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Abstract System parameters identification of non-

linear bistable structures has attracted considerable

interest because the performance enhancement of

energy harvesting and vibration control is significantly

dependent on the model parameter of nonlinear

systems. Therefore, a two-stage subspace method is

proposed to identify the critical parameters in the

system equation of nonlinear bistable piezoelectric

structures. The dynamic equation of nonlinear

bistable piezoelectric structures is separated into an

underlying linear electromechanical coupling equa-

tion and a nonlinear mechanical equation. At first, for

the underlying linear electromechanical coupling

equation, a force–displacement subspace is con-

structed to identify the linear mass, damping and

stiffness. Meanwhile, a velocity–voltage subspace is

created for the identification of the electromechanical

coupling coefficient. Next, for the nonlinear mechan-

ical equation, the nonlinear restoring force in

bistable structures can be estimated by the extended

nonlinear frequency response function. Numerical

simulation on a magnetic coupled bistable piezoelec-

tric structure is performed to investigate the influence

of frequency-swept responses, the noise intensity and

polynomial order on identification accuracy. Experi-

mental measurement of a magnetic coupled asymmet-

ric bistable piezoelectric beam is conducted under

different excitation conditions. Experimental results

demonstrate the effectiveness of the proposed identi-

fication method.

Keywords Bistable structures �Nonlinear parameter

identification � Two-stage subspace method �
Electromechanical coupling equation � Nonlinear
restoring force

1 Introduction

In the last decade, nonlinear piezoelectric structures

have attracted a lot of interest in vibration energy

harvesting, vibration absorption and actuation [1–4].

Among the investigations of favorable nonlinear

piezoelectric structural designs and dynamics for

improving energy harvesting capability, nonlinear

bistable piezoelectric structures have been employed

to exhibit large amplitude electromechanical dynam-

ics under low-frequency vibration excitations [5, 6].

Generally, a nonlinear bistable piezoelectric structure

incorporates a nonlinear restoring force using different

design approaches, including magnetic levitation
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[7, 8], axial loading [9, 10] and metamaterial struc-

tures coupling [11, 12], etc. These nonlinear elements

can improve the operational frequency band and

exhibit the non-resonant nature of snap-through

dynamics. However, these nonlinear configurations

may lead to the identification difficulty of critical

parameters such as equivalent mass, damping coeffi-

cient, nonlinear restoring force, and electromechanical

coupling coefficient.

In recent decades, much effort has been devoted to

investigating the governing model derivation and the

effect of system physical parameters and nonlinear

restoring force. Erturk et al. investigated the governing

lumped-parameter equation with the nonlinear restor-

ing force for describing the dynamics of a magnetic

buckling bistable piezomagnetoelastic generator [13].

Stanton et al. derived the dynamic model of the

magnetic coupled bistable piezoelectric cantilever

beam using the energy principles andmagnetic dipoles

theory [14]. Cao et al. experimentally measured the

nonlinear restoring force in a rotatable magnetic

coupled nonlinear bistable cantilever beam and then

fitted it with a polynomial model [15]. Leadenham and

Erturk et al. used force and displacement sensors to

obtain force–displacement curves in an M-shaped

piezoelectric energy harvesting device with a third-

order polynomial [16] or a fifth-order polynomial [17].

Masana et al. proposed the system model of a

clamped–clamped axially loaded bi-stable (post-buck-

ling) piezoelectric beam based on Hamilton’s princi-

ple, and their parameters were all calculated

analytically [18]. Myungwon et al. presented a meta-

material-inspired bistable lattice, and its magnetic

interaction force was measured and fitted with cubic

force functions [11]. Among the above-mentioned

nonlinear bistable structures, the critical parameters in

the dynamical equation were obtained by theoretical

calculation or quasi-static measurement. However, it

will be difficult to calculate or characterize these

parameters accurately due to the uncertainties of the

bonding process of piezoelectric ceramics and clamp-

ing conditions of piezoelectric structures.

Additionally, another promising method of obtain-

ing the model parameters is based on the system

identification technology. Stanton et al. identified the

model parameters of nonlinear piezoelectric structures

via a nonlinear least-squares optimization algorithm

that utilized the approximate analytic solution

obtained by the harmonic balance method [19]. Zhou

et al. employed a genetic algorithm to identify the

equivalent damping coefficient and electromechanical

coupling coefficient in a magnetic coupled

tristable piezoelectric cantilever beam [20]. Yuan

et al. addressed the hardening and softening nonlin-

earity in a circular laminated plate using the Hilbert

transform-based method, and the strong nonlinearity

of electrical parameters was estimated by the current

mapping approach [21, 22]. Nico et al. and Harris et al.

introduced signal decomposition methods, such as

high-order spectral techniques [23] and wavelet anal-

ysis [24], to investigate the nonlinear responses of

piezoelectric energy harvesting devices. In addition to

the above signal processing and optimizationmethods,

the time-domain nonlinear subspace method initially

proposed by Marchesiello et al. [25] was employed to

identify nonlinear restoring force [26]. Ghamami et al.

proposed a two-stage automated identification algo-

rithm based on data-driven stochastic subspace, clas-

sification, and clustering methods to estimate the

modal parameters of bistable composite plates and

concrete arch dam [27, 28]. The improved nonlinear

frequency domain subspace algorithm has been widely

used in aerospace structures such as impacts on the

mechanical stops [29], bolted connected joints on

wingtips [30] and solar array structures [31]. More-

over, some interesting improvements have been made

in nonlinear beam identification. Liu et al. proposed

the modified time-domain subspace method based on a

nonlinear separation strategy which reduces the cou-

pling error in the traditional nonlinear subspace

method [32, 33]. Anastasio et al. proposed an ad hoc

version of the nonlinear subspace identification algo-

rithm in the reduced-order domain to identify dis-

tributed nonlinearities in a flexible beam structure

[34]. However, there is rarely investigation into

subspace parameter identification of bistable piezo-

electric structures. These nonlinear bistable structures

always exhibit more complicated dynamic phe-

nomenon such as intra-well and inter-well chaos

oscillation. Therefore, improper output response under

a given excitation condition will result in unvalidat-

able identification. Besides, the nonlinear restoring

force in many bistable structures cannot be exactly

described using a polynomial expression due to

measurement error or structural constraints. There-

fore, in addition to parameter identification of nonlin-

ear bistable structures, the influence of dynamic

responses signal selection, noise level and polynomial
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order on the identification process should be thor-

oughly investigated.

To address the above issues, a two-stage subspace

method is proposed for the identification of equivalent

mass, damping coefficient, linear stiffness, electrome-

chanical coupling coefficient and nonlinear restoring

force in a nonlinear bistable piezoelectric structure.

The dynamical equation of bistable piezoelectric

structures to be identified is separated into an under-

lying linear electromechanical coupling equation and

a nonlinear mechanical equation. For the underlying

linear electromechanical coupling equation, a force–

displacement subspace is constructed to identify the

linear mass, damping and stiffness, and a velocity–

voltage subspace is proposed for the identification of

the electromechanical coupling coefficient. For the

nonlinear mechanical equation, the nonlinear restoring

force in bistable structures can be estimated by the

extended nonlinear frequency response function.

Numerical simulations are conducted to investigate

the identification performance. The frequency-swept

response selection, noise pollution and the choice of

polynomial order are also discussed. Moreover,

experimental verification is conducted on a magnetic

coupled bistable piezoelectric cantilever beam.

The paper is organized as follows. In Sect. 2, the

nonlinear subspace identification process is intro-

duced. And then in Sect. 3, the proposed two-stage

subspace method for the identification of nonlinear

bistable piezoelectric structures is presented. Sec-

tion 4 is dedicated to the numerical validation and

influence factors in the identification accuracy of the

proposed method. Experimental verification and eval-

uation are performed in Sect. 5. Finally, the conclu-

sion of the present study is summarized in Sect. 6.

2 Subspace identification for nonlinear system

2.1 Nonlinear state-space model

The governing equation of a nonlinear dynamical

system with a single degree of freedom can be

expressed in the following form [25]

M €qðtÞ þ Cv _qðtÞ þ KqðtÞ þ
Xm

i¼1

kiLniqiðtÞ ¼ f ðtÞ ð1Þ

whereM, Cv and K are equivalent linear mass, viscous

damping coefficient and stiffness, respectively;

q(t) and f(t) are the response displacement and external

excitation force, respectively. The nonlinear restoring

force term can be described as the sum of m compo-

nents, and each of them depends on the scalar

nonlinear basis function qi(t) through a vector Lni,

which represents the position of the nonlinear element

that can be assumed as 1, - 1 or 0 [25].

It is supposed that the original system can be

subjected to the external excitation force f(t) and an

internal feedback force
Pm

i¼1 kiLniqiðtÞ. This method

has been used to derive the frequency domain method

of ‘‘Nonlinear Identification through Feedback of the

Outputs’’ and is also based on the current time-domain

identification method [35]. By moving the nonlinear

restoring force term of Eq. (1) to the right-hand side of

the function, Eq. (1) can be rewritten as

M €qðtÞ þ Cv _qðtÞ þ KqðtÞ ¼ f ðtÞ �
Xm

i¼1

kiLniqiðtÞ ð2Þ

The deterministic subspace method computes the

state space equations from input force and output

displacement data sets. So, the dynamic equation in

Eq. (2) can be transformed into a state-space model.

Since the displacement can be measured and velocity

can be obtained by differential procedure, the state

vector x ¼ ðqT ; _qTÞT and an input force vector u ¼
½f ðtÞ � q1ðtÞ � q2ðtÞ � � � � qmðtÞ�T are defined. Then,

the state-space formulation of Eq. (2) is given as

_xðtÞ ¼ AcxðtÞ þ Bcf ðtÞ þ Bnl
c qðtÞ

qðtÞ ¼ CcxðtÞ þ Dcf ðtÞ

(
ð3Þ

where subscript c stands for continuous-time, Ac,

Bc,B
nl
c , Cc, Dc are dynamical system, input, nonlinear

feedback input, output and direct feed-through matri-

ces, respectively. The state-space matrix and the

physical space equation should meet

Ac ¼
0 I

�M�1K �M�1Cv

� �
;

Bnl
c ¼

0 � � � 0

M�1u1Ln1 � � � M�1umLnm

� �

Bc ¼
0

M�1

" #
; Cc ¼ I 0½ �; Dc ¼ 0 0 � � � 0½ �

ð4Þ
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The continuous model can be transformed into a

discrete state-space model by assuming zero-order

holds for the input f(t). A discrete-time translation of

Eqs. (3) is eventually considered as

xðsþ 1Þ ¼ AdxðsÞ þ Be
deðyðsÞ; uðsÞÞ

yðsÞ ¼ CdxðsÞ þ De
deðyðsÞ; uðsÞÞ

(
ð5Þ

where s is the sampled time, subscript d stands for

discrete-time and Be
d ¼ ðBd B

nl
d Þ.

2.2 Subspace identification process

The class of subspace identification algorithms [36]

aims to estimate the discrete-time deterministic state-

space model by measured inputs and outputs. Iterating

the two Eqs. (5) yields

yðsÞ ¼ CdA
s
dxð0Þ þ CdA

s�1
d Bduð0Þ

þ CdA
s�2
d Bduð1Þ þ � � �

þ CdA
s�2
d Bduðs� 1Þ þ DduðsÞ

ð6Þ

For identifying the matrices Ad, Bd, Cd and Dd, the

so-called extended observability matrix Cu is defined

as

Cu ¼ CT ðCAÞT ðCA2ÞT � � � ðCAu�1ÞT
� �T ð7Þ

and the lower block triangular Toeplitz matrix Ku is

defined as

Ku ¼

De 0 0 � � � 0

CBe De 0 � � � 0

CABe CBe De � � � 0

..

. ..
. ..

. ..
.

CAu�2Be CAu�3Be CAu�3Be � � � De

0
BBBB@

1
CCCCA

ð8Þ

In the subspace identification method, the intro-

duction of Block Hankel matrices is very important. If

the displacement response and input force to the

system can be easily measured, then extended input

block Hankel matrix and output Hankel matrix can

therefore be defined as

Eu ¼ uT0 : l�1 uT1 : l � � � uTh�1 :hþl�2

� �

Yu ¼ yT0 : l�1 yT1 : l � � � yTh�1 :hþl�2

� �
(

ð9Þ

where h is a user-defined number representing half the

number of rows and l denotes the number of columns

in the input block Hankel matrix.

If Eqs. (7–9) are recursively substituted to Eq. (6),

it can provide the following matrix equation

Yu ¼ Cuxþ KuEu ð10Þ

It should be noted that the specific geometric

manipulation of the row spaces of the above matrix

can refer to Ref. [25] to obtain the system properties. It

will not be discussed in this paper. So far, many

algorithms had been developed to estimate the state

space matrics, such as N4SID [37], MOESP [38] and

PEM [39]. In this paper, the N4SID is adopted, which

had already integrated into MATLAB. Once the A, B,

C, D in the spate-space model are identified, the final

step is to estimate linear coefficient K and nonlinear

coefficients ki by the frequency response function of

the underlying linear system and extended nonlinear

frequency response function, respectively. The under-

lying linear system acceptance matrix can be obtained

by taking the Fourier transform of the linear state-

space model

HðxÞ ¼ ð�x2M þ jxCv þ KÞ�1 ð11Þ

It had been mentioned above that the nonlinear

restoring force could be treated as an internal nonlinear

feedback force as shown inEq. (2). By taking the Fourier

transform, the frequency domain version of the Eq. (2) is

H�1ðxÞQðxÞ ¼ FðxÞ �
Xm

i¼1

kiQiðxÞLni ð12Þ

where Q(x),Qi(x) and F(x) are Fourier transforms of

q(t), qi(t) and f(t), respectively. Therefore, the rela-

tionship between the nonlinear frequency response

function and the underlying linear system frequency

response function is

HeðxÞ ¼ HðxÞ K�1 K�1k1Ln1 K
�1k2Ln2 � � � K�1kmLnm

� �

ð13Þ

By assuming the x = 0, the final nonlinear coeffi-

cients in restoring force function can be obtained

based on Eq. (13).

Besides, the basic physical parameters including

undamped circular eigenfrequency xun and damping

ratio n can be estimated through the eigenvalue

decomposition of the estimated system matrix A [40].
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xun ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R þ k2I

q
; ni ¼

kRj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2R þ k2I

q ð14Þ

where kR and kI are two eigenvalues. Then the

equivalent mass can be estimated by M = K/xun.

3 Two-stage identification for piezoelectric

bistable structures

3.1 Modeling of piezoelectric bistable beam

It is widely known that nonlinear bistable piezoelectric

structures have two stable equilibrium positions and

one unstable equilibrium position as shown in Fig. 1.

The configuration is composed of a spring steel

substrate, two lead zirconate titanate (PZT5) piezo-

electric layers bonded near the root, along with two tip

magnets and two external rotatable magnets. Due to

the interaction between the end magnets with the

rotatable magnets, the nonlinear stiffness force

becomes nonlinear and the bistable case is a very

typical one that will be studied in this paper.

Based on the Euler–Bernoulli beam theory, dis-

cretization method and Hamilton principle, the equiv-

alent lumped electromechanical dynamic modeling of

the nonlinear bistable piezoelectric cantilever beam

can be expressed as [41]

M €xðtÞ þ Cv _xðtÞ þ KxðtÞ þ FnðtÞ � hvðtÞ ¼ FðtÞ
h _xðtÞ þ Cp _vðtÞ � vðtÞ=R ¼ 0

(

ð15Þ

where M, Cv, K, Fn(t) are the equivalent mass, linear

damping coefficient, linear stiffness and the nonlinear

coupled magnetic force, respectively. h is the equiva-

lent electromechanical coupling coefficient; Cp is the

equivalent capacitance of the piezoelectric layer; R is

the load resistance; v(t) is the voltage across the

electrical load; x(t) is the tip displacement of the beam

in the transverse direction; and F(t) is the external

excitation force in the beam thickness direction.

To understand the dynamic characteristics, the value

of parametersM,Cv,K, Fn(t), h, Cp in Eq. (15) should be

identified. It is also found that the value ofFn(t) and h are
the most difficult parameters to be accurately calculated

or directly measured. Moreover, in most previous

studies, the vicious damping Cv, linear stiffness K and

equivalent capacitanceCp are the same as the underlying

linear piezoelectric beam system [22, 42, 43]. Therefore,

the nonlinear magnetic coupling electromechanical

equation can be separated into two parts for parameter

identification. The more specific identification steps will

be performed in the following section.

3.2 Two-stage identification based on subspace

method

3.2.1 First stage: identify underlying linear

electromechanical system

When the external magnets are removed, the structure

will become a simple linear piezoelectric beam. It

means the Fn(t) in Eq. (15) does not exist. Converting

this continuous second-order differential equation to

state-space equation by choosing the state vector as

x ¼ ½xðtÞ _xðtÞ vðtÞ�T , input vector as ½FðtÞ�, and output
vector as y ¼ ½xðtÞ vðtÞ�T , it has

€xðtÞ
_xðtÞ
_vðtÞ

2

64

3

75 ¼

0 1 0

� K

M
�Cv

M

h
M

0 � h
Cp

� 1

RCp

2

66664

3

77775

xðtÞ
_xðtÞ
vðtÞ

2

64

3

75þ
0

1

0

2

64

3

75 FðtÞ½ �

xðtÞ
vðtÞ

� �
¼

1

0

0

0

0

1

" # xðtÞ
_xðtÞ
vðtÞ

2

64

3

75

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð16Þ

Fig. 1 Schematic diagram of nonlinear bistable piezoelectric structures
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Then, Eq. (16) is decomposed into two subsystems,

named as force–displacement subsystem and veloc-

ity–voltage subsystem shown in Eq. (17) and Eq. (18),

respectively.

€xðtÞ
_xðtÞ

" #
¼

0 1

� K

M
�Cv

M

" #
xðtÞ
_xðtÞ

" #
þ

0

1

M

2

64

3

75 F½ �

x ¼ 1 0½ �
xðtÞ
_xðtÞ

" #

8
>>>>>>><

>>>>>>>:

ð17Þ

_vðtÞ
vðtÞ

" #
¼ � h

Cp
� 1

RCp

0 1

2

4

3

5 _xðtÞ
vðtÞ

" #
ð18Þ

Assuming that x = 0, the underlying linear system

acceptance matrix for Eq. (17) is

Hl1ð0Þ ¼ Dl1 � Cl1A
�1
l1 Bl1

¼ 0½ � � 1 0½ �
0 1

� K

M
�Cv

M

" #�1 0

1

M

2

4

3

5

¼ 1

K

� �
ð19Þ

where subscript l1 denotes the identified frequency

response function of the force–displacement subsys-

tem. The linear stiffness can be obtained using the

linear frequency response function. The equivalent

mass and damping need to be identified by using the

eigenvalue decomposition of matrix Al1.

Similarly, the electromechanical coupling coeffi-

cient h can be identified using the frequency response

function of the velocity–voltage subsystem.

Hl2ð0Þ ¼ Dl2 � Cl2A
�1
l1 Bl2 ¼ �Rh ð20Þ

where subscript l2 denotes the identified matrics of the

velocity–voltage subsystem.

3.2.2 Second stage: identify the nonlinear restoring

force

In Eq. (15), linear stiffness force and nonlinear

magnetic force are coupled together, called nonlinear

restoring force. The reaction force of the piezoelectric

layer hvðtÞ can be neglected because of a small order

of magnitude. Moreover, the restoring force in a

bistable piezoelectric cantilever beam can often be

expressed as a polynomial model

FnðtÞ ¼
Pm

i¼1 kiLnix
iðtÞ. Here, the identification of

nonlinear restoring force in a bistable electromechan-

ical coupling system can be simplified into a

bistable mechanical system, the substitution of

FnðtÞ ¼
Pm

i¼1 kiLnix
iðtÞ into Eq. (2) gives

M €qðtÞ þ Cv _qðtÞ ¼ f ðtÞ � ðK þ k1ÞLn1qðtÞ

�
Xm

i¼2

ðk2ÞLniqðtÞ ð21Þ

The extended nonlinear frequency response func-

tion of the bistable piezoelectric cantilever beam is

HnðxÞ ¼ Hl1ðxÞ K k1Ln1 k2Ln2. . .kmLnm½ � ð22Þ

Finally, the nonlinear restoring force can be

expressed by assuming the x = 0,

FnðtÞ ¼
1þ Hð2Þ
Hð1Þ

	 

xþ Hð3Þ

Hð1Þ

	 

x2

þ � � � HðmÞ
Hð1Þ

	 

xm ð23Þ

It should be noted that this two-stage time-domain

subspace method is applicable for a variety of

nonlinear piezoelectric structures as long as the

mechanical equation can be separated from the

electromechanical coupling equation. For a clear

understanding of the proposed two-stage time-domain

subspace method, the identification flowchart of crit-

ical parameters in bistable piezoelectric structures is

diagramed in Fig. 2.

4 Numerical investigation

In this section, the nonlinear bistable piezoelectric

cantilever beam is illustrated for numerical verifica-

tion of the proposed identification method. Besides,

numerical simulation has been employed to study the

influence of frequency-swept response signals and

noise levels on the identification results. Finally, the

choice of polynomial order of nonlinear restoring

force will also be investigated.

In the numerical simulation, the equivalent mass,

damping coefficient, linear stiffness, electromechan-

ical coupling coefficient are 0.01 kg, 0.03 N/(m/s),

140 N/m, and 4 9 10-6 N/V, respectively. The cou-

pled nonlinear restoring force function is Fn-

= - 170x ? 750x2 - 3 9 105x3. So, the governing
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equation of the nonlinear bistable piezoelectric can-

tilever beam is

0:01€xðtÞþ0:03 _xðtÞ�30xþ750x2þ3�105x3�4�10�6vðtÞ¼FðtÞ

4�10�6 _xðtÞþ5�10�9 _vðtÞ�vðtÞ=107¼0

(

ð24Þ

The exciting force is a frequency-swept sine

sequence, and the classical fourth-order Runge–Kutta

algorithm is applied to obtain the dynamic responses

of the simulation model described by Eq. (24).

Furthermore, the measured response is inevitably

polluted by noise in practice. All simulated input

force and output displacement responses are added by

an additive white noise with SNR = 40 dB (Signal

Noise Ratio, SNR).

According to Sect. 3, the underlying linear elec-

tromechanical coupling system is extracted and

separated into two subsystems. Firstly, linearly

increasing frequency force excitation is performed

over the frequency range of 10–30 Hz with an

amplitude of 0.06 N. Then, numerical integration of

the equation of motion has been performed, and

20,000 samples have been generated and adopted for

the system identification. The excitation force and

dynamic displacement response, and identified linear

stiffness force are depicted in Fig. 3. The estimated

mean value of linear stiffness K is 141.14 N/m which

means the identification accuracy is 99.2%. Moreover,

the mass and viscous damping coefficient are identi-

fied by carrying out eigenvalue decomposition of the

identified system matrix Al1 and the results are

0.0107 kg and 0.0308 N/(m/s). By comparing with

the mass and damping used in the simulation, the

Fig. 2 A schematic diagram of the two-stage nonlinear subspace identification method
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identification accuracy is 93% and 97.3%,

respectively.

For the velocity–voltage subsystem, the input and

output identification data sets are velocity and voltage,

as shown in Fig. 4. Similarly, the 40 dB white noise is

added to the data sets. Using the identification method

described in Sect. 3, the final estimated mean value of

electromechanical coupling coefficient h is

3.85 9 10-6 N/V, and accuracy is 96.3% compared

to the theoretical results.

From the above investigated, the identification of

basic mechanical and electrical parameters of linear

piezoelectric cantilever beam can always keep a good

identification ability by utilizing the proposed sub-

space-based method. However, in the second stage,

identifying nonlinear restoring force function is not an

easy task because of complicated dynamic response in

the bistable system, the sensitivity to noise, and the

uncertainness of polynomial order of nonlinear restor-

ing force. Therefore, the choice of different types of

dynamic displacement response and polynomial order

will be discussed as follows.

4.1 The influence of dynamic response

on identification

It is widely known that the bistable beam can exhibit

typical inter-well and intra-well chaos oscillations.

Generally, a frequency-swept excitation strategy is

employed to study their dynamic response and system

characteristics. In this section, linearly increasing

frequency (up-sweep) excitation over the frequency

range of 10–30 Hz in 40 s and the excitation force

values is 0.12 N. The initial position of the oscillator is

the stable equilibrium point of 0.008 m, and velocity is

0 m/s. Then, the same decreasing frequency (down-

sweep) excitation is followed. As shown in Fig. 5a, the

red line represents the displacement response in the

first 40 s. It can be observed that the bistable beam

keeps oscillating across the potential wells in the

whole frequency-swept and a jump-down phe-

nomenon occurs around 22 s. For decreasing fre-

quency excitations, the dynamic response trajectories

are plotted in the blue line. The bistable beam’s

dynamical response exhibits intra-well oscillation

around 0.008 m, followed by an intra-well oscillation

in another equilibrium point and finally oscillating

across the two potential wells. The difference between

the two displacement response trajectories is that the

double-well characteristics can be easily found in the

blue line. To investigate the influence of dynamic

response data sets selection on identification accuracy,

the above-mentioned data sets are adopted in the

identification process, and the results are shown in

Fig. 5b. The root-mean-square (RMS) error is adopted

to evaluate the identification accuracy, as detailed in

Table 1. The identified nonlinear restoring force curve

based on data sets 1 has a higher error accuracy

(14.04%) than data sets 2 (4.27%). So, it is found that a

reasonable excitation force and frequency range

should be selected to improve the identification

accuracy. Numerical results shown in Fig. 5 indicate

that the dynamical response of nonlinear bistable struc-

tures exhibiting both inter-well and intra-well oscilla-

tion is better than an inter-well motion for the

proposed identification method.

For nonlinear restoring force identification of

bistable structures, the great difficulty may come from

identifying nonlinear restoring force between two

bistable potential wells. In order to obtain the

Fig. 3 Simulated identification data sets: a input force data

under 40 dB noise; b output displacement response under 40 dB

noise; c the identified linear stiffness with 100 Monte Carlo

experiments for each simulation (red line); the mean value is

141.14 N/m plotted in blue line, and the black line is the

theoretical value
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nonlinear restoring force between two potential wells,

the selected dynamical response need to reflect the

oscillation characteristics of this displacement

interval. In Fig. 5a, data sets 1 show fast jumping

from - 0.015 to ? 0.015 m, and it would lose the

vibration characteristics of nonlinear restoring force

Fig. 4 Simulated identification data sets: a input velocity data

under 40 dB noise; b output voltage response under 40 dB

noise; c the identified electromechanical coupling coefficient

with 100 Monte Carlo experiments for each simulation (red

line); the mean value has 3.85 9 10-6 N/V plotted in the blue

line, and the black line is the theoretical value

Fig. 5 Simulated identification data sets 1 (red line represents

the forward sine sweep) and data sets 2 (blue line represents

backward sine sweep) with a sampling frequency of 500 Hz:

a output displacement response under 40 dB noise; b the

identified restoring force curves based on two identification data

sets with 100 Monte Carlo experiments for each simulation;

c phase diagram of data sets 1; d phase diagram of data sets 2

Table 1 RMS error of identified nonlinear restoring force curves

Data sets Inter-well oscillation Inter-well and intra-well oscillation

Error (%) 14.04 4.27
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driving. In Fig. 5c, the phase diagram of data sets 1

indicates that the phase space is incomplete in the

small displacement region near two potential energy

wells. Besides, the kind of large-amplitude oscillation

is not unique to the bistable oscillator. For example,

the hard stiffness spring or tristable oscillators can

produce similar oscillations. On the contrary, it can be

observed from data sets 2 that the oscillation trajec-

tories show sufficient oscillations at two stable equi-

librium points. It can be observed from Fig. 5d, the

trajectory of data sets 2 almost covers the phase space.

From the perspective of the identification algorithm,

displacement and velocity are two significant elements

for data-driven identification. The dynamic response

of the oscillator must cover the phase space as much as

possible.

4.2 The influence of noise pollution

on identification

The above-investigated identification cases are only

polluted by SNR = 40 dB noise. To deeply under-

stand the robustness of the proposed method for

nonlinear restoring force identification, SNR = 40

dB, 30 dB and 20 dB noise are added to the input and

output data sets for identification comparison, respec-

tively. According to Sect. 4.1, it is better to choose the

identification data sets containing intra-well and inter-

well oscillation. So, a new frequency-swept excitation

is chosen for accurate identification and also for

verification that the identification data sets used in

Sect. 4.1 are not a special case. Figure 6a shows the

dynamic response under the noise level of 20 dB.

Although it is different from the trajectory of the

oscillator in Sec. 4.1, it also includes both inter-well

and intra-well motion. In Fig. 6b, the identification

results show that the identification accuracy gradually

decreases with the increase of noise intensity level and

the RMS error is 0.55%, 3.31% and 14.9%, as detailed

in Table 2, respectively. Moreover, relatively good

identification results can be obtained under the noise

level of 30 dB, but the error will be sharply increased

if the data sets are polluted by noise exceeding 20 dB.

4.3 The influence of polynomial order

on identification

In simulation examples, the function of the nonlinear

restoring force is deterministic. This means the choice

of polynomial order of nonlinear restoring force in the

identification process does not influence identification

results. In Fig. 7a, the same data sets in Sect. 4.2 were

chosen excepted the noise level reduced to 40 dB.

Figure 7b shows the comparison of identified nonlin-

ear restoring force curves using different polynomial

orders and the detailed estimated errors are given in

Table 3. It can be observed that the identification

accuracy has no significant difference though with the

increase of polynomial order, the error increases

slightly. It means the subspace algorithm can estimate
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Fig. 6 a Output displacement response with a sampling

frequency of 500 Hz (containing both intra-well oscillation

and inter-well oscillation) under 20 dB noise; b comparison

between the identified nonlinear restoring force curves: 20 dB

noise (red line); 30 dB noise (green line); 40 dB noise (blue

line) and the theoretical restoring force (black line)

Table 2 RMS error of identified nonlinear restoring force

curves

Noise level 40 dB 30 dB 20 dB

Error (%) 0.55 3.31 14.9
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the main nonlinear contributions from the original

nonlinear basis functions, and polynomial order higher

than third order will be assigned a small coefficient so

that it does not affect the final restoring force function

[34]. However, in practice, an optimal choice of

polynomial order may be necessary because the

nonlinear restoring force in a bistable structure is not

a perfect polynomial form with a fixed order. In

general, an approximate polynomial form is used to

facilitate dynamic analysis. So, the identification

process needs to find an optimal polynomial that can

better characterize the nonlinear restoring force, and it

will be thoroughly discussed in experimental

conditions.

5 Experimental validation

An experimental test rig is set up in Fig. 8a to verify

the two-stage subspace method for identifying

bistable piezoelectric structures. The bistable piezo-

electric cantilever beam is designed in the system with

rotatable magnets coupling function. The excitation

source is generated by a vibration exciter (JZK-50,

Econ Technologies Co., Ltd), a power amplifier

(YE5874A, Econ Technologies Co., Ltd), and a

vibration controller (VT-9002-1, Econ Technologies

Co., Ltd) is used to realize the feedback and real-time

control of excitation signal. An acceleration sensor

(CXL10GP3, MEMSIC., Inc) and a displacement

sensor (HL-G112-A-C5, Keyence) are applied to

record the excitation acceleration data and measure

the absolute displacement response, respectively, and

the data sets are collected by an oscilloscope

(TBS2000, Tektronix) with probe resistance of

10MX. The middle elastic substrate used in the

experiments is made of spring steel with dimensions

160 9 15 9 0.8mm3. Two piezoelectric layers made

of PZT5 have a dimension of 15 9 15 9 0.6mm3.

Two tip magnets have a dimension of

10 9 10 9 5mm3, and the two external rotatablemag-

nets have a diameter of 10 mm and a thickness of

10 mm.

Another nonlinear stiffness force measurement

experimental setup is shown in Fig. 8b. The Force

Gauge (M5-2, MARK-10 Corporation) is installed on

the structure driven by the ball screw and has an

accuracy of 0.002 N. As the dynamometer pushes the

cantilever beam to deform, the movement displace-

ment will be recorded by Digital Indicator. Each

measurement needs to be carried out from the steady-

state point position and then arrange the force–

displacement data from negative to positive deflection.

This means the number of measurements is divided

into four segments in the asymmetric bistable piezo-

electric beam. The final nonlinear restoring force

function can be obtained by polynomial fitting of the

measured force–displacement trajectory.

The first step aims to estimate the mass, linear

stiffness, damping coefficient, and electromechanical

coupling coefficient. An acceleration sensor is

arranged in experimental conditions instead of a force

sensor, so a time-domain attenuation method is

adopted here. Firstly, a linear piezoelectric cantilever

beam was pushed to a specific position and then

released. The natural frequency fn = 18.5 Hz can be
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Fig. 7 Simulated output

displacement response

under 40 dB noise with a

sampling frequency of

500 Hz; b comparison

between the identified

nonlinear restoring force by

adopting different

polynomial functions

Table 3 RMS error of identified nonlinear restoring force

curves

Order Third Fourth Fifth

Error (%) 3.53 4.95 6.47
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estimated by checking the number of oscillations in

one second. The linear stiffness K = 140 N/m was

measured by using the static measurement instru-

ments. Then, the massM can be calculated through the

formula M ¼ K=ð2pfnÞ2 = 10.36 9 10-3 kg. In the

following frequency-sweeping experiments, the input

force is replaced by the equivalent mass multiplied by

the measured acceleration.

A forward sine sweep followed by a backward sine

sweep signal excitation is adopted to construct the

identification data sets in two subspaces. The excita-

tion acceleration amplitude is 3 m/s2 with a frequency

range of 8–23 Hz. Figure 9 shows the input acceler-

ation, displacement response, and output voltage

response after noise filtering (Butterworth low-pass

filter with frequency 100 Hz). The mass

M = 0.0108 kg, damping coefficient Cv = 0.0143 N/

(m/s) and stiffness K = 151.52 N/m are identified by

constructing force–displacement subsystem and then

make subspace identification procedure. The value of

the electromechanical coupling coefficient

h = 1.3 9 10-6 N/V is estimated in the velocity–

voltage subsystem. The equivalent capacitance coef-

ficientCp = 4.2 9 10-10F can be easily obtained from

related theory once the electromechanical coupling

coefficient is already identified.

It is not easy to compare the identified value with

the theoretical value in experimental conditions due to

the unknown parameters in the piezoelectric cantilever

beam. Generally, the identified parameters are substi-

tuted into the original equation and then reconstruct

the dynamical response. In Fig. 10, the displacement

response and voltage response under the excitation of

the same signal used in identification are compared.

Figure 10a, b shows that the reconstructed dynamic

response can keep a good agreement with the exper-

imental measurement one though the identified natural

frequency is a little higher.

In the second step, the goal is to identify the

nonlinear restoring force in a magnetic coupled

piezoelectric cantilever beam. Figure 11a shows the

displacement response of the bistable beam under the

swept-frequency excitation (8–23 Hz forward sweep

followed a 23–8 Hz backward sweep). The base

acceleration is 5.5 m/s2, and the swept time is 60 s.

It can be observed that the beam keeps increasing its

amplitude across the potential wells until a jump-down

phenomenon occurs around 20 s. This kind of

response is adopted in the subspace-based nonlinear

subspace algorithm, and the results are depicted in

Fig. 11b. The nonlinear restoring force function is

recognized as only hard spring characteristics and the

negative stiffness zone have been missed. This kind of

phenomenon has also been discussed in numerical

examples and verified again in these experiments. In

the following frequency-swept experiments, the

Fig. 8 Experimental setup. a Excitation control, piezoelectric bistable beam fixture and data acquisition system; b nonlinear restoring

force measuring equipment
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excitation acceleration is reduced to 5 m/s2 and keeps

other parameters unchanged. Figure 11c shows the

experimental response of the bistable beam in this

case. It can be found from Fig. 11c that the piezo-

electric beam exhibits intra-well oscillation in two

potential wells in the most swept time except two

inter-well oscillations around 16 s and 48 s. The

measured force–displacement trajectory and identified

nonlinear restoring force curves are plotted in

Fig. 11d, and RMS errors are listed in Table 4. The

estimated third-order and fifth-order polynomial mod-

els have good accuracy with the measured results.

Moreover, the error of three polynomial models

increases gradually when the oscillator exhibits large

displacement. It should be noted that measured force–

displacement trajectory and identified results are

disturbed by various noises and errors. Moreover,

the dynamic response of a bistable system is very

sensitive to excitation conditions. So, the recon-

structed dynamic response results of the two methods

will not be compared and discussed here.

6 Conclusions

This paper proposed a two-stage subspace method to

identify the critical parameters in the dynamical

equation of nonlinear bistable piezoelectric structures.

The challenges of accurately identifying bistable struc-

tures persist because the jumping phenomenon

between two potential wells, uncertainty polynomial

form of nonlinear restoring force, and high noise level

are unavoidable. The proposed identification algo-

rithm is based on the separation of nonlinear elec-

tromechanical coupling equations into underlying

linear electromechanical coupling equations and a

nonlinear mechanical equation. At first, the basic

physical parameters of the bistable piezoelectric beam

can be estimated through underlying linear force–

displacement subspace and voltage–velocity sub-

space. Next, the nonlinear force–displacement sub-

space can identify the nonlinear restoring force

parameters. Thus, the separation and step-by-step

Fig. 9 Experimental identification data sets with a sampling frequency of 3125 Hz in a linear piezoelectric cantilever beam. a Input

acceleration; b displacement response; c voltage response
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identification method can reduce the above-mentioned

influence factors as much as possible.

To verify the effectiveness and accuracy of the

proposed identification procedure, a typical

bistable electromechanical coupling equation is

adopted to perform numerical investigations. The

essential linear mass, damping coefficient, linear

stiffness and electromechanical coupling coefficient

can be estimated even if 40 dB noise is added to the

input and output simulation data. Firstly, for nonlinear

restoring force identification in a bistable system, the

frequency-swept response must contain inter-well and

intra-well oscillations to ensure the identification

accuracy and the possible explanations are discussed.

Secondly, the influence of noise level on identification

results indicates that identification accuracy will

decrease obviously when the noise level is increased

to 20 dB. Finally, experimental output responses of a

magnetic coupled bistable piezoelectric cantilever

beam are measured under different conditions for

demonstrating the proposed method. The recon-

structed dynamic responses of displacement and

voltage based on identified basic parameters have a

good consistency with the experimental data. The

identified nonlinear restoring force is in good agree-

ment with the quasi-static measured force–displace-

ment curve. Moreover, the choice of polynomial order

is significant in experimental conditions.
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