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Abstract This paper concentrates on the output feed-
back control problem for a class of nonlinearmultiagent
systems governed by the high-order strict-feedback
model with time delay. Within the dynamic gain tech-
nique and the Lyapunov-like method, the dynamic gain
state observer for each agent is put forward with the
hope to compensate the impact induced by the immea-
surable state variables, and then the distributed leader-
following consensus protocols which are independent
of the time delay on the agent state are designed such
that the output of each follower can asymptotically
track that of the leader. Besides, the problemconsidered
is extended into the general case where the Lipschitz
growth rates of the nonlinear function are unknown
time-varying functions. Finally, simulation examples
are performed to illustrate the validity and effective-
ness of the proposed approach.
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1 Introduction

During the past couple of decades, the distributed con-
sensus problems for multiagent systems have been
drawing an ever increasing concern due to the descrip-
tion of various physical systems such as mobile robots,
flocks or swarms, and unmanned aerial vehicles (see
[1–11] and the references therein). Recently, the non-
linear multiagent systems which are described by the
strict-feedback form and satisfy Lipschitz conditions
have been widely regarded as a control target owing
to their vast applications [12–17]. In [12], the general
case where the nonlinear characteristic of the agents
are described by feedforward nonlinearities with the
growth rate being unknown priori was considered.
Based on this, Chang et al [12] both proposed the
state feedback regulation protocol and the output feed-
back regulation protocol such that the tracking per-
formance was well-guaranteed. The distributed pre-
scribed finite-time observer was first designed for a
strict-feedback nonlinear system with external distur-
bance in [13]. Zhang et al [14] designed the distributed
control protocols such that the leader-following con-
sensus was achieved for the nonlinear multiagent sys-
tems which were supposed to satisfy Lipschitz con-
ditions with time-varying gains. The event-triggered
output feedback controllers were developed for a class
of switched nonlinear strict-feedback systems, where
the nonlinear functions are supposed to be bounded
by a continuous function of the output multiplied by
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unmeasured states [15,16]. In [17], the consensus prob-
lem was investigated for the multiagent systems with
unknown smooth nonlinear term. Although these con-
sensus control mechanisms express better tracking per-
formance for the nonlinear multiagent systems, they
are difficult to be generalized to the delayed nonlinear
counterparts.

At present, the outcomes about the consensus prob-
lem investigation for multiagent systems with time
delay only have focused on the its linear parts, and
that of the nonlinear counterparts still has not obtained
enough attention. In practical engineering applications,
however, the time delay is inevitable. For instance,
state delay, input delay as well as communication delay
are often encountered in the multiagent systems (see
[19–23] and the references therein). The delay effect
will degrade system performance at certain degree,
and even cause the instability of the system. There-
fore, researchers gradually show solicitude for the con-
sensus analysis for nonlinear multiagent systems with
time delay [24–27]. Hua et al [24] explored the leader-
following output consensus problem for a class of
nonlinear multiagent system with delay measurements
under the directed communication graph. Li et al [25]
further investigated this problem by establishing the
dynamic gain compensator. Chen et al [26] proposed
a novel control strategy for asymptotically stabilizing
chained nonholonomic systemswith input delay by uti-
lizing the input-state-scaling technique and the static
gain control method.

It is worthy that most of the consensus protocols of
nonlinear multiagent systems were formulated under
the assumption that the state variables of each agent
were available [28–31]. This assumption, however, was
much serious for some practical systems and also lim-
ited the practicality of control framework derived from
the state feedback viewpoint. Generally speaking, not
all state information is available in practical applica-
tions, instead only a few part of information in terms
of output can be measured. Hence, the state observer
shall be developed with the potential ability to tackle
the impact induced by the immeasurable state vari-
ables. With the help of the dynamic gain method, You
et al [29] made a profound investigation for the leader-
following consensus of the higher-order stochastic non-
linearmultiagent systems, and the distributed observer-
type controller was formulated using the relative out-
put measurements of neighboring agents. In [28], the
lower triangular systemwas considered, and the output

feedback controller was established. Zhang et al [30]
further extended output feedback control method to the
case of unmodeled dynamics. Another limitation of the
theoretical results are obtained based on an assumption
that the Lipschitz growth rates are known constants.

Regarding statements presented above, the current
research primarily focuses on the leader-following con-
sensus problem for a class of nonlinear multiagent sys-
tems with time delay. The agent dynamics are assumed
to be in the strict-feedback form and satisfy Lips-
chitz conditions both with fixed gains and time-varying
gains. The investigation seems to be distinguished
mainly resulted from the evident challenging summa-
rized as follows:

1. How to analyze the influence induced by the time
delay and immeasurable state variables as well as
nonlinear terms?

2. How to formulate the distributed controller for each
follower by only using the agent’s output and the
relative output of its neighbor agents?

3. How to design the dynamic gain such that the
leader-following consensus problem of nonlinear
multiagent systems with time delay on the state can
be addressed?

Thereby, in this paper, the output-feedback consen-
sus control problem for nonlinear multiagent systems
with time delay has been explored. The main novelties
include the following three folds:

1. The practical case that the multiagent systems suf-
fered from intrinsic nonlinear characteristic and
time delay as well as the immeasurable state vari-
ables is considered.

2. The state observer of each agent is established by
applying dynamic gain method to compensate the
effect of the immeasurable state variables.

3. The distributed output feedback consensus proto-
cols are proposed such that the output of each agent
can track that of the leader both for cases that the
Lipschitz growth rates of the nonlinear function are
known constants and unknown time-varying func-
tion.

2 Preliminaries and problem formulation

This section covers some terminologies on the graph,
and the model as well as the problemwill be addressed.
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2.1 Graph theory

The weighted undirected graph is described by G �
(V, E,A), where V = {v1, v2, . . . , vN } is the vertex
set, E ⊆ V ×V denotes the edge set, and the weighted
adjacencymatrix is represented byA = [ai j ]N×N . The
edge (v j , vi ) is included in the edge set E if and only
if the agent i and agent j can obtain information from
each other. The adjacency matrix A is defined such
that ai j > 0 yields (v j , vi ) ∈ E , otherwise ai j = 0.
Without loss of generality, the self-loop is excluded
in this paper, i.e, aii = 0. The path of the undirected
graph between vertex vi and v j is a sequence of edges
(vi , vk1),(vk1 , vk2),…,(vkn , v j ). The undirected graph
is said to be connected if there exists a path between
any two vertex. The Laplacian matrix of the graph G is
defined as L = [�i j ]N×N , where �i j = −ai j , if i �= j

and �i i = di = ∑ j
i=1 ai j . A subgraphH of G is said to

be an induced subgraph if two vertices are adjacent in
H only if they are adjacent in G. The component of G
is an induced subgraph which is maximal, subjected to
be connected. The composition graph Ḡ is associated
with the system containing N agents and a leader. Ḡ
consists of G and a leader with some edges describing
the relationships between some agents and the leader.
The connection weighted matrix B is determined as
B = diag{b1, b2, . . . , bN } where bi > 0 implies the
agent i can obtain information from the leader; other-
wise, bi = 0. Ḡ is said to be connected if at least one
agent in each component can obtain information from
the leader. Denote L̂ = L + B.

2.2 Model and problem formulation

Consider a flock of nonlinear multiagent systems with
N + 1 agents containing N followers consecutively
labeled from 1 to N and a leader indexed by 0. The
dynamics of i th agent can be explicitly described by the
following uncertain delayed nonlinear strict-feedback
form:

ẋi,m(t) = xi,m+1(t) + hm(t, xi,m(t), xi,m(t − τ(t))),

ẋi,n(t) = ui (t) + hn(t, xi,n(t), xi,n(t − τ(t))), (1)

yi (t) = xi,1(t),

where i = 0, 1, ...., N , m = 1, 2, . . . , n − 1, n
stands for the dimension of the dynamics of each

Fig. 1 Two-stage chemical reactors

agent. xi,m(t) = col{xi,1(t), xi,2(t), ...., xi,m(t)} ∈
R
m and xi,m(t − τ(t)) = col{xi,1(t − τ(t)), xi,2(t −

τ(t)), ...., xi,m(t − τ(t))} ∈ R
m denote the state vector

without or with the time delay on the state, respectively.
ui (t) ∈ R and yi (t) ∈ R refer to as the control input
and the output of the i th agent. Without any particu-
lar statement, the control input of the leader u0(t) is
supposed to satisfying u0(t) = 0. The nonlinear term
hm(t, xi,m(t), xi,m(t − τ(t))) : R × R

m × R
m → R

represents the intrinsic uncertain nonlinear features.

Remark 1 Recently, there has been a trend in regard-
ing the nonlinear multiagent systems as a control tar-
get owing to their vast applications [12–17]. Most of
the related results, however, have been implicitly paid
attention to the case where the nonlinear multiagent
systems were not subjected to the delay effect, which
inevitably results in the limitation of the applications.
It is worthy that many real physical systems only can
be modeled as the system with time delay [24–27],
such as the chemical reactors shown in Fig. 1. Hence,
it is necessary to investigate the consensus problem for
multiagent systems subjected to the delay on state.

Just as the statements in the introduction, the state
variables except the output signals of some practical
systems may not be available as a result of complicated
and volatile environment. Hence, regarding the nonlin-
ear multiagent systems with time delay on the state,
how to put forward an effective distributed consensus
protocol only based on their relative output information
such that the output of each follower can asymptotically
track that of the leader is one of the challenging topics.
Hence, the primary objective of this paper is to address
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this problem.To be specific,we concentrate upon deter-
mining the dynamic gain of the state observer and for-
mulating the distributed consensus protocol such that
the output of each follower can asymptotically track
that of the leader. Before proceeding, some necessary
assumptions and lemmas shall be imposed.

Assumption 1 Suppose that the time delay τ(t) and
its derivative satisfies

0 ≤ τ(t) ≤ τ ∗, τ̇ (t) ≤ τ̄ < 1, ∀t, (2)

where τ ∗ and τ̄ are positive scalars.

Assumption 2 Suppose that there exist positive con-
stants ck1 and ck2 such the following inequality holds
for each m = 1, 2, . . . , n

|hm(t, xi,m(t), xi,m(t − τ(t)))

− hm(t, x0,m(t), x0,m(t − τ(t)))|

≤
m∑

k=1

ck1|xik − x0k | +
m∑

k=1

ck2|xikτ − x0kτ | ∀t,

(3)

where xikτ = xi,k(t − τ(t)).

Assumption 3 The augmented graph Ḡ associated
with the communication topology of the multiagent
systems is fixed and connected.

Lemma 1 [14]Let A=
[
0 In−1

0 0

]

, b=
⎡

⎣1, 0, 0, . . . , 0
︸ ︷︷ ︸

n−1

⎤

⎦

T

,

c =
⎡

⎣0, 0, · · ·
︸ ︷︷ ︸

n−1

, 1

⎤

⎦

T

, where In−1 is an identity

matrix of order n − 1. There exist matrices Q =
[q1, q2, . . . , qn]T, L = [l1, l2, . . . , ln]T, such that
Mi , i = 1, 2 are hurwitz stable, where M1 = IN ⊗
A − (L̂ ⊗ (cQT)) and M2 = IN ⊗ A − IN ⊗ (LbT).
In other words, there are positive definite matrices
P1 ∈ R

nN×nN , P2 ∈ R
nN×nN , and positive constants

η1, η2 such that

P1M1 + MT
1 P1 ≤ −η1P1, (4)

P2M2 + MT
2 P2 ≤ −η2P2. (5)

Remark 2 The conditions in assumptions 1 and 2 are
reasonable in many physical systems (e. g., inverted

pendulums and chemical reactors).Without loss of gen-
erality, let

hm(t, xi,m(t), xi,m(t − τ(t)))

=
m∑

k=1

f (xik(t)) +
m∑

k=1

g(xik(t − τ(t)))

Then,

∣
∣
∣
∣hm(t, xi,m(t), xi,m(t − τ(t)))

− hm(t, x0,m(t), x0,m(t − τ(t)))

∣
∣
∣
∣

=
∣
∣
∣
∣

m∑

k=1

f (xik(t)) −
m∑

k=1

f (x0k(t))

+
m∑

k=1

g(xik(t − τ(t))) −
m∑

k=1

g(x0k(t − τ(t)))

∣
∣
∣
∣

≤
m∑

k=1

∣
∣
∣
∣ f (xik(t)) − f (x0k(t))

∣
∣
∣
∣

+
m∑

k=1

∣
∣
∣
∣g(xik(t − τ(t))) + g(x0k(t − τ(t)))

∣
∣
∣
∣

If the functions f (·) and g(·) both satisfy the Lipschitz
condition, then, there exist positive constants ck1 and
ck2 such that the assumption is hold. For instance, the
function f (·) and h(·) are defined as f (·) = sin(·) and
h(·) = cos(·). Both of them satisfy the Lipschitz con-
dition because of their bounded derivative. One notes
that if the time delay is not considered, i. e., τ(t) = 0,
the assumption 2 is transformed into a widespread one,
whichhas beenwidely applied in the analysis of the out-
put feedback control for nonlinear multiagent systems
without time delay (Please refer to [20,29]). In addi-
tion, assumption 3 is a general and necessary assump-
tion,which is often used to describe the communication
topology among the agents (see [14,19]).

3 Main results

In this section, the distributed leader-following consen-
sus protocols are established by applying the dynamic
gain method. In order to facilitate later analysis for the
i th agent with immeasurable state variables, the state
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observer for each agent is formulated as:

˙̂xi,m(t) = x̂i,m+1(t) + lmK
m(xi,1(t) − x̂i,1(t)),

˙̂xi,n(t) = ui (t) + lnK
n(xi,1(t) − x̂i,1(t)), (6)

where x̂i,m(t) (i = 0, 1, 2, . . . , N , m = 1, 2, . . . , n) is
the estimate of the state variables xi,m(t), lm is the coef-
ficient selected such that the condition (5) in lemma 1
is satisfied, and K (t) ≥ 1 denotes the dynamic gain
to be specified subsequently. Km refers to as the mth
power of K .

Define

ei,m(t) = xi,m(t) − x0,m(t),

zi,m = x̂i,m(t) − x̂0,m(t),

m = 1, 2, . . . , n, i = 1, 2, . . . , N ,

ei = [
ei,1, . . . , ei,n

]T
, zi = [

zi,1, . . . , zi,n
]T

,

e =
[
eT1 , . . . , eTN

]T
, z =

[
zT1 , . . . , zTN

]T
.

According to (1), the tracking error system for i th
agent can be described as

ėi,m(t) = ei,m+1(t) + hm(t, xi,m(t), xi,m(t − τ(t)))

− hm(t, x0,m(t), x0,m(t − τ(t))),

ėi,n(t) = ui (t) + hn(t, xi,n(t), xi,n(t − τ(t)))

− hn(t, x0,n(t), x0,n(t − τ(t))). (7)

From (6), one has

żi,m(t) = zi,m+1(t) + lmK
m(ei,1(t) − zi,1(t)),

żi,n(t) = ui (t) + lnK
n(ei,1(t) − zi,1(t)). (8)

Therefore, the leader-following consensus problem
of the multiagent system (1) is transformed into the
stabilization problems of (7) and (8). Let si,m = ei,m −
zi,m , m = 1, 2, . . . , n, i = 1, 2, . . . , N , one has

ṡi,m(t) = si,m+1(t) − lmK
msi,1(t)

+ hm(t, xi,m(t), xi,m(t − τ(t)))

− hm(t, x0,m(t), x0,m(t − τ(t))),

ṡi,n(t) = −lnK
nsi,1(t) + hn(t, xi,n(t), xi,n(t − τ(t)))

− hn(t, x0,n(t), x0,n(t − τ(t))). (9)

For ease of derivation, the following transformations
are conducted:

z̃i,m(t) = K 1−m−ιzi,m(t), s̃i,m(t) = K 1−m−ιsi,m(t),
(10)

where ι is a positive scalar.
Thus, the systems (8) and (9) can be respectively

reorganized as

˙̃zi,m(t) = K z̃i,m+1(t) + (1 − m − ι)
K̇

K
z̃i,m(t)

+ lmK s̃i,1(t),

˙̃zi,n(t) = Kui (t) + (1 − n − ι)
K̇

K
z̃i,n(t)

+ lnK s̃i,1(t), (11)

and

˙̃si,m(t) = K s̃i,m+1(t) + (1 − m − ι)
K̇

K
s̃i,m(t)

− lmK s̃i,1(t)

+ K 1−m−ι
[
hm(xi,m(t), xi,m(t − τ(t)))

−hm(t, x0,m(t), x0,m(t − τ(t)))
]
,

˙̃si,n(t) = (1 − n − ι)
K̇

K
s̃i,n(t) − lnK s̃i,1(t)

+ K 1−n−ι
[
hn(t, xi,n(t), xi,n(t − τ(t)))

−hn(t, x0,n(t), x0,n(t − τ(t)))
]
. (12)

With all the analysis above taking into account, we
are now in a position to formulate our main result,
which describes distributed consensus protocol for the
nonlinear multiagent systems in the presence of state
delay and immeasurable state variables simultaneously.
The main result of this paper is proposed in the manner
of theorem 1.

Theorem 1 Suppose that assumptions 1-3 hold for the
multiagent systems (1). Then, the output of each fol-
lower can ultimately asymptotically track that of the
leader under the following distributed output feedback
consensus protocol

ui (t) = −QTΓ

⎛

⎝
N∑

j=1

ai j (x̂i (t)

−x̂ j (t)) + bi (x̂i (t) − x̂0(t))
)
, (13)
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K̇ (t) = max
{
−φK 2(t) + �K (t), 0

}
, (14)

where x̂i (t), i = 0, 1, 2, . . . , N refers to as the esti-
mate of the state variables xi (t), which is defined in (6),
Γ = diag{Kn, Kn−1, . . . , K }, Q = [q1, q2, . . . , qn]T
denotes the control variables,φ and� are positive coef-
ficients of the dynamic gain K (t) determined such that
K (t) ≥ 1.

Proof According to (13), the control protocol of i th
agent ui (t) can be reorganized as

ui = −(Λi ⊗ QT)z̃, (15)

where Λi is the i th row of the matrix L̂. z̃i (t) =
col{z̃i,1(t), z̃i,2(t), . . . , z̃i,n(t)}, z̃(t) = [z̃T1 (t), . . . ,
z̃TN (t)]T. Substituting (15) into (11), one obtains

˙̃zi,m = K z̃i,m+1 + (1 − m − ι)
K̇

K
z̃i,m + lmK s̃i,1,

˙̃zi,n = −K (Λi ⊗ QT)z̃ + (1 − n − ι)
K̇

K
z̃i,n

+ lnK s̃i,1. (16)

Define s̃i (t) = col{s̃i,1(t), s̃i,2(t), . . . , s̃i,n(t)}. Then,
the systems (12) and (16) can be rewritten as

˙̃zi (t) = K Az̃i (t) − K (Λi ⊗ cQT)z̃(t)

− K̇

K
(ιIn + G)z̃i (t) + K Ls̃i,1(t), (17)

˙̃si (t) = K (A − LbT)s̃i (t)

− K̇

K
(ιIn + G)s̃i (t) + fi (t), (18)

where fi (t) = [ fi,1(t), . . . , fi,n(t)]T, fi,m(t) =
K 1−m−ι

[
hm(t, xi,m, xi,mτ ) − hm(t, x0,m, x0,mτ )

]
,with

m = 1, 2, . . . , n and ι is defined in (10), xi,mτ =
xi,m(t − τ(t)), G = diag{0, 1, . . . , n − 1}. Let s̃(t) =
[s̃T1 (t), . . . , s̃TN (t)]T, f (t) = [ f T1 (t), . . . , f TN (t)]T,
thus, one has

˙̃z(t) = K (IN ⊗ A − L̂ ⊗ cQT)z̃(t)

− K̇

K
(IN ⊗ D)z̃(t) + K (ŝ(t) ⊗ L), (19)

˙̃s(t) = K (IN ⊗ (A − LbT))s̃(t)

− K̇

K
(IN ⊗ D)s̃(t) + f (t), (20)

withD = ιIn+G, ŝ(t) = [
s̃1,1(t), s̃2,1(t), . . . , s̃N ,1(t)

]T.
In what follows, by utilizing the Lyapunov stability

theory, the stability problems of systems (19) and (20)
will be resolved. So as to achieve this objective, the
following Lyapunov function candidate shall be estab-
lished

V (t) =
3∑

k=1

Vk(t) (21)

with

V1(t) = z̃T(t)P1 z̃(t),

V2(t) = s̃T(t)P2s̃(t),

V3(t) = eρτ∗

1 − τ̄

∫ t

t−τ(t)
e−ρ(t−μ)(λ2‖P2‖‖z̃(μ)‖2

+ λ3‖P2‖‖s̃(μ)‖2)dμ,

where ρ, λ2, and λ3 are positive scalars.
The derivative of V (t) along (19) and (21) is

expressed as

V̇1(t) = 2z̃TP1 ˙̃z
= 2z̃TP1

[
K (IN ⊗ A − L̂ ⊗ cQT)z̃

]

+ 2z̃TP1

[

− K̇

K
(IN ⊗ D)z̃ + K (ŝ ⊗ L)

]

,

(22)

V̇2(t) = 2s̃TP2 ˙̃s (23)

= 2s̃TP2
[
K (IN ⊗ (A − LbT))s̃

− K̇

K
(IN ⊗ D)s̃ + f

]

,

V̇3(t) ≤ −ρV3 + λ2eρτ∗

1 − τ̄
‖P1‖‖z̃‖2 + λ3eρτ∗

1 − τ̄
‖P2‖‖s̃‖2

− λ2‖P2‖‖z̃τ‖2 − λ3‖P2‖‖s̃τ‖2. (24)

Based on lemma 1, one has

K z̃T(P1M1 + MT
1 P1)z̃ ≤ −η1K z̃TP1 z̃, (25)

According to the contributions in [25], there exists
strictly positive constant ιi such that −ιi Pi ≤ Pi (IN ⊗
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D) + (IN ⊗ D)Pi ≤ ιi Pi for i = 1, 2. Hence, one has

−2
K̇

K
z̃TP1(IN ⊗ D)z̃ ≤ −ι1

K̇

K
z̃TP1 z̃,

−2
K̇

K
s̃TP2(IN ⊗ G)s̃ ≤ −ι2

K̇

K
s̃TP2s̃. (26)

On the other hand, one obtains

2K z̃TP1(ŝ ⊗ L) ≤ 2K‖P1‖
√
√
√
√

n∑

j=1

l2j‖z̃‖‖s̃‖

≤ α1K z̃TP1 z̃ + α2K s̃TP2s̃, (27)

where α1 = ‖P1‖
√∑n

j=1 l
2
j

λmin(P1)
, α2 = ‖P1‖

√∑n
j=1 l

2
j

λmin(P2)
.

According to lemma 1, one gets

2s̃TP2K (IN ⊗ (A − LbT))s̃ ≤ −η2K s̃TP2s̃. (28)

In addition, combining with assumption 2, one
obtains

| fi,m | = K 1−m−ι
∣
∣hm(t, xi,m , xi,mτ ) − hm(t, x0,m , x0,mτ )

∣
∣

≤ K 1−m−ι

[
m∑

k=1

ck1|xik − x0k | +
m∑

k=1

ck2|xikτ − x0kτ |
]

≤ K 1−m−ι

[
m∑

k=1

ck1|sik + zik | +
m∑

k=1

ck2|sikτ + zikτ |
]

(29)

≤ K 1−m−ι

[
m∑

k=1

Km−1+ιck1 |s̃ik + z̃ik |

+
m∑

k=1

Km−1+ι
τ ck2 |s̃ikτ + z̃ikτ |

]

where Kτ = K (t − τ(t)), m = 1, 2, . . . , n and ι is
defined in (10).

One notes thatm−1+ι > 0. Based on the condition
(14) and τ(t) ≥ 0, one has K (t) ≥ K (t − τ(t)) ≥ 1.
That is, Km−1+ι

τ ≤ Km−1+ι, which implies

| fi,m | ≤
m∑

k=1

ck1 |s̃ik + z̃ik | +
m∑

k=1

ck2 |s̃ikτ + z̃ikτ | .

(30)

Therefore, one has

2s̃TP2 f ≤ 2‖s̃‖‖P2‖(c1(‖s̃‖ + ‖z̃‖)
+ c2(‖s̃τ‖ + ‖z̃τ‖), (31)

where c1 = max

{√
n(n+1)

2 ck1

}

, c2 = max
{√

n(n+1)
2 ck2

}

, k = 1, 2, . . . , n.

By applying the Young’s inequality, it yields

2c1‖P2‖‖s̃‖‖z̃‖ ≤ c21
λ1

‖P2‖‖s̃‖2 + λ1‖P2‖‖z̃‖2,
(32)

2c2‖P2‖‖s̃‖‖z̃τ‖ ≤ c22
λ2

‖P2‖‖s̃‖2 + λ2‖P2‖‖z̃τ‖2,
(33)

2c2‖P2‖‖s̃‖‖s̃τ‖ ≤ c22
λ3

‖P2‖‖s̃‖2 + λ3‖P2‖‖s̃τ‖2,
(34)

where λ1, λ2 and λ3 are positive constants.
Substituting equations (32)–(34) into (31), one has

2s̃TP2 f ≤ α3 z̃
TP1 z̃ + α4s̃

TP2s̃

+ λ2‖P2‖‖z̃τ‖2 + λ3‖P2‖‖s̃τ‖2, (35)

whereα3 = λ1‖P2‖
λmin(P1)

,α4 =
(

2c1‖P2‖+ c21‖P2‖
λ1

break+
c22‖P2‖

λ2
+ c22‖P2‖

λ3

)

/λmin(P2).

According to system (6) and equations (22)–(25),
the derivative of V (t) can be reorganized as

V̇ (t) ≤ −ρV3 − [
(η1 − α1 − ι1φ) K + (ι1� − ᾱ3)

]
)V1(t)

− [
(η2 − α2 − ι2φ) K + (ι2� − ᾱ4)

]
V2(t). (36)

where ᾱ3 = α3+ λ2eρτ∗‖P1‖
(1−τ̄ )λmin(P1)

, ᾱ4 = α4+ λ3eρτ∗‖P2‖
(1−τ̄ )λmin(P2)

.

One can select the parameters φ and � such that

η1 − α1 − ι1φ > 0, η2 − α2 − ι2φ (37)

ι1� − ᾱ3 > 0, ι2� − ᾱ4 > 0 (38)

Hence, there exist positive constants β1 and β2 such
that

V̇ (t) ≤ −βV1(t), (39)
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where β = min{ρ, β1, β2}. Further, one gets

V (t) ≤ V (0)exp (−βt) . (40)

Hence, one has

‖z̃‖2 ≤ V (0)

λmin(P1)
exp (−βt) ,

‖s̃‖2 ≤ V (0)

λmin(P2)
exp (−βt) . (41)

From the definitions of z̃(t) and s̃(t), one further
obtains

z2im ≤ V (0)K 2(ι+m−1)
m

λmin(P1)
exp (−βt) , (42)

s2im ≤ V (0)K 2(ι+m−1)
m

λmin(P2)
exp (−βt) . (43)

Combining with the fact that K (0) ≤ K (t) ≤ Km

with Km = max{K (0), �
φ
}, which yields

x lim
t→∞ |xim − x0m | ≤ lim

t→∞ |zim + sim |
≤ lim

t→∞ |zim | + lim
t→∞ |sim | → 0,

(44)

which completes the proof of theorem 1. �

Remark 3 The leader-following consensus issue of the
nonlinear multiagent system with time delay is well-
resolved if the coefficients φ and � of the dynamic
gain K (t) are determined. The coefficients φ and �

play the key role of the consensus problem, which can
be summarized as follows: whether or not the condi-
tions (37) and (38) are satisfied is depend on selections
of the φ and �, which further determines the stabil-
ity analysis of systems (1). Besides, by selecting pos-
itive constants φ and �, one can derive that the time-
varying function K (t) is a nondecreasing one and sat-
isfies K (0) ≤ K (t) ≤ Km . On the other hand, since
the time-delay τ(t) is nonnegative and bounded, thus,
one can further conclude that K (t) ≥ K (t − τ(t)).

Remark 4 Regarding aforementioned stability analy-
sis and controller design procedures, the distributed
consensus controller of i th agent only required its
own relative output and the output information of its

neighbors is designed, in which there are some con-
trol parameters shall be specified. The corresponding
design procedures are summarized as follows:

1. By solving the LMIs presented in lemma 1, the
positive matrices P1 and P2 can be obtained.

2. Based on the assumption (3), the parameters c1 and
c2 can be specified.

3. Choosing appropriate parameters λi (i = 1, 2, 3),
the coefficients α1, α2, ᾱ3, ᾱ4 can be directly com-
puted.

4. Based on (37) and (38), specify φ and �.

Remark 5 In [14], the output feedback consensus con-
trol problem was investigated by establishing the
dynamic gain observer for each agent. Besides, the dis-
tributed leader-following consensus protocol was pro-
posed by using the relative outputs and the estimation
of the state variables of its neighbors. Different from
this pioneering works, the practical case that the non-
linear multiagent systems subjected to the time delay
is considered. Thus, the works in [14] can be regard as
a special case of this work with τ(t) = 0. Compared
with the works in [24,25], the dynamic gain compen-
sator was established constituted the relative outputs of
all followers, which is replaced by the state observer
just consisted of its own output in our works. There-
fore, the number of the communication variable can be
reduced at certain degree.

It isworthy that theLipschitz growth rates are known
constants in assumption 2, which will limit the applica-
tions of the theoretical results. Hence, in this part, the
condition of the Lipschitz growth rates will be relaxed
and the output feedback control theoretical based on
the general case will be followed.

Assumption 4 Consider the function hm(t, xi,m,

xi,m(t − τ(t))). Suppose that there exist nonnegative
constants εi and υi , i = 1, 2 satisfying 2υ2 < υ1
such that the following inequality holds for each m =
1, 2, . . . , n

|hm(t, xi,m, xi,m(t − τ(t)))

− hm(t, x0,m(t), x0,m(t − τ(t)))|

≤
m∑

k=1

ε1e
υ1t |xik − x0k |

+
m∑

k=1

ε2e
υ2t |xikτ − x0kτ | ∀t, (45)
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where xikτ = xik(t − τ(t)).

As stated in [14], the growth nonlinearities with
respect to unmeasured state components play the key
role in the output feedback control problem. Hence,
the growth condition is necessary in addressing non-
linearities depending on unmeasured states. Compared
the known constants Lipschitz growth rates, the dis-
tributed consensus controller design for the unknown
time-varying Lipschitz growth rates seems to be diffi-
cult mainly resulted from the evident challenging sum-
marized as follows: the upper bound of the derivative
of the Lyapunov function is dependent of the unknown
time-varying Lipschitz growth rates, hence, how to
design the dynamic gain such that the effect induced by
the time-varying Lipschitz growth rates contains cer-
tain challenging.

In what follows, the distributed leader-following
consensus protocol for the case that Lipschitz growth
rates of the nonlinear functions are unknown time-
varying functions will be proposed in the manner of
following theorem.

Theorem 2 If the assumptions (1), (3) and (4) are sat-
isfied, then the output of each follower can ultimately
asymptotically track that of the leader by designing the
observer (6)-based distributed linear-like controller
(13) with

K̇ (t) = max
{
−φK 2 + �1e

υ1t K , 0
}

, (46)

where φ, �1 are positive constants specified subse-
quently such that K (t) ≥ 1.

Proof Combining with assumption 4, one obtains

| fi,m | = K 1−m−ι
∣
∣hm(t, xi,m, xi,mτ )

−hm(t, x0,m, x0,mτ )
∣
∣

≤ K 1−m−ι

[
m∑

k=1

ε1e
υ1t |xik − x0k |

+
m∑

k=1

ε2e
υ2t |xikτ − x0kτ |

]

≤ K 1−m−ι

[
m∑

k=1

ε1e
υ1t |sik + zik |

+
m∑

k=1

ε2e
υ2t |sikτ + zikτ |

]

≤ K 1−m−ι

[
m∑

k=1

Km−1+ιε1e
υ1t |s̃ik + z̃ik |

+
m∑

k=1

Km−1+ι
τ ε2e

υ2t |s̃ikτ + z̃ikτ |
]

≤
m∑

k=1

ε1e
υ1t (|s̃ik | + |z̃ik |)

+
j∑

k=1

ε2e
υ2t (|s̃ikτ | + |z̃ikτ |) , (47)

which yields

2s̃TP2 f ≤ 2‖s̃‖‖P2‖(ω1e
υ1t (‖s̃‖ + ‖z̃‖)

+ ω2e
υ2t (‖s̃τ‖ + ‖z̃τ‖), (48)

where ω1 =
√

n(n+1)
2 ε1, ω2 =

√
n(n+1)

2 ε2.
Following the similar procedures in (35), eq. (48)

can be reorganized as

2s̃TP2 f ≤ ζ1e
υ1t V1(t) + (ζ2 + ζ3e

(2υ2−υ1)t )eυ1t V2(t)

+ λ2‖P2‖‖z̃τ‖2 + λ3‖P2‖‖s̃τ‖2 (49)

where ζ1 = λ1‖P2‖ω1
λmin(P1)

, ζ2 = 2‖P2‖ω1
λmin(P2)

+ ‖P2‖ω1
λ1λmin(P2)

, ζ3 =
‖P2‖ω2

2
λ2λmin(P2)

+ ‖P2‖ω2
2

λ3λmin(P2)
.

By utilizing the Lyapunov function (21) and follow-
ing the similar procedures in theorem 1, one has

V̇ (t) ≤ −ρV3(t) − ((η1 − α1 − ι1φ) K

+ (
(ι1�1 − ζ1) e

υ1t − ζ4
))

V1(t)

− ((η2 − α2 − ι2φ) K

+
(
(ι2�1 − (ζ2 + ζ3e

(2υ2−υ1)t ))eυ1t − ζ5

))
V2(t).

(50)

where ζ4 = λ2eρτ∗‖P1‖
(1−τ̄ )λmin(P1)

, ζ5 = λ3eρτ∗‖P2‖
(1−τ̄ )λmin(P2)

.

Choose parameter φ such that

η1 − α1 − ι1φ > 0, η2 − α2 − ι2φ > 0 (51)

ι1�1 − ζ1 > 0, ι2�1 − ζ2 − ζ3 > 0 (52)

. In addition, one knows that there must be instant t∗1
and t∗2 satisfying eυ1t >

ζ4
ι1�1−ζ1

and eυ1t >
ζ5

ι2�1−ζ2−ζ3
for t ∈ [t∗,∞) with t∗ = max{t∗1 , t∗2 }.
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Hence, let μ̄ = max{η1 −α1 − ι1φ, η2 −α2 − ι2φ},
for t ∈ [t∗,∞), there exist a positive constant μ =
min{μ̄K (0), ρ} such that

V̇ (t) ≤ −μV (t). (53)

Further, one gets

V̇ (t) ≤ V (t∗) exp(−μ(t − t∗)), t ∈ [t∗,∞), (54)

which implies that

‖z̃‖2 ≤ V (t∗)
λmin(P1)

exp
(−μ(t − t∗)

)
,

‖s̃‖2 ≤ V (t∗)
λmin(P2)

exp
(−μ(t − t∗)

)
. (55)

Similar as the previous procedures, one has

z2im ≤ γ1K
2(ι+m−1)exp(−μt), (56)

s2im ≤ γ2K
2(ι+m−1)exp(−μt), (57)

where γ1 = V (t∗)eμt∗
λmin(P1)

, γ2 = V (t∗)eμt∗
λmin(P2)

.
According to (46), one notes that K (t) ≤

max{K (0), �1eυ1t

φ
}, which yields

z2im ≤ γ1 max{K δm
0 , ξme

δmυ1t }exp(−μt), (58)

s2im ≤ γ2 max{K δm
0 , ξme

δmυ1t }exp(−μt), (59)

where δm = 2(ι+m−1), ξm = (
�1
φ

)δm , K δm
0 = (K0)

δm .
By choosing

ρ > δnυ1 + κ, K (0) ≥ max

{

1,
δnυ1 + κ

μ̄

}

(60)

with κ being any positive scalar, one can ensure that
limt→∞ z2im → 0 and limt→∞ s2im → 0. The proof is
completed for theorem 2. �

4 Simulation example

In this part, the simulation examples are presented to
verify the effectiveness of the proposed protocols.

Example 1 Consider the following chemical reactor
with delayed recycle streams, whose dynamic models
can be described as follows:

ẋi1 = − 1

αi1
xi1 − βi1xi1

+ 1 − θi2

�i1
xi2 + F1(·)

ẋi2 = − 1

αi2
xi2 − βi2xi2 + θi1

�i2
xi1(t − τ(t))

+ hi2
�i2

ui + F2(·)
yi = xi1(t) (61)

where xi1, xi2 represent the compositions; αi1, αi2

denote the reactor residence times; βi1, βi2 stand for
the reaction variables; θi2 refers to as the recycle flow
rate; ωi2 denotes the feed rate; �i1, �i1 denotes the
reactor volumes; Fi1 and Fi2 stand for the intrinsic non-
linear features of the following chemical reactor; τ(t)
is the unknown time-varying delay. Motivated by the
work in [24,25], the corresponding simulation param-
eters are defined as: αi1 = αi2 = 10; βi1 = 0.02;
βi2 = 0.05, θi1 = 0.2, θi2 = 0.2, �i1 = �i2 = 0.8;
hi2 = 0.8; F1(·) = 0.03xi1, F2 = −0.25xi2(t − τ(t)),
τ(t) = 0.6 + 0.2sin(t). Substituting these parameters
into (61) leads to

ẋi1 = xi2 + δ1(xi1(t))

ẋi2 = ui + δ2(xi2(t), xi2(t − τ(t))) (62)

where δ1(xi1(t)) = −0.09xi1, δ2(xi2(t), xi2(t −
τ(t))) = −0.15xi2 − 0.25xi1(t − τ(t)) − 0.25xi2(t −
τ(t)).
Further, one has

|δ1| ≤ 0.09|xi1|

|δ2| ≤ 0.15
2∑

j=1

|xi j (t)| + 0.25
2∑

j=1

|xi j (t − τ(t))|

Obviously, the assumption (2) about the nonlinear
function is satisfied. From (6), the distributed dynamic
observer for system (62) is formulated as

˙̂xi,1 = x̂i,2 + l1K (xi,1 − x̂i,1)

˙̂xi,2 = ui + l2K
2(xi,1 − x̂i,1) (63)
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Fig. 2 Communication topology of multiagent systems (61)

The communication topology graph is shown in
Fig. 2, where the leader is indexed by 0 and followers
are indexed from 1 to 4. The weighted adjacent matrix
of graph G and connection weight matrix are given as

A =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , B = diag{1, 0, 0, 1}.

Let l1 = 0.6, l2 = 0.8, q1 = q2 = 6, η1 = 0.3, ρ =
0.1, η2 = 0.2, ι1 = 0.1, ι2 = 0.1. By solving the condi-
tions in Lemma1, the positive definitematrix P1 and P2
can be obtained. Hence, one has λmin(P1) = 0.0768,
λmin(P2) = 0.1654, ‖P1‖ = 0.9742, ‖P2‖ = 0.4098.
By directly computation, one has c1 = 0.2598, c2 =
0.4330, τ ∗ = 0.8, τ̄ = 0.2. Based on conditions (37)
and (38), the coefficients of the dynamical gain K (t)
can be specified as φ = 7.1849 and � = 67.2705.
The simulation results are shown in Figs. 3, 4, 5, 6,
7, 8, 9, 10, which further verify the effectiveness of
the theoretical results. Figures 3 and 4 show the signal
response curves of the system (61) with initial con-
dition x0,1(t) = 1.6, x0,2(t) = 0.1, x1,1(t) = 0.1,
x1,2(t) = 0.4, x2,1(t) = 0.7, x2,2(t) = 0.3, x3,1(t) =
0.9, x3,2(t) = 0.6, x4,1(t) = 1.3, x4,2(t) = 0.9. The
control input response curves and the dynamic gain
response curve are shown in Figs. 5, 6 with the initial
condition ui (t) = 0(i = 0, 1, . . . , 4) and K (t) = 5,
respectively. The state variables of the dynamic gain
observer are shown in Figs. 9, 10 with the initial con-
dition x̂0,1(t) = 0.1, x̂0,2(t) = 0.1, x̂1,1(t) = 0.5,
x̂1,2(t) = 0.4, x̂2,1(t) = 0.3, x̂2,2(t) = 0.3, x̂3,1(t) =
0.1, x̂3,2(t) = 0.6, x̂4,1(t) = 0.7, x̂4,2(t) = 0.9. Based
on these, one can conclude that the validity of theorem1
is well-illustrated by the simulation example 1.

Fig. 3 Response curves of the output yi of system (61), i =
0, 1, 2, 3, 4

Fig. 4 Response curves of the state variables xi2 of system (61),
i = 0, 1, 2, 3, 4

Example 2 To show the effectiveness and the valid-
ity of theorem 2, the following multiagent systems are
considered as:

ẋi,m = xi,m+1 + hm(t, xi,m(t), xi,m(t − τ(t))),

ẋi,n = ui (t) + hn(t, xi,n(t), xi,n(t − τ(t))), (64)

yi (t) = xi,1(t),

where xi = [
xi,1, xi,2

]T ∈ R
2, yi ∈ R and

ui ∈ R represent the output measurement and the
control signal of agent i , respectively. h1(t, xi,1) =
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Fig. 5 Response curves of the control input ui of system (61)
i = 1, 2, 3, 4

Fig. 6 Response curve of the dynamic gain parameter K (t) of
system (61)

0.2e0.2t xi,1+0.25e0.05t xi,1(t−τ(t)), h2(t, xi,1, xi,2) =
0.3e0.2t xi,2+0.25e0.05t xi,1(t−τ(t))−0.25e0.05t xi,2(t−
τ(t)). The communication graph is shown in Fig. 9,
where the leader is indexed by 0 and followers are
indexed from 1 to 4. The weighted adjacent matrix of
graph G and connection weight matrix are given as

A =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤

⎥
⎥
⎦ , B = diag{1, 0, 0, 1}.

Fig. 7 Response curves of the output of the observer x̂i1 of
system (61)

Fig. 8 Response curves of the state variables of observer x̂i2 of
system (61)

From the definition of nonlinear functions, one knows
that the nonlinear terms satisfy assumption (4) with
ε1 = 0.2, ε2 = 0.3, υ1 = 2, υ2 = 0.5, and other
simulation parameters are given in example 1. The
coefficients φ and �1 of the dynamical gain k(t) can
be specified as φ = 6.0656 and �1 = 26.0715.
The simulation results are shown in Figs. 10, 10, 12,
which further verify the effectiveness of the theoret-
ical results. Figure 10 shows the response curves of
the closed-loop systems (64) with initial condition
x0(t) = [0, 0]T, xi (t) = [−i, 2i]T(i = 1, 2, 3, 4). The
control input response curves and the dynamic gain
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Fig. 9 Communication topology of multiagent systems (64)

Fig. 10 Response trajectories of the closed-loop systems(64)

response curve are shown in Fig. 11 with the initial
condition ui (t) = 0(i = 0, 1, . . . , 4) and K (t) = 9,
respectively. The state variables of the dynamic gain
observer are shown in Fig. 12 with the initial condi-
tion x̂i (t) = [0, 0]T(i = 0, 1, 2, . . . , 5). Hence, one
can conclude that the validity and the effectiveness of
theorem 2 are well-illustrated by the simulation exam-
ple 2.

5 Conclusion

In this paper, the output feedback consensus issue has
been addressed for a class of nonlinear multiagent
systems with time delay. In order to compensate the
effect induce by the immeasurable state variables, the
dynamic gain observer for each agent was formulated.
With the help of the coordinate transformation, the
consensus problems were transformed into the stabi-
lization problem, which overcomes the explosion of

Fig. 11 Response curves of the control input ui and dynamical
gain K (t) of the closed-loop systems(64)

Fig. 12 Response trajectories of the dynamical observer of the
closed-loop systems(64)

complexity problem of the back-stepping method. By
virtual of the Lyapunov-like approach, the distributed
consensus protocols were established both for the case
that the Lipschitz growth rates were known constants
and unknown time-varying functions. The simulation
examples have been performed to verify the effective-
ness of the consensus agreements presented in this
paper. Other interesting research directions would be
the further extension of the current outcomes to the
output feedback leader-following consensus problems
for multiagent systems under weighted directed graph
(see [12,13])
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