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Abstract In applications of system identification
where the inputs and outputs are scheduled at different
sampling rates, the traditional gradient-based iterative
(GI) identification scheme can be applied to approx-
imate the unknown outputs from which the unknown
model parameters can be estimated. A limitation of the
GI method lies in the fact that the measured outputs are
not employed effectively to adjust/improve the miss-
ing output estimates. To address this, an improved GI
method using the particle filters is designed to jointly
estimate the outputs and parameters of output nonlinear
systems from the dual-rate data. The key idea is to use
a bank of weighted particles to represent the posterior
probability density function of the unknown outputs.
The kernel density estimation method is then devel-
oped to update the weights of these particles at each
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iteration. The negative gradient search principle and the
parameter separation technique are subsequently com-
bined to obtain the required parameter estimation of the
plant model. A numerical example including compar-
isonswith the existing algorithms is reported to demon-
strate the effectiveness and limitations of the proposed
methodology.
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1 Introduction

Advanced process control strategies are often based
on system models, and system identification hence
accounts for a significant proportion of applications in
modern control theory and practice [1–3]. The basic
idea is to compare the system responses with the iden-
tification model in some optimal ways in order to con-
firm how close the model response fits the system
response [4–6]. In recent years, nonlinear processes
have attracted a lot of attention both from the control
and the signal processing point of view and have been
increasingly deployed [7–9]. When tackling the prob-
lem ofmodeling nonlinear processes from the observed
data, one of the main difficulties is how to manage the
trade-off between the model flexibility and the risk of
overfitting [10,11].
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In engineering practice, nonlinear systems with the
multi-rate sampling are ubiquitous [12]. The traditional
discrete-time systems which have the same sampling
rate among all variables are generally referred to as the
single-rate sampled-data systems. However, because
of the practical difficulties such as hardware restric-
tions and the instability of communication networks,
it is often impossible to achieve the acquisitions of all
signals involved in the process at the same sampling
rate [13]. On the other hand, in the discretization pro-
cess of control systems, the intentional multi-rate sam-
pling of different signals can in fact more accurately
capture their potential characteristics and predict bet-
ter the unknown underlying dynamics. In other words,
the application of different sampling rates is desir-
able and even inevitable in practice [14]. As a result,
the research on multi-rate sampled-data systems has
recently received considerable and increasing attention
over the years [15,16]. Li and Zhang designed themax-
imum likelihood multi-innovation method to identify
the Hammerstein system with the dual-rate sampling
[17]; Yan et al. introduced a mixed-rate model-based
least squares estimator for the multi-rate discrete-time
closed-loop system [18];Chen et al. analyzed themulti-
rate stabilization problem for the singularly perturbed
system by using a time-dependent Lyapunov function
[19]. In this paper, the dual-rate nonlinear systems with
bilinear forms are considered, which can be regarded
as a special case of missing output systems. In the con-
text of the dual-rate sampling, the fast inputs and slow
outputs are measured at different sampling rates, with
sampling intervals being periodic. The objective of this
paper is to reconstruct the inter-sample outputs and to
estimate the unknown system parameters based on the
inferential control idea.

In the field of the discrete-time system identifica-
tion, many different identification ideas have been pro-
posed in the literature [20–22]. Among them, the iter-
ative method is attractive as it leads to good estimates
of the unknown terms, even when a small amount of
data is used for the estimation of the statistics [23–
29]. Iterative methods are widely used in gradient-
based optimization algorithms such as the auxiliary
model gradient-based iterative identification method
for multi-input nonlinear output-error systems [30,31].
Another popular tool is the particle filter that can be
used to identify nonlinear state-space systems with
unknown states [32–34]. Based on the Monte Carlo
sampling principle, the posterior probability density

function of the state is represented by using a set of
the weighted particles [35,36]. Inspired by this, Chen
et al. developed a new particle filter-based approach
to identify a dual-rate nonlinear model by treating the
unknown outputs as the states [37]. Later in [38], by
combining the multi-innovation identification princi-
ple, the particle filter was further extended to the esti-
mation of the unknown process outputs and parameters
for the nonstate-space output-error type models.

The plant model to be studied in this paper has a
particular bilinear formcalled thebilinear-in-parameter
model,which has been found to be increasingly popular
inmodelingnonlinear processes [39,40].When theout-
put nonlinearity of the block-oriented systems can be
expressed as a linear combination of a set of the known
basis functions of the past input/output data, the sys-
tem can be transformed into the bilinear-in-parameter
system. For example, the bilinear-in-parameter system
can be used to describe the Hammerstein–Wiener sys-
tem [41]. In this paper, we seek to propose identifi-
cation algorithms for combined output and parame-
ter estimation under low measurement rate constraints.
In order to obtain the pseudo-linear regression iden-
tification models, two different techniques of tackling
the special bilinear term are adopted, namely the over-
parameterization technique and the parameter separa-
tion technique. Based on the two approximate discrete-
time models, the corresponding particle filter-based
identification methods are developed for bilinear-in-
parametermodels in the dual-rate framework. Then, the
original parameter estimation problem is decomposed
into two sub-problems: i) using the particle filters to
recover the missing measurements from the available
observations and ii) using the negative gradient search
principle [42] to perform parameter estimation based
on the recovered output signals. To bemore specific, the
particle filter is introduced that combines the Epanech-
nikov function to approximately estimate the missing
outputs between the measured output samples. On this
basis, the modified gradient-based iterative algorithm
can then be employed to identify all the model param-
eters. As compared with the traditional gradient-based
iterative (GI) approaches, the former can improve the
accuracy of parameter estimation.

The rest of this paper is organized as follows. Sec-
tion 2 describes the problem formulation of the dual-
rate bilinear-in-parameter models and briefly derives
two typical GI algorithms. Section 3 derives the
improved GI algorithms by combining the particle fil-
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ter. In Sect. 4, a representative numerical example is
given to illustrate the effectiveness of the proposed
algorithms. The paper concludes with the final remarks
in Sect. 5.

2 Problem description

The notations used in this paper are fairly standard.
The variables in bold represent multi-dimensional vec-
tors or matrices. Âk denotes the iterative estimate of
A at k-th iteration. The superscript “T” is the vec-
tor/matrix transpose. “A =: X ′′ or “X := A′′ reads as
“A is defined as X .” The Frobenius norm of a matrix
A is defined by ‖A‖2 := tr[AAT], where tr[·] denotes
the trace of AAT. 1n represents an n-dimensional col-
umn vector with all elements unity. In this section, we
first present the bilinear-in-parameter models with the
available input–output data. Then, two techniques for
processing the bilinear parts of the system are given
from the perspective of parameter estimation. On this
basis, the corresponding GI identification methods are
derived for comparison.

2.1 The dual-rate bilinear-in-parameter system

Consider the following discrete-time output nonlinear
systems:

y(l) =
n∑

j=1

β j

m∑

i=1

αi gi (y(l − j)) +
nγ∑

ι=1

γιu(l − ι) + v(l),

(1)

where l is the discrete-time index, u(l) ∈ R is the sys-
tem input, y(l) ∈ R is the system output, {β j }nj=1,

{αi }mi=1 and {γι}nγ

ι=1 are the unknown parameters, v(l) ∈
R is a stochastic white noise with zero mean and vari-
ance σ 2, and gi (·), i = 1, 2, · · · ,m are the known
nonlinear basis functions.

Define the parameter vectors α, β, γ , the informa-
tion vector ϕu(l) and the information matrix G(l) as

α := [α1, α2, · · · , αm ]T ∈ R
m , β := [β1, β2, · · · , βn]T ∈ R

n,

γ := [γ1, γ2, · · · , γnγ ]T ∈ R
nγ ,

ϕu(l) := [u(l − 1), u(l − 2), · · · , u(l − nγ )]T ∈ R
nγ ,

G(l) :=

⎡

⎢⎢⎢⎣

g1(y(l − 1)) g1(y(l − 2)) · · · g1(y(l − n))

g2(y(l − 1)) g2(y(l − 2)) · · · g2(y(l − n))

.

.

.
.
.
.

.

.

.

gm(y(l − 1)) gm(y(l − 2)) · · · gm(y(l − n))

⎤

⎥⎥⎥⎦∈R
m×n .

u(lh)
Hh

uc(t)
Pc

yc(t)
Sdh

y(ldh)

Fig. 1 The dual-rate system

According to the above definitions, the output nonlin-
ear system in (1) can be converted into the following
bilinear-in-parameter models:

y(l) = αTG(l)β + ϕT
u (l)γ + v(l). (2)

Remark 1 Thebilinear-in-parametermodel candescribe
the output nonlinear system, in which its output non-
linearity is represented as a linear combination of a set
of the known basis functions of the past output data.
Likewise, if we define gi (y(l− j)) := gi (u(l− j)), the
corresponding input nonlinear system can also readily
be converted into the bilinear-in-parameter model [43].

The identification approaches pursued in this paper
are based on the assumption of sampling the plant out-
put at a rate slower than the control input, namely, the
inputs and outputs are sampled by two different rates,
with the former being higher than the latter. Let the
measurement (output) sampling period dh be a multi-
ple of h for some integer d > 1 and h > 0 is the funda-
mental (input) sampling period. Then the input–output
data {u(lh), y(ldh)} can be sampled. The detailed con-
figuration is shown in Fig. 1, where Hh is a zero-order
hold with period h, Sdh a sampler with period dh. The
input uc(t) is generated by Hh , processing a discrete-
time signal u(lh); Pc is a continuous-time process. The
output of Pc is yc(t)which is further down-sampled by
the sampler Sdh , yielding the measured output y(ldh)

with period dh. For convenience, letting h = 1 and
replacing l with ld in (2) result in

y(ld) = αTG(ld)β + ϕT
u (ld)γ + v(ld), (3)

where

G(ld) =

⎡

⎢⎢⎢⎣

g1(y(ld − 1)) g1(y(ld − 2)) · · · g1(y(ld − n))

g2(y(ld − 1)) g2(y(ld − 2)) · · · g2(y(ld − n))

.

.

.
.
.
.

.

.

.

gm(y(ld − 1)) gm(y(ld − 2)) · · · gm(y(ld − n))

⎤

⎥⎥⎥⎦ ,

(4)
ϕu(ld) = [u(ld − 1), u(ld − 2), · · · , u(ld − nγ )]T. (5)

The proposed parameter estimation algorithms in this
paper are based on this identification model in (3)–
(5). Many identification methods are derived based on
the identification models of the systems [44–49] and
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can be used to estimate the parameters of other lin-
ear systems and nonlinear systems [50–55] and can
be applied to other fields [56–64] such as chemi-
cal process control systems and engineering appli-
cation systems. Throughout this paper, we refer to
(3)–(5) as the fast-rate model. The measured input–
output data are {u(l), l = 1, 2, · · · , L} at the fast rate
and {y(ld), d = 1, 2, · · · } at the slow rate. Thus, the
inter-sample outputs (missing outputs) {y(ld − i), i =
1, 2, · · · , d − 1} are not available. In what follows, we
will show how to estimate the unknown parameters by
using the GI method with the dual-rate measurement
data which are {u(l), y(ld)}.

2.2 The GI algorithm using the over-parameterization
technique

As we can observe, y0(ld) := αTG(ld)β is the bilin-
ear function of α and β. A common approach in statis-
tics for estimation problems of this kind is to over-
parameterize the model so that it becomes linear. For
simplicity and without loss of generality, we let α1 = 1
for the rest of the paper. This ensures the uniqueness
of the identification results. Then, the bilinear part
αTG(ld)β can be written as follows:

αTG(ld)β = ϕT
1 (ld)ρ, ϕ1(ld) := col[GT(ld)] ∈ R

mn,

ρ := α ⊗ β

= [α1β1, α1β2, · · · , α1βn, α2β1, α2β2, · · · ,

α2βn, · · · , αmβ1, αmβ2, · · · , αmβn]T
= [β1, β2, · · · , βn, α2β1, α2β2, · · · , α2βn,

· · · , αmβ1, αmβ2, · · · , αmβn]T ∈ R
mn,

where ⊗ is the Kronecker product operator and the
col[·] operator is one which forms a vector from a
matrix by stacking its columns on top of one another.

From the above derivation, the model in (3)–(5)
can then be linearized as the following regression-like
model:

y(ld) = ϕT
1 (ld)ρ + ϕT

u (ld)γ + v(ld)

= φT(ld)θ + v(ld), (6)

in which

φ(ld) := [ϕT
1 (ld),ϕT

u (ld)]T ∈ R
mm+nγ ,

θ := [ρT, γ T]T ∈ R
mm+nγ .

Regression-like model (6) cannot be considered as a
basis for the direct estimation because it is a pseudo-
linear regression equation involving the information

vectorφ(ld) that contains the unmeasured inter-sample
output data. Thus the typical GI algorithm cannot
be used directly to identify the parameter vector θ .
Here, we apply the gradient-based iterative algorithm
through the over-parameterization technique to esti-
mate θ , which is abbreviated as the O-GI algorithm
shown in the following:

θ̂k = θ̂k−1 + μ1,k

L∑

l=1

φ̂k(ld)[y(ld) − φ̂
T
k (ld)θ̂k−1], (7)

μ1,k ≤ 2λ−1
max

⎡

⎣
L∑

l=1

φ̂k(ld)φ̂
T
k (ld)

⎤

⎦ , (8)

φ̂k(ld) = [ϕ̂T
1,k(ld),ϕT

u (ld)]T, (9)

ϕ̂1,k(ld) = [g1(ŷk(ld − 1)), · · · , g1(y(ld − d)), · · · ,

g1(ŷk(ld − n)), g2(ŷk(ld − 1)), · · · , g2(y(ld − d)),

· · · , g2(ŷk(ld − n)), · · · , gm(ŷk(ld − 1)),

· · · , gm(y(ld − d)), · · · , gm(ŷk(ld − n))]T, (10)

ϕu(ld) = [u(ld − 1), u(ld − 2), · · · , u(ld − nγ )]T, (11)

ŷk(ld − i) = φ̂
T
k (ld − i)θ̂k , (12)

θ̂k = [β̂T
k ,

̂
α2β

T
k , · · · ,

̂
αmβT

k , γ̂
T
k ]T

= [β̂1,k , · · · , β̂n,k , α̂2β1,k , · · · , α̂2βn,k , · · · , α̂mβ1,k ,

· · · , α̂mβn,k , γ̂
T
k ]T, (13)

α̂i,k = 1

n

n∑

j=1

α̂iβ j,k

β̂ j,k
, i =2, 3, · · · ,m, j =1, 2, · · · , n,

(14)

ϑ̂k = [β̂T
k , α̂2,k , α̂3,k , · · · , α̂m,k , γ̂

T
k ]T. (15)

Note that the estimate β̂k can be obtained directly from
the first n terms of θ̂k since α1 = 1. From (13), we get
n values of the parameter estimate α̂i,k and take their
average as the value of αi [40].

2.3 The GI algorithm using the parameter separation
technique

Considering the possible problems caused by the prod-
uct term aib j in the above O-GI algorithm, a parameter
separation technique is developed here to deal with the
bilinear part. Let gi (ld) ∈ R

1×n be the i-th row of
the information matrix G(ld). The details are listed as
follows:

αTG(ld)β = g1(y(ld − 1))β1 + α2g2(y(ld − 1))β1

+ · · · + αmgm(y(ld − 1))β1
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+g1(y(ld − 2))β2 + α2g2(y(ld − 2))β2

+ · · · + αmgm(y(ld − 2))β2 + · · ·
+g1(y(ld − n))βn + α2g2(y(ld − n))βn

+ · · · + αmgm(y(ld − n))βn

= [g1(y(ld − 1)), g1(y(ld − 2)), · · · ,

g1(y(ld − n))]β + [g2(y(ld − 1))β1,

g2(y(ld − 2))β2, · · · , g2(y(ld − n))βn]α2

+[g3(y(ld − 1))β1, g3(y(ld − 2))β2,

· · · , g3(y(ld − n))βn]α3 + · · ·
+[gm(y(ld − 1))β1, gm(y(ld − 2))β2,

· · · , gm(y(ld − n))βn]αm

= [g1(ld), g2(ld)β, g3(ld)β, · · · ,

gm(ld)β]

⎡

⎢⎢⎢⎢⎢⎣

β

α2

α3
...

αm

⎤

⎥⎥⎥⎥⎥⎦

= ϕT
2 (ld)η,

where

gi (ld) := [gi (y(ld − 1)), gi (y(ld − 2)), · · · , gi (y(1d−d)),

· · · , gi (y(ld − n))] ∈ R
1×n,

i = 1, 2, · · · ,m,

ϕ2(ld) := [g1(ld), g2(ld)β, g3(ld)β, · · · ,

gm(ld)β]T ∈ R
n+m−1,

η := [β, α2, α3, · · · , αm ]T ∈ R
n+m−1.

Likewise, the dual-rate bilinear-in-parameter model in
(3)–(5) becomes:

y(ld) = ϕT
2 (ld)η + ϕT

u (ld)γ + v(ld)

= ψT(ld)ϑ + v(ld),

where

ψ(ld) :=
[

ϕ2(ld)

ϕu(ld)

]
∈ R

n+m+nγ −1,

ϑ :=
[

η

γ

]
∈ R

n+m+nγ −1.

Then employing the negative gradient search principle,
the corresponding GI algorithm based on the parameter
separation technique (thePS-GI algorithm for short) for
the identification of system parameters can be written
as

ϑ̂k = ϑ̂k−1 + μ2,k

L∑

l=1

ψ̂k(ld)[y(ld) − ψ̂
T
k (ld)ϑ̂k−1],

(16)

μ2,k ≤ 2λ−1
max

⎡

⎣
L∑

l=1

ψ̂k(ld)ψ̂
T
k (ld)

⎤

⎦ , (17)

ψ̂k(ld) = [ϕ̂T
2,k(ld),ϕT

u (ld)]T, (18)

ϕ̂2,k(ld) = [ ĝ1,k(ld), ĝ2,k(ld)β̂k−1, ĝ3,k(ld)β̂k−1, · · · ,

ĝm,k(ld)β̂k−1]T, (19)

ĝi,k(ld) = [gi (ŷk(ld − 1)), gi (ŷk(ld − 2)), · · · ,

gi (y(ld − d)), · · · , gi (ŷk(ld − n))], (20)

ϕu(ld) = [u(ld − 1), u(ld − 2), · · · , u(ld − nγ )]T, (21)

ŷk(ld − i) = ψ̂
T
k (ld − i)ϑ̂k , (22)

ϑ̂k = [β̂T
k , α̂2,k , α̂3,k , · · · , α̂m,k , γ̂

T
k ]T. (23)

3 The particle filter-based GI algorithms

Data deficiency is commonly encountered in statistics,
and it is important to address this in an appropriate way
that does not interfere with the conclusions drawn from
the given data. In this section, the objective is to derive
the improved GI algorithms based on the particle filter
which use the incomplete data to estimate concurrently
the unknown system parameters and outputs. The par-
ticle filter is employed to calculate the unknown output
ŷk(ld− i), and the GI method is applied to estimate the
value of the parameter vector ϑ .

To the best of our knowledge, one of attractive
advantages of the particle filter lies in fact that it
combines the Monte Carlo sampling methods with
Bayesian inference to tackle the nonlinear dynamic
estimation problem at a reasonable computational cost
[65].Hence, it is sometimes called the sequentialMonte
CarloBayesian estimator of the probability distribution
of unknown variables.Within a Bayesian framework, it
is assumed that the distribution of variables to be esti-
mated is determined by all available variables in the
system, which are generally considered to be random.
In this regard, the first step is to represent the poste-
rior probability density function p(y(ld−i)|Yo,U, ϑ̂k)

based on the observed data {U,Yo} and the known
parameter estimation vector ϑ̂k . Then, ŷk(ld − i) is
given by
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ŷk(ld − i) =
∫

y(ld − i) f (y(ld − i))dy(ld − i),

f (y(ld − i)) := p(y(ld − i)|Yo,U, ϑ̂k). (24)

Here, we denote Yo := {y(d), y(2d), · · · , y(ld)} and
U := {u(1), u(2), · · · , u(ld)}, respectively. Note that
typically this expression cannot be used directly to
compute ŷk(ld−i) analytically and, as a result, one has
to resort to numerical techniques for its derivation. The
particle filter achieves the task of representing the pos-
terior probability density function by utilizing a bank
of the independent random variables called particles.
According to the Monte Carlo sampling principle, the
right-hand side of (24) can bemodified in the following
form:

∫
y(ld−i) f (y(ld−i))dy(ld−i)≈ 1

S

S∑

s=1

y(s)
k (ld − i),

= 1

S

S∑

s=1

∫
y(ld − i)δ(y(ld−i)− ŷ(s)

k (ld − i))dy(ld − i).

Therefore the posterior probability density function can
be approximated as

f (y(ld − i)) ≈ 1

S

S∑

s=1

δ(y(ld − i) − ŷ(s)
k (ld − i)),

where S is the total number of samples, ŷ(s)
k (ld − i) is

the s-th particle that approximates the distribution, and
δ(·) denotes the Dirac delta function. Then

ŷk(ld − i) ≈ 1

S

S∑

s=1

ŷ(s)
k (ld − i).

However, it is not generally convenient to sample from
the posterior probability density function directly; thus,
we need to introduce the importance sampling tech-
nique. By defining Ŷk(ld − i − 1) := {ŷk(ld − i −
1), · · · , y(ld − d), · · · , ŷk(1)}, we choose the impor-
tance function q(·) as
q(y(ld − i)|Y (d : ld),U, ϑ̂k)

= p(y(ld − i)|Ŷk(ld − i − 1),U, ϑ̂k),

which is in practice easier to sample than the target
distribution.

In the importance sampling process, each sample is
extracted from the importance distribution q(·) instead
of the posterior p(·). This discrepancy is generally
compensated by appropriately weighting each sample

separately. Specifically, the associated weight ŵ(s)
k (ld)

corresponding to ŷ(s)
k (ld) is determined by

ŵ
(s)
k (ld) ∝ p(y(ld)|ŷ(s)

k (ld))ŵ
(s)
k (ld − d). (25)

The posterior probability density function can then be
represented by

f (y(ld − i)) ≈
S∑

s

Ŵ (s)
k (ld − i)δ(y(ld − i)

−ŷ(s)
k (ld − i)), (26)

Ŵ (s)
k (ld − i) = ŵ

(s)
k (ld − i)

∑S
s=1 ŵ

(s)
k (ld − i)

,

S∑

s

Ŵ (s)
k = 1,

where ŵ
(s)
k (ld − i) is the unnormalized importance

weight and Ŵ (s)
k (ld− i) is the normalized weight asso-

ciated with the s-th particle at time ld − i .
Nevertheless, the probability density function

p(y(ld)|ŷ(s)
k (ld)) involved is still unknown. Assume

that the noise is of Gaussian distribution. Then the
weight can be represented by

ŵ
(s)
k (ld) = 1√

2πσ
exp

[
− (y(ld) − ŷ(s)

k (ld))2

2σ 2

]

×ŵ
(s)
k (ld − d).

Inwhat follows, we design a kernel density estimator to
update ŵ

(s)
k (ld) recursively, which offers a flexibleway

of modeling in the given datasets without the imposi-
tion of a parametric model. The kernel is a weighting
function used in nonparametric identification methods.
In order to construct the kernel function, we define

ξ̂
(s)
k (ld) := |y(ld) − ŷ(s)

k (ld)| > 0, (27)

ξ̂k(ld) := max{ξ̂ (s)
k (ld), s = 1, 2, · · · , S} + 1.

(28)

Clearly, we can obtain the following relationship:

π̂
(s)
k (ld) := ξ̂

(s)
k (ld)

ξ̂k(ld)
< 1, s = 1, 2, · · · , S,

in which π̂
(s)
k (ld) can be viewed as the indepen-

dent and identically distributed sample drawn from
p(y(ld)|ŷ(s)

k (ld)). Here, we choose the Epanechnikov

function [66] to estimate p(y(ld)|ŷ(s)
k (ld)). Then we

obtain

p(y(ld)|ŷ(s)
k (ld)) = 3

4
[1 − (π̂

(s)
k (ld))2].
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Upon normalizing the density function, one can get

p(y(ld)|ŷ(s)
k (ld)) =

3
4 [1 − (π̂

(s)
k (ld))2]

∑S
s=1

3
4 [1 − (π̂

(s)
k (ld))2]

= 1 − (π̂
(s)
k (ld))2

S − ∑S
s=1(π̂

(s)
k (ld))2

. (29)

Normalization guarantees that the result of the resulting
estimation is a probability density function. Substitut-
ing (29) into (25) yields the weight update law:

ŵ
(s)
k (ld) = 1 − (π̂

(s)
k (ld))2

S − ∑S
s=1(π̂

(s)
k (ld))2

ŵ
(s)
k (ld − d). (30)

Remark 2 Noted that the above nonparametric kernel
density estimation method is not flexible because of
the definition of ξ̂k(ld). In general, the smaller ξ̂ (s)

k (ld)

is, the greater the weight of ŷ(s)
k (ld) is in estimation

y(ld), which may cause ξ̂k(ld) ≈ 1. Therefore one
new flexible definition for ξ̂k(ld) is given by

ξ̂k(ld) := max{ξ̂ (s)
k (ld), s = 1, 2, · · · , S} + χε,

(31)

where χ and ε are the adaptive factors. The value of
ξ̂k(ld) can be modified appropriately according to the
adaptive factors. Therefore the new adaptive kernel
estimator can be adjusted to improve the accuracy in
fitting density function.

From the previous expression, it can easily be
checked that the weights ŵ

(s)
k (ld − i), i 
= 0 cannot be

determined based on (30). Thus, we keep the weights
unchanged at the inter-sampled instant ld − i , i.e.,

ŵ
(s)
k (ld − i) = ŵ

(s)
k (ld), i = 1, 2, · · · , d − 1. (32)

Accordingly, the missing outputs sought can now be
calculated by a series of the weighted samples as fol-
lows:

ŷk(ld − i) =
S∑

s=1

Ŵ (s)
k (ld − i)ŷ(s)

k (ld − i)

=
S∑

s=1

Ŵ (s)
k (ld)ŷ(s)

k (ld − i).

In the particle filtering approach, resampling proce-
dures are usually applied to reduce the adverse effects
caused by the particle degeneracy problem. In this
paper, we adopt the approach to filter the particles
according to Ŵ (s)

k (ld), i.e., discarding the samples with
small weights and copying those with large weights,

before the weight of each sample is finally assigned as
Ŵ (s)

k (ld − i) = 1/S. To be specific, the posterior prob-
ability density function and themissing output estimate
are given by

f (y(ld − i)) ≈
S∑

r=1

1

S
δ(y(ld − i) − ŷ(r)

k (ld − i))

(33)

=
S∑

s=1

si
S

δ(y(ld − i) − ŷ(s)
k (ld − i)),

ŷk(ld − i) ≈
S∑

r=1

1

S
ŷ(r)
k (ld − i) (34)

=
S∑

s=1

si
S
ŷ(s)
k (ld − i),

ŷ(s)
k (ld − i) ∼ p(y(ld − i)|ŷk(ld − i − 1), · · · ,

· · · ŷk(1), u(1), · · · , u(Ld), ϑ̂k),

(35)

where ŷ(r)
k (ld − i) represents the r -th particle in a new

set of particles resampled at time ld − i and si refers to
the number of times that ŷ(s)

k (ld − i) is copied in this
new particle swarm. Equations (27)–(35) constitute the
particle filtering algorithm. In theO-GI andPS-GI algo-
rithms, we use (12) and (22) to calculate the output esti-
mate ŷk(ld − i), respectively. In the improved GI algo-
rithms, we use the particle filter to estimate y(ld − i).
To be specific, replacing ŷk(ld−i) in (12) and (22)with
(34) yields a particle filter gradient-based iterative algo-
rithm by using the over-parameterization technique
(the O-PF-GI algorithm for short) and a particle filter
gradient-based iterative algorithm by using the param-
eter separation technique (the PS-PF-GI algorithm for
short), respectively. For simplicity, the pseudo-code
description of the PS-PF-GI algorithm is provided in
Algorithm 1.

Remark 3 The particle filter is an optimal estimation
tool for nonlinear state-space models with unknown
states,which represents the posterior distribution through
a set of random particles and their associated weights.
Inspired by the idea, a new particle filter-based algo-
rithm for identifying a class of input-output systems
within the GI framework is presented. The unknown
outputs are regarded as the unknown states, while the
known outputs are regarded as the measurable outputs.
The kernel density estimationmethod is then developed
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to update theweights of these particles at each iteration.
Compared with the traditional GI method, the advan-
tage of this method is that it can more accurately esti-
mate the missing outputs. It is of the fact that the novel
particle filter applies the measurable outputs to adjust
the weight of each particle. In addition, the proposed
algorithms in the paper can find many potential appli-
cations in the recovery and reconstruction of measure-
ment signals in the noisy environment. The proposed
particle filter-based algorithm of simultaneous output
and parameter estimation for output nonlinear systems
under low measurement rate constraints in this paper
can be extended to multi-input and multi-output bilin-
ear systems, and engineering technology literature [67–
70] can be applied to other control and schedule areas
such as the information processing and transportation
communication systems [71–77] and so on.

4 Example

In this section, we provide a detailed numerical exper-
iment to evaluate the ability for parameter estimation
and numerical performance in terms of accuracy and
efficiency in the applications of the four proposedmeth-
ods, namely the PS-PF-GI, the O-PF-GI, the PS-GI
and the O-GI algorithms. This comparison will hence
allow us to see how the proposed the particle filter-
based approaches perform compared to the traditional
solutions. The system under consideration is given by

y(l) = [1, 0.28]
[
0.30y(l − 1) 0.30y(l − 2) 0.30y(l − 3)
0.50y2(l − 1) 0.50y2(l − 2) 0.50y2(l − 3)

]

⎡

⎣
0.45
0.30
0.46

⎤

⎦ + 0.10u(l − 1) + 0.90u(l − 2) + v(l),

α = [1, 0.28]T, β = [0.45, 0.30, 0.46]T,

γ = [0.10, 0.90]T,

ϑ = [0.28, 0.45, 0.30, 0.46, 0.10, 0.90]T.

In simulation, the input u(l) is taken as the persistent
excitation signal with zero mean and unit variance and
v(l) as a white noise with zero mean. The number of
the particles in the particle filter is set to be S = 50,
and the measurement data length is taken as L = 600.
The first 400 data samples (l = 1, 2, 3, · · · , 400)
are used in the first stage to estimate ϑ , y(l − i),
and the remaining data points (samples 400-600) are
then used to test the estimated models. When tak-
ing d = 2, the inputs {u(1), u(2), u(3), · · · , u(400)}

Algorithm 1 The PS-PF-GI algorithm
Require: u(1), u(2), · · · , u(Ld), y(d), y(2d), · · · , y(Ld)

(n0 := m + n + nγ − 1, L � n0)

Ensure: Set ϑ̂0 = 1n0/p0, ŷ1(ld − i) = 1/p0, p0 = 106.
Give the nonlinear function gi (·) and a small positive

number κ .
Draw the initial S particles {ŷ(s)

1 (d − i)}Ss=1 and let

{Ŵ (s)
1 (0)}Ss=1 = 1

S .

1: Estimate ϑ̂k
2: for k = 1, 2, · · · do
3: Form ϕ̂2,k(ld) using (19) for l = 1, 2, · · · , L .

4: Form ψ̂k(ld) using (18) for l = 1, 2, · · · , L .
5: Compute μ2,k(l) using (17).
6: Update ϑ̂k using (16).
7: Update ŷk(ld − i), i = 1, 2, · · · , d − 1, l =

1, 2, · · · , L .
8: for l = 1 : L do
9: while i = 0 do
10: Sample {ŷ(s)

k (ld)}Ss=1 from p(y(ld)|Ŷk(ld−1),U, ϑ̂k).

11: Calculate ξ̂
(s)
k (ld), for s = 1, 2, · · · , S and obtain

ξ̂k(ld).

12: Calculate π̂
(s)
k (ld) = ξ̂

(s)
k (ld)

ξ̂k (ld)
.

13: Calculate ŵ
(s)
k (ld) = 1−(π̂

(s)
k (ld))2

S−∑S
s=1(π̂

(s)
k (ld))2

ŵ
(s)
k (ld − d).

14: Normalize the weight {Ŵ (s)
k (ld)}Ss = ŵ

(s)
k (ld)

∑S
s=1 ŵ

(s)
k (ld)

.

15: end while
16: for i = d − 1 : 1 do
17: Sample {ŷ(s)

k (ld − i)}Ss=1 from p(y(ld − i)|Ŷk(ld −
i − 1),U, ϑ̂k).

18: Resample the new particle set {ŷ(r)
k (ld − i)}Sr :

19: select {ŷ(r)
k (ld − i)}Sr=1 from {ŷ(s)

k (ld − i)}Ss=1

according to Ŵ (s)
k (ld).

20: Calculate ŷk(ld − i) = 1
S

∑S
r=1 ŷ

(r)
k (ld − i)}Sr .

21: end for
22: end for
23: if ‖ϑ̂k − ϑ̂k−1‖ > κ

24: k = k + 1
25: else
26: Obtain the iteration k and the parameter estimation vector

ϑ̂k , break;
27: end if
28: end for

and the outputs {y(2), y(4), · · · , y(400)} are available,
while {y(1), y(3), · · · , y(399)} are unavailable.

The simulation consists of three parts: (i) the
unknown output estimation and (ii) the system param-
eter estimation and (iii) the output prediction. The
results are given in Tables 1, 2 and Figs. 2, 3, 4,
5, and 6, respectively. Table 1 shows the parameter
estimates and the corresponding parameter estimation
errors δ := ‖ϑ̂k(l) − ϑ‖/‖ϑ‖ obtained by the four
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Table 1 The parameter estimates and their errors under different algorithms

Algorithms Variance σ 2 α2 β1 β2 β3 γ1 γ2 δ(%)

PS-PF-GI 0.102 0.28302 0.44848 0.29918 0.44996 0.09503 0.90193 1.00429

0.302 0.28612 0.43999 0.30177 0.43238 0.08293 0.90834 3.00284

0.502 0.28482 0.42704 0.31578 0.42032 0.06899 0.91730 5.09108

0.702 0.27395 0.41711 0.34647 0.42137 0.05339 0.92967 7.46843

0.902 0.23858 0.42080 0.40059 0.44461 0.03890 0.94673 11.59058

PS-GI 0.102 0.28375 0.44388 0.31406 0.43739 0.09271 0.90880 2.52062

0.302 0.28418 0.44147 0.31341 0.42043 0.08009 0.91599 4.21179

0.502 0.27988 0.43389 0.32432 0.40906 0.06553 0.92567 6.14361

0.702 0.26551 0.42817 0.35269 0.41024 0.04961 0.93903 8.44468

0.902 0.23416 0.43509 0.40635 0.43472 0.03367 0.95795 12.53349

O-PF-GI 0.102 0.29261 0.44462 0.28841 0.46067 0.09684 0.90325 1.56486

0.302 0.29320 0.42160 0.29636 0.45296 0.08575 0.91145 3.13413

0.502 0.28221 0.38341 0.34449 0.43488 0.07169 0.92199 7.70822

0.702 0.28460 0.33412 0.41945 0.42573 0.05687 0.93585 15.11413

0.902 0.29301 0.28156 0.51598 0.44645 0.04277 0.95390 24.11411

O-GI 0.102 0.29755 0.43119 0.31334 0.43288 0.09574 0.90846 3.44552

0.302 0.29900 0.41361 0.31932 0.41588 0.08413 0.91603 5.67330

0.502 0.29387 0.38083 0.36355 0.38969 0.06976 0.92584 10.52666

0.702 0.29951 0.33637 0.43389 0.37568 0.05477 0.93911 17.28523

0.902 0.30439 0.28725 0.52671 0.39673 0.04054 0.95714 25.23102

True values 0.28000 0.45000 0.30000 0.46000 0.10000 0.90000

Table 2 The means and the standard deviations of the output estimation error under different algorithms

Algorithms Variance σ 2 Means Stds Variance σ 2 Means Stds

PS-PF-GI 0.102 -0.00109 0.10158 0.302 0.00457 0.28753

0.502 0.01622 0.47568 0.702 0.03319 0.66526

0.902 0.06517 0.85807 1.002 0.13071 0.95817

PS-GI 0.102 0.01328 0.15557 0.302 0.01975 0.31034

0.502 0.03299 0.49045 0.702 0.05346 0.67685

0.902 0.08131 0.86188 1.002 0.09627 0.96635

O-PF-GI 0.102 -0.00160 0.09746 0.302 0.00743 0.28578

0.502 0.02395 0.47695 0.702 0.04273 0.66892

0.902 0.06331 0.86189 1.002 0.07293 0.95927

O-GI 0.102 0.00858 0.13787 0.302 0.01735 0.30325

0.502 0.03289 0.48799 0.702 0.05074 0.67653

0.902 0.07066 0.86743 1.002 0.08585 0.96431
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Fig. 2 The PS-PF-GI
estimation errors δ versus k
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Fig. 3 The O-PF-GI
estimation errors δ versus k
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algorithms under the different noise variances when
the number of iterations k = 200. Then, the relation-
ships between δ and k are plotted in Figs. 2, 3, 4 and 5.
The means and standard deviations (Stds) of the errors
ε := y(l) − ŷk(l) between the true missing outputs
and the estimated outputs under the same conditions
are shown in Table 2. To test the quality of the esti-
mated models obtained from the different algorithms,
we compare the errors between the predicted outputs
and the true outputs by using le = 200 samples from
l = 401 to l = 600. The detailed comparison results
are shown in Fig. 6, where the iteration k = 200 and
the noise variance σ 2 = 0.102. Using the root-mean-
square error to denote the errors, we have

Error1 =
[
1

le

600∑

l=401

[ŷ1,k(l) − y(l)]2
]1/2

= 0.10288,

Error2 =
[
1

le

600∑

l=401

[ŷ2,k(l) − y(l)]2
]1/2

= 0.10308,

Error3 =
[
1

le

600∑

l=401

[ŷ3,k(l) − y(l)]2
]1/2

= 0.10446,

Error4 =
[
1

le

600∑

l=401

[ŷ4,k(l) − y(l)]2
]1/2

= 0.10467,

where ŷ1,k(l) denotes the predicted output of the PS-
PF-GI algorithm, ŷ2,k(l) the predicted output of the
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Fig. 4 The PS-GI
estimation errors δ versus k
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Fig. 5 The O-GI estimation
errors δ versus k
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O-PF-GI algorithm, ŷ3,k(l) the predicted output of the
PS-GI algorithm and ŷ4,k(l) the predicted output of the
O-GI algorithm.

From the result of this experiment, we can draw the
following features.

– It can be observed from the results in Table 1 that
the particle filter-based algorithms generate lower
estimation errors than the errors caused by the tradi-
tionalmethods under the different noise levels—see
the parameter estimation errors in the last column
in Table 1.

– According to Figs. 2, 3, 4 and 5, we can see clearly
that the parameter estimation accuracy given by the
PS-PF-GI algorithm, the PS-O-GI algorithm, the
PS-GI algorithm and the O-GI algorithm becomes
high with the iterative step k increasing. Under the
same conditions, an appropriate noise level leads to
lower parameter estimation accuracy.

– The estimated outputs of the PS-PF-GI algorithm
can track themissing outputs verywell, as shown in
Table 2. It can be observed from Fig. 6 that the pre-
dicted outputs from the PS-PF-GI estimated model
fluctuate in a small range around their true values.
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Fig. 6 The true outputs and
the predicted outputs versus
time l
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However, compared with the PS-GI andO-GI algo-
rithms, the PS-PF-GI andO-PF-GI algorithms have
relatively larger computational burden.

5 Conclusions

This paper focuses on a class of dual-rate nonlinear
systems which have been widely used in nonlinear sys-
tem modeling and control. A key issue is to effectively
identify the systems with good generalization perfor-
mance. In this regard, a combined particle-based filter
and the gradient-based iterative method is presented
to identify a dual-rate bilinear-in-parameter system. It
involves two steps, where one estimates the joint prob-
ability density of the missing observations based on the
initial guesses of the parameters in the first step, and
the second step minimizes the cost function to update a
new estimate of the parameter vector. These two steps
are repeated until the change in the parameter estimates
after each iteration is within a specified tolerance level.
The numerical results of the simulation example indi-
cate that the particle filter-basedmethods can givemore
reliable output and parameter estimation than the tradi-
tional gradient-based iterative algorithms. Themethods
proposed in this paper can combine somemathematical
methods [78–85] and other identification approaches
[86–92] to study the parameter estimation problems of
other linear systems and nonlinear systems [93–99] and
can be applied to other engineering systems.
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