(t) + 2αW(t)

≤ ξ T (t)

{
t − tk
Tk

�1(Tk) + tk+1 − t

Tk
�2(Tk)

}
ξ(t).

(29)

Therefore, based on conditions (12) and (13), one
obtains

Ẇ(t) + 2αW(t) < 0, t ∈ (t+k , tk+1]. (30)

Pre- and post-multiply inequality (9) by diag
{
I, P−1

}
,

[
P1 I + Q

� P−1
1

]
> 0. (31)

Hence, one can derive

W(t+k ) = V1(t
+
k ) + V2(t

+
k )

≤ zT (tk)P1z(tk) + V2(t
−
k )

= W(tk),

(32)

which means that the jumps of W(t) at every impulse
instant are decreasing, that is,W(t+k ) < W(tk).

For t ∈ (t+k , tk+1], it follows from Lemma 1 that

W(t) ≤ e−2α(t−tk )W(tk)

≤ e−2α(t−tk−1)W(tk−1)

≤ ...

≤ e−2αtW(0). (33)

On the one hand, we can know

W(0) = zT (0)P1z(0) +
∫ 0

−τ(t)
e2αs zT (s)P2z(s)ds

≤ θ3 sup
s∈[−τ,0]

‖ϕ(s)‖2, (34)

where θ3 = λmax(P1) + τ · λmax(P2).
On the other hand, from Lemma 2 and (34), one gets

‖z(t)‖2

123



Hybrid control strategy of delayed neural networks and its application 3217

≤ θ1‖z(tk)‖2 + θ2

∫ tk

tk−τ(tk )
‖z(s)‖2ds

< max

{
θ1

λmin(P1)
,

θ2e2ατ

λmin(P2)

}
W(tk)

< max

{
θ1

λmin(P1)
,

θ2e2ατ

λmin(P2)

}
e−2αtkW(0)

≤ e2αTM max

{
θ1

λmin(P1)
,

θ2e2ατ

λmin(P2)

}
e−2αtW(0)

≤ e2αTM max

{
θ1

λmin(P1)
,

θ2e2ατ

λmin(P2)

}
θ3

× e−2αt sup
s∈[−τ,0]

‖ϕ(s)‖2. (35)

Thus, we can obtain

‖z(t)‖ ≤ εe−αt sup
s∈[−τ,0]

‖ϕ(s)‖, (36)

where

ε = eαTM

√

max

{
θ1

λmin(P1)
,

θ2e2ατ

λmin(P2)

}
θ1.

Then, the exponential stabilization of system (3) can
be achieved. This completes the proof.

Remark 1 Although the Lyapunov functional V1(t)
and V2(t) are positive definite, the IBBLF W(t) may
not be so. Therefore, the IBBLF approach relaxes the
requirement of positive definiteness and it only sat-
isfies W(t) is positive at the moment of impulsive
t = tk (t = t−k ). In addition, Ẇ(t) < 0 can be obtained
by using IBBLF, it is obvious that one can ensureW(t)
is decreasing on the impulsive instants.

Remark 2 In (14), the IBBLF
∑7

l=3 Vl(t, z(t)), takes
full advantage of the state information from z(t+k ) to
z(t) and z(t) to z(tk+1), which not only can obtain
less conservative results, but also improve the interval
[Tm, TM ] of allowable aperiodic impulses compared
with the LFM in Refs. [28,45,46].

3.2 Application: exponential stability of SDSs with
variable sampling

According to system (1), we consider the following
SDSs:
{
ż(t) = Az(t)+Bg(z(t))+Ch(z(t−τ(t)))+uc(t),

z(s) = ϕ(s), s ∈ [−τ, 0], (37)

where uc(t) = Kz(tk), and the other notations have the
same meaning as Theorem 1. In order to use the results
of Theorem 1, the SDSs can be written as an impulsive
system with state ω(t) := col

{
z(t), x(t)

}
and x(t) :=

z(tk), t ∈ (tk, tk+1] and Tk = tk+1 − tk ∈ [Tm, TM ].
The dynamics of system (38) can be written as

⎧
⎪⎨

⎪⎩

ω̇(t)=Aω(t)+Bg̃(ω(t))+Ch̃(ω(t−τ(t))), t �= tk,

ω(t+k ) =
[
z(t−k )

z(t−k )

]
, t = tk, ∀k ∈ N

+,

(38)

where

A =
[
A K
0 0

]
, B =

[
B 0
0 0

]
, C =

[
C 0
0 0

]
,

g̃(ω(t))=
[
g(z(t))
g(x(t))

]
, h̃(ω(t−τ(t)))=

[
h(z(t−τ(t)))
h(x(t−τ(t)))

]
.

and the initial condition z(s) = ϕ(s), s ∈ [−τ, 0].
Between the impulses z(t), x(t) evolve according

to (37) and at the impulse instant tk , the value of z(t)
before and after tk remains unchanged, but the value of
x(t) is updated by x(t−k ). Then exponential stability of
SDSs (38) can be obtained as follows:

Theorem 2 Given constants Tm > 0, TM > 0, α > 0,
ε1, ε2, if there exist matrices Pj > 0, X j > 0, M1 > 0,
N1 > 0, diagonal matrices � j > 0, symmetric matrix
S and arbitrary matrices Q j , R, L,D j , Yι, Zι Mκ , Nκ ,
j = 1, 2, ι = 1, 2, 3, κ = 2, 3, such that conditions
(10) (11) of the Theorem 1 and following LMIs hold for
Tk ∈ [Tm, TM ]:

�̃1(Tk) = �̃1 + Tk�̃2 < 0, (39)

�̃2(Tk) = �̃1 + Tk�̃3 < 0. (40)

Then, the system (38) is exponential stable and the gain
matrix can be obtained byK = (DT )−1K̃. The process
of proof is shown in Appendix B, C.

Remark 3 What’s worth noting here is that W(t) is
strictly monotonically decreasing due to Ẇ(t) < 0,
(t+k , tk+1]. In [38], discrete Lyapunov stability theory
and discrete integral method was proposed to prove the
asymptotically stable of linear SDSs. Unfortunately,
these analysis methods cannot be used to discuss non-
linear SDSs. However, to bridge the generation gap,
discrete-time Lyapunov theorem and Lemma 2 are
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developed to derive the exponential stability condi-
tions.

4 Numerical simulations

The point of this part is that we use two numerical
examples to illustrate the less conservatism and effec-
tiveness of the proposed approach in this work.

4.1 Example 1

For comparison with the Ref. [41], the system is
reduced to a linear impulsive system as follows:
{
ż(t) = Az(t), t �= tk,

z(t+k ) = Qz(tk), t = tk .
(41)

Namely, for system (3), the matrices B = C = � = 0.
We consider the asymptotically stable of the system
(42) in the following two cases.

Case 1WhenA andQ are set to the followingmatri-
ces:

A =
[−3.5 0.3
0.1 0.6

]
, Q =

[
1.3 0.1
0.1 0.01

]
.

One can know that the eigenvalues ofA are −3.50489
and 0.6049, meanwhile, the eigenvalues of Q are
1.3077 and 0.0023. The impulsive system can’t achieve
stable if the impulsive interval is too small or too large.
Thus, Tk plays a vital part for the stability of system
(42). By using the theoretical results of Theorem 1,
the allowable impulsive interval is listed in Table 1
compare with Refs. [41–44]. From Table 1, it is obvi-
ously that the impulsive interval obtained by Theorem
1 is better than Refs. [41–44], which indicates that the
results of Theorem 1 is less conservative. However, the
cost of computational complexity is large than Refs.
[41–43] (Note: The presence of “NDVs” in Table 2
means the number of decision variables).

Case 2 When we set the matrices A and Q as fol-
lows:

A =
[
1 3

−1 2

]
, Q =

[
0.5 0
0 0.5

]
.

A is anti-Hurwitz and Q is Schur, the dwell-time Tk
should be small enough to guarantee the stability of
system (42). When the dwell-time Tk < T , the impul-
sive system is asymptotical stable, where T denotes the
maximal dwell-time. Further, by using Theorem 1, T

Table 2 Allowable intervals [Tm , TM ] with aperiodic impulses

Methods Intervals NDVs

[41] [0.0802, 1.2082] 5n2 + 2n

[43] [0.0780, 2.3214] 9.5n2 + 3.5n

[42] [0.0780, 2.6417] 23.5n2 + 1.5n

[44] [0.0780, 2.8056] 178.5n2 + 3.5n

Theorem 1 (D1 = 0) [0.0780, 3.3064] 25.5n2 + 3.5n

Theorem 1 (D1 �= 0) [0.0780, 4.8474] 26.5n2 + 3.5n

0 10 20 30 40 50 60 70 80 90 100
time t

-30

-20

-10

0

10

20

30

z(
t)

z1(t)

z
2
(t)

z
3
(t)

Fig. 1 State trajectory of system (1) without any controller

can be obtained (See Table 3). It is clear that T obtained
by thiswork is larger thanRefs. [41–43], thus the results
of Theorem 1 has less conservatism than [41–43].

4.2 Example 2

Consider the DNNs with the following parameters:

A =
⎡

⎣
−1 0 0
0 −1 0
0 0 −1

⎤

⎦ ,B =
⎡

⎣
0 8 0
1 0 1
0 −11 1

⎤

⎦ , C =
⎡

⎣
2 0 0
0.2 0.1 0
9 0 0.1

⎤

⎦ .

Select τ(t) = 0.3+0.2sint , g(z(t)) = z(t), h(z(t)) =
0.5(|z + 1| − |z − 1|), thus G = H = diag

{
1, 1, 1

}
.

Figure 1 draws the state trajectory z(t) without con-
troller under the initial conditionϕ(s) = [−2, 1,−2]T ,
s ∈ [−0.5, 0]. Obviously, system (1) is unstable with-
out controller.

Next, we will use these parameters to analyze the
impulsive DNNs and SDSs, respectively.

Case 1: ImpulsiveDNNs (3)Weverify the relation of
the exponential rate α and TM under different impulse
strength. Table 4 shows the maximum allowable bound
for TM with Tm = 0.001. Figure 2 depicts the state
trajectory of DNNs with stable impulse.
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Table 3 Maximal dwell-time Tk with aperiodic impulses

Methods [41] [43] [42] Theorem 1

T 0.4471 0.4483 0.4618 0.6574

Improvement(%) 47.03 46.64 42.35 −−

Table 4 Allowable upper bound TM when Tm = 0.001 for different α

α 0.1 0.3 0.5 0.7 0.9

Q = −0.5I 0.5575 0.5395 0.5209 0.5019 0.4745

Q = −0.9I 0.5577 0.5402 0.5213 0.5021 0.4748

0 5 10 15 20 25
time t

-4

-3

-2

-1

0

1

2

z(
t)

z1(t)
z2(t)
z3(t)

Fig. 2 State trajectory of system (1) with stable impulses

Remark 4 Fig. 3 describes the state trajectory of sys-
tem (1) with unstable impulsive. As can be seen from
the Fig. 3 (where Q = diag

{
0.2, 0.2, 0.2

}
, that is

z(t+k ) = 1.2z(tk)), the system can still achieve sta-
bility under the action of the impulsive controller (2).
The reason of this stability is that the feedback term is
incorporated into the controller. Namely, the feedback
controller plays a meaningful role when the unstable
impulses are activated. But in Refs. [25,49], when the
unstable impulses was activated, they can’t obtain the
expected results because the feedback control was not
considered. Thus, the hybrid controller presented in this
work is more general than the previous works. In order
to verity the influence of u1(t) in the hybrid controller
(2), we set � = 0 when Q = 0.1I . From Fig. 4, the
exponential stability can’t be achieved, which further
demonstrates the feedback control u1(t) in hybrid con-
troller (2) has an important significance in the expo-
nentially stable.

Case 2: SDSs (38) Firstly, in (39), the controller
uc(t) = Kz(tk) and the delay τ(t) = τ is constant
delay. To describe the validity of the results of Theorem

0 5 10 15 20 25
time t
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-2

-1.5

-1

-0.5

0

0.5

1

z(
t)

z
1
(t)

z
2
(t)

z
3
(t)

Fig. 3 State trajectory of system (1) with unstable impulses
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(t)

z
3
(t)

Fig. 4 State trajectory of system (1) with unstable impulses

2, the comparisons results are obtained. The maximum
allowable bound for TM with Tm = 10−5 is shown in
Table 5. Additionally, the number of decision variables
are also compared,which is ameasure of computational
complexity. Therefore, Table 5 displays that when the
computational complexity increases, a relatively con-
servative result is obtained than those Refs. [28,45,46].

Secondly, set α = 0.8, Tm = 0.001, TM = 0.3790,
then the feasible solution of Theorem 2 can be got by
MATLABLMI Toolbox, and the following gainmatrix
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Table 5 The maximum allowable upper bound TM with Tm =
10−5

Methods TM NDV

[28], [45], [46] 0.1348 8.5n2 + 3.5n

Theorem 2 (D1 = 0) 0.5207 25.5n2 + 3.5n

Theorem 2 (D1 �= 0) 0.5216 26.5n2 + 3.5n

Fig. 5 State trajectory of system (1) with sampled-data con-
troller
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0 1 2 3 4 5 6 7 8 9 10
time t

Fig. 6 Sampling instants and sampling periods

K can be obtained

K =
⎡

⎣
−0.6212 −0.2322 −0.3941
0.0311 −0.3344 −0.1689
1.0447 0.6187 −3.2544

⎤

⎦ .

And consider ϕ(s) = [−2, 1,−2]T , s ∈ [−0.5, 0].
The state trajectory z(t), sampled-data state z(tk), and
sampling instants and samplingperiods under aperiodic
sampling is described in Figs. 5 and 6, respectively,
which shows the exponentially stable can be achieved
by the sampled-data controller.

5 Conclusion

This work studies the analysis of the exponential sta-
bility for DNNs based on a hybrid control strategy,
where unstable and stable impulses have all been con-
sidered. An exponential stability criterion for DNNs
by employing an improved IBBLF with discontinuity
at the impulses instant has been obtained. Then, suf-
ficient conditions have been obtained on the ranged
dwell-time, which is the result of stability in discrete-
time, but expressed in continuous-time. Lastly, the
derived results have also been applied to SDSs and
the corresponding stability results are also obtained.
In our future work, the following topics will be con-
sidered: 1. Consider the case that the delay-impulses
between two consecutive impulsive instants based on
the IBBLF method. 2. Design a novel event-triggered
control with the aid of IBBLF, where the impulsive
sequence is unknown sequence and determined by the
event-triggered condition.
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Appendix

Appendix A

�1 = eT1 P2e1−(1−μ)e−2ατ eT2 P2e2 − �T
5 L1�5 − �T

6 L2

×�6+He
{
eT1 P1e5 + αeT1 P1e1 + �T

6 Q1�1 + �T
6

×Q2�2 + eT5 R(e1 − e4) + (e1 − (I + Q)e3)Re5

+2α(e1−(I + Q)e3)R(e1−e4) + eT8 �1(Ge1−e8)
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+eT9 �2(He2 − e9) + �T
7 �8

}
,

�2 = �T
8 Q1�1 + �T

8 Q2�2 + �T
5 Q2�3 + 2α�T

5 Q1�1

+2α�T
5 Q2�2 − �T

1 S�1 + TMeT5 X2e5 + �1+�3

−e−2αTM eT6 M1e6 + α

2
Tmax�

T
1 S�1,

�3 = �T
7 Q1�1 + �T

7 Q2�2 + �T
4 Q2�3 + 2α�T

4 Q1�1

+2α�T
4 Q2�2+�T

1 S�1+TMeT5 X1e5+ �2 + �4

−eT7 N1e7 + α

2
Tmax�

T
1 S�1,

�1 =col
{
(I+Q)e3, e4

}
, �2=col

{
e1−(I+Q)e3, e1−e4

}
,

�3 = {
e5, e5

}
, �4 = col

{
e1 − (I + Q)e3, 0

}
,

�5 = col
{
0, e1−e4

}
, �6 = col

{
(I + Q)e3 − e1, e1 − e4

}
,

�7 = col
{
e5, 0

}
, �8 =col

{
0, e5

}
,

�1 = −e−2αTM
{
eT3 M2e3 + eT4 M3e4 + He

{
eT6 Y1e3

+ eT6 Y2e4 + eT3 Y3e4
}}

,

�2 = eT1 M1e1 + eT3 M2e3 + eT4 M3e4 + He
{
eT1 Y1e3

+ eT1 Y2e4 + eT3 Y3e4
}
,

�3 = eT1 N1e1 + eT3 N2e3 + eT4 N3e4 + He
{
eT1 Z1e3

+ eT1 Z2e4 + eT3 Z3e4
}
,

�4=−eT3 N2e3−eT4 N3e4−He
{
eT7 Z1e3+eT7 Z2e4+eT3 Z3e4

}
,

�5 = col
{
e−αTM (e1−e3), e4−e1

}
,�7 = D1e1 + D2e5,

�6 = col
{
e−αTM (e1+e3−2e6), e1+e4−2e7

}
,

�8 = −e5 + (A − �)e1 + Be8 + Ce9.

Appendix B: Proof of Theorem 2

Proof Step 1 Construct the following LKFs:

V1(t) = ωT (t)P̃1ω(t),

V2(t) =
∫ t

t−τ(t)
e2α(s−t)ωT (s)P̃2ω(s)ds,

V3(t) = 2η̃T3 (t)[Q̃1η̃1(t) + Q̃2η̃2(t)],
V4(t) = 2[ω(t) − ω(tk)]T R̃[ω(t) − ω(tk+1)],
V5(t) = (tk+1 − t)(t − tk)η̃

T
1 (t)S̃η̃1(t),

V6(t) = (tk+1−t)(tk+1−tk)
∫ t

tk
e2α(s−t)ω̇T (s)X̃1ω̇(s)ds

− (t−tk)(tk+1−tk)
∫ tk+1

t
e2α(s−t)ω̇T (s)X̃2ω̇(s)ds,

V7(t) = (tk+1 − t)
∫ t

tk
e2α(s−t)η̃T4 (s)M̃ η̃4(s)ds

− (t−tk)
∫ tk+1

t
e2α(s−t)η̃T4 (s) ˜N η̃4(s)ds,

where define � = [? 0; 0 0], thus � = P̃j when
? = Pj , � = X̃ j when ? = X j , � = D̃ j when ? = D j

and � = R̃ when ? = R, j = 1, 2.

Q̃i =

⎡

⎢⎢
⎣

Qi1 0 Qi2 0
0 0 0 0
Qi3 0 Qi4 0
0 0 0 0

⎤

⎥⎥
⎦ , S̃ =

⎡

⎢⎢
⎣

S11 0 S12 0
0 0 0 0
S21 0 S22 0
0 0 0 0

⎤

⎥⎥
⎦ ,

M̃ =

⎡

⎢⎢
⎣

M1 Y1 Y2 0
� M2 Y3 0
� � M3 0
� � � 0

⎤

⎥⎥
⎦ , ˜N =

⎡

⎢⎢
⎣

N1 Z1 Z2 0
� N2 Z3 0
� � N3 0
� � � 0

⎤

⎥⎥
⎦ .

The other symbols are defined in Appendix C. In addi-
tion, the process of proof is similar to Theorem 1, so it
is omitted here.
Step 2 In order to obtain gain matrix K, define D1 =
ε1D,D2 = ε2D, and we introduce a variable K̃ =
(DT )K, thus K = (DT )−1K̃.

Appendix C

π̃1(t) = 1

t−tk

∫ t

tk
ω(s)ds, π̃2(t) = 1

tk+1−t

∫ tk+1

t
ω(s)ds,

η̃1(t)=col
{
ω(tk), ω(tk+1)

}
, η̃4(t)=col

{
ω(t), ω(tk+1)

}
,

η̃2(t) = col
{
ω(t) − ω(tk), ω(t) − ω(tk+1)

}
,

η̃3(t)=col
{
(tk+1−t)(ω(t)−ω(tk)), (t−tk)(ω(t)−ω(tk+1))

}
,

η̃5(t) = col
{
π̃1(t), π̃2(t), g̃(ω(t)), h̃(ω(t − τ(t)))

}
,

ξ̃ (t) = col
{
ω(t), ω(t−τ(t)), η̃1(t), ω̇(t), η̃5(t)

}
, ι=1, 2, 3,

M̃ι=
[
Mι 0
0 0

]
, Ñι=

[
Nι 0
0 0

]
, Ỹι=

[
Yι 0
0 0

]
, Z̃ι=

[
Zι 0
0 0

]
,

�̃1 = eT1 P̃2e1 − (1 − μ)e−2ατ eT2 P̃2e2 − �̃T
5 L1�̃5

− �̃T
6 L2�̃6 + He

{
eT1 P̃1e5 + αeT1 P̃1e1 + �T

6

× Q̃1�1 + �T
6 Q̃2�2 + eT5 R̃(e1 − e4) + (e1

− e3)
T R̃e5 + 2α(e1 − e3)

T R̃(e1 − e4) + eT8

× �1(Ge1−e8) + eT9 �2(He2 − e9) + �̃T
7 �̃8

}
,

�̃2 = �T
8 Q̃1�1 + �T

8 Q̃2�2 + �T
5 Q̃2�3+2α�T

5 Q̃1

×�1 + 2α�T
5 Q̃2�2 − �T

1 S̃�1 + TMeT5 X̃2e5
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+ �̃1 + �̃3 − e2αTM eT6 M̃1e6 + α

2
TM�T

1 S̃�1,

�̃3 = �T
7 Q̃1�1 + �T

7 Q̃2�2 + �T
4 Q̃2�3+2α�T

4 Q̃1

× �1 + 2α�T
4 Q̃2�2 + �T

1 S̃�1+TMeT5 X̃1e5

+ �̃2 + �̃4 − eT7 Ñ1e7 + α

2
TM�T

1 S̃�1,

�1 = col
{
e3, e4

}
, �2 = col

{
e1−e3, e1−e4

}
,

�3 = col
{
e5, e5

}
, �4 = col

{
e1 − e3, 0

}
,

�5 = col
{
0, e1 − e4

}
, �7 = col

{
e5, 0

}
,

�6 = col
{
e3 − e1, e1 − e4

}
, �8 = col

{
0, e5

}
,

�̃1 = −e−2αTM
{
eT3 M̃2e3 + eT4 M̃3e4 + He

{
eT6 Ỹ1e3

+ eT6 Ỹ2e4 + eT3 Ỹ3e4
}}

,

�̃2 = eT1 M̃1e1 + eT3 M̃2e3 + eT4 M̃3e4 + He
{
eT1 Ỹ1e3

+ eT1 Ỹ2e4 + eT3 Ỹ3e4
}
,

�̃3 = eT1 Ñ1e1 + eT3 Ñ2e3 + eT4 Ñ3e4 + He
{
eT1 Z̃1e3

+ eT1 Z̃2e4 + eT3 Z̃3e4
}
,

�̃4 =−eT3 Ñ2e3 − eT4 Ñ3e4−He
{
eT7 Z̃1e3 + eT7 Z̃2e4

+ eT3 Z̃3e4
}
,

�̃5 = col
{
e−αTM (e1 − e3), e4 − e1

}
,

�̃6 = col
{
e−αTM (e1 + e3 − 2e6), e1 + e4 − 2e7

}
,

�̃7= D̃1e1+ D̃2e5, �̃8 = −e5 + Ae1 + Be8 + Ce9.
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