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Abstract We describe the phase space structures
related to the semi-major axis ofMolniya-like satellites
subject to tesseral and lunisolar resonances. In particu-
lar, the questions answered in this contribution are: (1)
we study the indirect interplay of the critical inclina-
tion resonance on the semi-geosynchronous resonance
using a hierarchy of more realistic dynamical systems,
thus discussing the dynamics beyond the integrable
approximation. By introducing ad hoc tractablemodels
averaged over fast angles, (2) we numerically demar-
cate the hyperbolic structures organising the long-term
dynamics via fast Lyapunov indicators cartography.
Basedon the publicly available two-line elements space
orbital data, (3) we identify two satellites, namelyMol-
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niya 1-69 and Molniya 1-87, displaying fingerprints
consistent with the dynamics associated to the hyper-
bolic set. Finally, (4) the computations of their asso-
ciated dynamical maps highlight that the spacecraft
are trapped within the hyperbolic tangle. This research
therefore reports evidence of actual artificial satellites
in the near-Earth environment whose dynamics are
ruled by hyperbolic manifolds and resonant mecha-
nisms. The tools, formalism and methodologies we
present are exportable to other region of space subject
to similar commensurabilities as the geosynchronous
region.

Keywords Molniya orbit · Tesseral resonance ·
Lunisolar resonance · Hyperbolic manifolds · Fast
Lyapunov indicator · Space situational awareness

1 Introduction

The present manuscript is part of a recent series of
papers [1,6] dedicated to astrodynamical properties of
Molniya spacecraft. It is well known that the Mol-
niya orbit provides a valuable dynamical alternative
to the geosynchronous orbit, suitable for communi-
cation satellites to deliver a service in high-latitude
countries, as it is actually the case for Russia. In the
present contribution, we focus on the decadal evolution
of the semi-major axis. We approach the problem by
studying the long-term and drag-free motion of a test-
particle subject to the non-spherical geometry of the
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Earth and third-body perturbations due to the Sun and
theMoon. The metrical Keplerian characteristic values
of the Molniya-class, semi-major axis a (expressed in
units of Earth radius, rE), eccentricity e and inclination
i , considered in this work are

œM = (aM, eM, iM) ∼ (4.16 rE, 0.7, 63.4◦). (1)

To follow this goal, the zonal geopotential terms
are first restricted to the second degree J2 term. Mol-
niya satellites have a mean motion close to 2 revo-
lutions per day and thus are subject to a 2 : 1 reso-
nant commensurability with the Earth’s rotation rate
(semi-synchronous orbits). Therefore, 12-hour reso-
nant terms of the geopotential need to be taken into
account to model the dynamics. The resonant terms
are algebraically computed up to the 4th degree and
order. Being interested in long-term dynamics, we deal
with the various Hamiltonian contributions averaged
over the fast variables, leading to the so-called secu-
lar dynamics. The fast timescales are connected to the
mean anomaly of the test particle and theMoon and the
Sun, denoted, respectively, by M, MM, MS. The aver-
aged contributions are introduced as the direct com-
putation of the integral with respect to the fast vari-
ables. For the zonal contribution, this averaging is per-
formed in closed form with respect of the eccentric-
ity. The quadrupolar lunisolar perturbations, depend-
ing, respectively, on M and MM or M and MS, are
doubly averaged, also in closed form with respect of
the eccentricity. For the resonant contribution of the
geopotential, the averaging requires some extra care.
First, the averaging is not performed in closed form
over the eccentricity. Instead, we employ a truncated
series expansion, which, considering the highly eccen-
tric nature of the orbit, is given to 4th order in the
eccentricity. Second, the averaging is not performed
over the variable M directly, as it would not take into
account accurately the resonant dynamics. Instead, this
step calls for the introduction of new slow/fast vari-
ables taking into account the very resonant nature of
the problem [2]. Once those variables are recognised
and introduced explicitly, the averaged contribution is
obtained in the usual way, i.e. by averaging over the
(new) fast variables.

Molniya, Raduga, Gorizont and Ekran are Russian
communication satellites inherited from the Soviet era.
Molniya is the Russian word for lightning and, thus,
given their interesting dynamical framework, is aptly

named. The framework for the Russian communication
satellite constellation was first presented by Bill Hilton
in the British Interplanetary Society during the years
1959-60 [19] who suggested utilising highly inclined,
highly eccentricity orbits for communication systems
for high latitude regions. The Molniya constellation
operates on a unique orbital configuration which is
not exploited by any other type of satellite system.
While typical communication satellites operate on a
24-h geosynchronous equatorial orbit, the high latitude
of many Russian areas poses a problem for radio fre-
quency transmissions from equatorially orbiting space-
craft. For example, the Russian republic spans a range
of 40 degrees in latitude from North to South, with the
northernmost point being located at 80 degrees North.
The solution to the satellite communication problem
for high-latitude regions is the Molniya orbital regime.
Operating on a highly inclined and eccentric 12-hour
orbit, the Molniya spacecraft reach geosynchronous
altitude at apogee, providing access to Russian areas
for over 8 hours per orbit, and reach approximately 600
km at perigee at much greater orbital velocities. Since
their inception, over 160Molniya spacecraft have been
launched which have provided a platform for research
on their unique dynamical framework for nearly 60
years. Molniya orbits gather two distinct resonant phe-
nomena1, with quite distinct timescales, giving rise to
interesting qualitative dynamical behaviour. Firstly, as
we mentioned, they are affected by a 2 : 1 geopoten-
tial resonance. Secondly, their inclination close to the
critical inclination value of 63.4◦ places them near a so-
called inclination dependent only lunisolar resonance
[22]. While the first affects the semi-major axis of the
orbit on a yearly timescale, the lunisolar effect mani-
fests primarily on the eccentricity of the orbit, which
exhibits large oscillations on a much longer timescale.
These pulsations contribute to modulate the (no-longer
constant) coefficients of the tesseral problem; hence-
forth, a coupling and indirect interplay between the two
resonances might happen. The seminal contributions

1 The force model we employed is discussed in more details in
“Appendix A”. The resonant argument ω which appears in the
expansion of the lunisolar Hamiltonian also appears in higher
geopotential zonal terms. In this sense, Molniya orbits gather
more than 2 resonant phenomena, being affected by zonal,
tesseral and third-body resonances. Nevertheless, the effects of
higher zonal terms on the semi-major dynamics are negligible
for our study and timescale of interests as we will demonstrate
later.
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regarding the tesseral and lunisolar problems are gath-
ered in [12,13], and in the PhDwork of T.Ely [14], later
extended to full papers [15,16]. F.Delhaise, J.Henrad
and A.Morbidelli [12,13] have focused their study on
the eccentricity, inclination and argument of perigee,
without paying attention to the behaviour of the semi-
major axis. T.Ely [14] connected the resonant problem
with large-scale chaos affecting the semi-major axis,
including the disturbing effects of the lunisolar per-
turbation, but for orbital parameters which differ quite
significantly fromMolniya orbit (in fact, he considered
either moderate inclined orbits with i ∼ 20◦ or inclina-
tions in the vicinity of the 2g + h lunisolar resonance,
i.e. at i ∼ 56◦). Thus, the secular dynamics ofMolniya
semi-major axis remains partially unexplored.

The first contribution of this paper is to discuss the
dynamics of the semi-major axis beyond the integrable
picture. For this task, we rely on classical tools from
nonlinear dynamics to portray the dynamical struc-
tures organising the long-term dynamics (Poincaré sec-
tion, sections of finite-time variational indicators). The
chaotic nature of eccentric and inclined orbits subject
to tesseral resonances, often explained through an over-
lap of nearby resonances [9], has been known for some
time in the context of tesseral resonances [8,10,14].
Nevertheless, as we will highlight, the extent of chaos
affecting the semi-major axis phase space for Molniya
satellites is much more limited in the range of i ∼ 63◦
compared to the previously studied range of inclina-
tions. In fact, large connected chaotic seas are absent
from the dynamics. Yet, hyperbolic orbits still exist and
surround the unperturbed separatrix as we will show.

The second contribution of this paper is to reveal
the precise effects of this coupling on the dynamics of
the semi-major axis. This is achieved via the introduc-
tion of several dynamical systems, aiming at isolating
gradually the various effects and couplings. The driving
principle is to introduce basic dynamical models, with
the lowest number of degree of freedom(DoF) possible,
which still encapsulate the physics and long-term qual-
itative features of the dynamics. Molniya orbits have
also received attentions in [36,37], but predominantly
oriented towards the description of the long-term evo-
lution of the eccentricity. The authors have built sim-
plified secular dynamical models, in the same spirit as
“isolating” the building blocks of the dynamics and
reconstructed the qualitative features of the eccentric-
ity, inclination and argument of perigee observables.
A few model generated orbits have been compared to

the publicly available two-line element (TLE) datasets
(see, for example, [7,33])2. We underline that our con-
tribution is paying particular attention to the orbit of
Molniya 1-693, left untouched in a previous study, as
being “in the vicinity of the separatrix” [37]. TLEs
remain mainly the sole reservoir of orbital data. The
TLEs result fromobservationalmeasures, coupledwith
an orbit determination process and numerical propa-
gations performed with simplified theories of motion.
In this respect, they form rather pseudo-observations
instead of “pure” observational data. Approximately
every 8 hours, the unclassified TLEs are released pub-
licly. Molniya spacecraft have been tracked since the
mid-70’s, thus providing a sufficient long-time inter-
val of TLEs to appreciate secular effects acting on the
semi-major axis.

The third and final contribution of this paper is
the clear connection of the dynamics of two satel-
lites, Molniya 1-69 and Molniya 1-874, with the fin-
gerprints of the dynamics associated to the hyperbolic
set. This last point sheds some light of the relevance
of secular dynamical approaches and toolboxes for the
field of space situational awareness and the continu-
ing increasing space traffic. The patterns of the orbital
semi-major axis time series (extracted from the corpus
of TLEs, more details will be presented in the subse-
quent) of the two aforementioned satellites are convinc-
ingly approached under this umbrella.

The paper is organised as follows:

– InSect. 2, based on theEarth-only disturbing poten-
tial, a secular model is termed. A resonant inte-
grable system is formulated from which analyti-
cal quantitative estimates (width of the resonance,
characteristic timescales) are extracted. This inte-
grable picture is altered by a multiplet of reso-
nances producing a separatrix splitting phenomena,
responsible for the apparition of a chaotic layer in
the phase space. For Molniya parameters, the over-
lap of resonances is complete. The corresponding2-
DoFHamiltonian and its phase space are described
via Poincaré sections.

– In Sect. 3, we introduce two models including
lunisolar perturbations to overcome the limitations
of theEarth-potential only basedmodel. From these

2 Available at space-track.org.
3 North American Aerospace Defense Command (NORAD)
satellite catalog number 17078, COSPAR ID 1986-089A.
4 NORAD ID 22949, COSPAR ID 1993-079A.
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models, the effects of the lunisolar perturbations on
the tesseral problem are studied. We use dynamical
indicators to portray the phase space structures and
reveal the hyperbolic set affecting the semi-major
axis. The dynamics of the hyperbolic set is studied.

– In Sect. 4, after providing more information about
the TLEs datasets, we connect the dynamics of the
data for satellites Molniya 1-69 and Molniya 1-87
with the dynamics of the hyperbolic set. Relying on
our understanding of the underlying dynamics, we
extract specific epochs and orbital parameters of the
TLEs that spot the satellites within the hyperbolic
tangle when computing their respective dynamical
maps.

We close the paper by summarising our conclusions.

2 The secular and geopotential based Hamiltonian

We present our steps and assumptions to recover a rel-
evant secular Hamiltonian model for 12-hour orbits
based on the geopotential only and we describe the
associated dynamics.

The disturbing potential of the Earth, in an Earth-
centred and Earth-fixed frame, admits the following
expansion [23]

V (r, φ, λ) = VZ (r, φ) + VT (r, φ, λ), (2)

with the zonal and tesseral parts, respectively, given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

VZ (r, φ) = μ

r

∑

l≥2

(rE
r

)l
Jl,0Pl,0 sin φ,

VT (r, φ, λ) = −μ

r

∑

l≥2

l∑

m=1

(rE
r

)l(
cl,m cosmλ + sl,m sinmλ

)
Pl,m(sin φ),

(3)

where the vector (r, φ, λ) denotes the spherical coordi-
nates (respectively, radius, latitude and longitude), rE
denotes the mean Earth’s radius, and μ is the gravita-
tional parameter of the Earth. The Pl,m are the Legen-
dre polynomials of degree l and order m. The coef-
ficients cl,m and sl,m are the harmonic coefficients
describing Earth’s gravity field where we denoted clas-
sically Jl,0 = −cl,0. Throughout this paper, we denote
the Keplerian orbital elements in the usual way as
(a, e, i, ω,Ω, M) where a denotes the semi-major

axis, e the eccentricity, i the inclination,ω the argument
of perigee, Ω the longitude of the ascending node and
M the mean anomaly.

2.1 The secular zonal part

The zonal part is dominated by its quadrupole (l = 2)
term and we therefore truncate VZ to l = 2. Being
interested by secular properties, the M-average of the
J2 part, defining the secular J2 contribution, is com-
puted (in closed form over the eccentricity) using the
differential relationship

dM = r2

a
√
1 − e2

d f, (4)

together with the formula r = a(1− e2)/(1+ e cos f )
(see, for example, [23]):

V̄J2 = 1

2π

∫ 2π

0
VJ2 dM = 1

2π

∫ 2π

0

r2

a2
√
1 − e2

VJ2 d f.

(5)

The classical final expression (5), expressed in terms
of the orbital elements, reads

V̄J2 = μr2E J2
4a3

(1 − e2)−3/2(3 sin2 i − 2). (6)

Secular expressions of higher-order terms and their
dynamical effects are discussed in Appendix 6. We
note, for the remainder of the manuscript, we drop bars
over averaged quantities, bearing in mind that we are
dealing with secular functions in this study.
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2.2 The secular resonant tesseral part for 12-hour
orbits

To compute the resonant secular contribution of the
tesseral part

VT =
∑

l≥2

Tl , (7)

with

Tl =
l∑

m=1

−μ

r

(rE
r

)l(
cl,m cosmλ

+ sl,m sinmλ
)
Pl,m(sin φ), (8)

we first express it in terms of the orbital elements using
a series of formal substitutions. The spherical coordi-
nates are related to the orbital elements by:

⎧
⎪⎨

⎪⎩

cos(α − Ω) = cos(ω + f )/ cosφ,

sin(α − Ω) = sin(ω + f ) cos i/ cosφ,

sin φ = sin i sin(ω + f ),

(9)

where α stands for the right ascension of the satellite
(again, we refer to [23] for omitted details). The lon-
gitude λ is written as a function of α and the sidereal
time θ as

λ = α − θ = (α − Ω) + (Ω − θ). (10)

The sidereal time θ evolves linearly with time as θ =
	Et , with 	E = 2π/sidereal day. Writing the inverse
of the radius as

1

r
= 1 + e cos f

a(1 − e2)
, (11)

the quantities sin f and cos f are then written using
their infinite series representation as a function of the
mean anomaly M and the Bessel functions Js (see, for
example, [28])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin f = lim
k→+∞ 2

√
1 − e2

k∑

s=1

1

s

d

de
Js(se) sin sM,

cos f = lim
k→+∞ −e + 2(1 − e2)

e

k∑

s=1

Js(se) cos sM.

(12)

Applying the aforementioned substitutions into Eq. (7)
transforms it into an expression dependent solely on
the orbital elements (a, e, i,Ω,ω, M) and the sidereal
time θ . The angles appear as linear combinations over
the rationales of M, θ − Ω and ω [23]. Computing at
this stage the brute-force M-average to derive the secu-
lar tesseral contribution would suppress the dynamical
effects of the resonant terms for 12-hour orbits. In fact,
in the vicinity of 12-hour orbits, the fast angle

uF = θ − Ω, (13)

combines with the fast variable M as

2uS = M − 2uF, (14)

to forma slowvarying quantity. Therefore, in the neigh-
bourhood of 12-hour orbits, the variable uS needs to be
considered as a slow and independent variable. Dealing
therefore with the variables uF, uS, ω, there is one fast
angle uF and two slow angles, ω and uS. The resonant
tesseral contribution is therefore obtained by averaging
over the fast angle uF as

V̄T = 1

2π

∫ 2π

0
VT duF. (15)

The final expression has the form

V̄T =
∑

k=(k1,k2)∈K
hk(a, e, i) cos(σk + k1λlm), K ⊂ Z

2,

(16)

where

σk = k1uS + k2ω, (17)

and λlm is a constant phase term defined as

{
cl,m = −Jlm cosmλlm,

sl,m = −Jlm sinmλlm .
(18)
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In Table1, we provide the final formal expression
of the secular resonant terms5 for 12-hour orbits up
to l = 4 appearing in V̄T for the uplets k ∈ K with
Eq. (12) truncated to kmax = 4.

Now that we have at hand the secular disturbing
functions, the dynamics is cast into a Hamiltonian
framework accounting for the Keplerian central part,

H = Hkep. + VJ2 + T2, (19)

where T2 is obtained from (7) by restricting the expan-
sion to l = 2. The Hamiltonian must be a function
of canonical variables which are presented hereafter.
We mention however that we might sometimes refer to
quantities expressed in orbital elements (non-canonical
elements) and it is understood that the elements are
themselves function of canonical variables.

2.3 Dynamics

We start by introducing the following canonical reso-
nant coordinates

⎧
⎪⎪⎨

⎪⎪⎩

I1 = −L , u1 = 2θ − � − 2h,

I2 = G, u2 = g,
I3 = H − 2L , u3 = h,

I4 = −2L − Γ, u4 = −θ,

(20)

where (L ,G, H, �, g, h) denote the classical canonical
Delaunayvariables related to theKeplerian elements by

⎧
⎨

⎩

L = √
μ a, � = M,

G = L
√
1 − e2, g = ω,

H = G cos i, h = Ω.

(21)

Given that the Hamiltonian (19) is time-dependent,
θ̇ = 	E = 2π/sidereal day, we supplement the
dynamics with 1-DoFgiven by the canonical conjugate
variables denoted by (Γ, τ = θ), with θ̇ = τ̇ = 	E.
Those variables enter into the definition of (I4, u4).
The autonomous dynamics (we still note H the new

5 Note the discrepancies with the formula presented in [8] for
the coefficients of the trigonometric terms with arguments M −
2θS + 2Ω − 2ω, M − 2θS + 2Ω − 3ω and M − 2θS + 2Ω + 4ω.
We kindly acknowledge the authors of [8] for their independent
confirmation.

Hamiltonian) reads

H = H + 	EΓ. (22)

The Hamiltonian (22) written in terms of the resonant
coordinates (20) reduces to a 2-DoFsystem as both
u3 and u4 are ignorable. Consequently, their conjugate
canonical actions, I3 and I4, are constant over time (i.e.
parameters). Note that when u̇2 = 0, the problem is a
1-DoFproblem and is therefore trivially integrable.

2.3.1 The integrable approximation

When u̇2 
= 0, we derive the resonant integrable
approximation assuming that the resonances are iso-
lated [27]. It amounts to take into account in (19),
besides the action-only dependent part, the harmonic
with the largest amplitude. For Molniya’s orbital
parameters, the numerical evaluations of the coeffi-
cients give

{ |h2,0| ∼ 3 |h2,2|,
|h2,0| ∼ 103 |h2,−2|.

The 1-DoFapproximation is therefore built on the one-
harmonic Hamiltonian

H̃ = H0 + h2,0 cos(u1 + 2λ22). (23)

The resonance u̇1 = 0 (let us recall u1 = 2θ − � − 2h)
that we denote Ru1 occurs for

	0(I1) = ∂I1H0 = 0. (24)

Solving this equation in I1 for I2, I3 determined by
œM, we find a resonant action I �

1 leading to the reso-
nant semi-major axis

a�(I
�
1 ) = 26, 555 km. (25)

The orbits of (23) coincide with the set of level curves.
Yet, as it will be clear in the subsequent sections,
the phase space is analogue to the classical pendulum
dynamics. Analytical characteristics of the resonance
might be derived from a low-order Taylor expansion
of the Hamiltonian near I1 = I �

1 . By keeping only the
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Table 1 Formal coefficients and resonant angles of the 2 : 1 resonance up to lmax = mmax = 4 and up to the 4th order in eccentricity

k = (k1, k2) hk(a, e, i) σk

(2, 0)
μr2E J229e(9e

2+8) sin2 i
32a3

M − 2θS + 2Ω

(2, 2)
μr2E J223e(e

2−8)(cos i+1)2

64a3
M − 2θS + 2Ω + 2ω

(2,−2)
μr2E J22e

3(cos i−1)2

64a3
M − 2θS + 2Ω − 2ω

(2,−3)
−μr3E J325e

4(cos i−1)2 sin i
1024a4

M − 2θS + 2Ω − 3ω

(2,−1)
μr3E J3215e

2(49e2+22)(3 cos i+1)(cos i−1) sin i
128a4

M − 2θS + 2Ω − ω

(2, 1)
−μr3E J3215(239e

4+128e2+64)(3 cos i−1)(cos i+1) sin i
512a4

M − 2θS + 2Ω + ω

(2, 3)
μr3E J325e

2(e2+6)(cos i+1)2 sin i
128a4

M − 2θS + 2Ω + 3ω

(2, 0)
−μr4E J4275e(27e

2+8)(21 cos2 i sin2 i−7 sin2 i−4 cos2 i+4)
256a5

M − 2θS + 2Ω

(2,−2)
μr4E J42245e

3(cos i−1)(7 cos i sin2 i−cos i+1)
128a5

M − 2θS + 2Ω − 2ω

(2, 2)
μr4E J4215e(33e

2+8)(cos i+1)(7 cos i sin2 i−cos i−1)
128a5

M − 2θS + 2Ω + 2ω

(2, 4)
μr4E J4235e

3(cos i+1)2 sin2 i
512a5

M − 2θS + 2Ω + 4ω

(4, 0)
μr4E J44525e

2(31e2+12) sin4 i
32a5

2(M − 2θS + 2Ω)

(4, 2)
μr4E J44105(65e

4+16e2+16)(cos i+1)2 sin2 i
64a5

2(M − 2θS + 2Ω) + 2ω

(4, 4)
−μr4E J4435e

2(2e2−3)(cos i+1)4

32a5
2(M − 2θS + 2Ω) + 4ω

quadratic action term, it reduces the Hamiltonian to

H̃ = 1

2
α0 J

2
1 + h2,0 cos(u1 + 2λ22), (26)

where J1 = I1 − I �
1 and

α0 = ∂2I1 I1H0|I1=I �
1
. (27)

The equilibria are given by the solution of

{
J̇1 = −∂u1H̃ = h2,0 sin(u1 + 2λ22) = 0,

u̇1 = ∂J1H̃ = α0 J1 = 0,
(28)

leading to two the equilibrium solutions

{
xs = (0, us = −2λ22) � (0, 3.66),

xu = (0, us = π − 2λ22) � (0, 0.52).
(29)

The eigensystem of the Jacobian matrix associated to
(28) evaluated at the equilibrium solutions (29) shows
that xs is elliptic (stable fixed point) and xu is a sad-
dle (unstable fixed point), from which emanates the
separatrix (curve associated to the energy level of the

unstable equilibria). It also provides further temporal
characteristic timescales. The eigensystem of the Jaco-
bian evaluated at xs provides the two complex conju-
gate eigenvalues (λs, λ̄s) leading to the characteristic
periods of libration in the harmonic regime

Tlib. = 2π

|�(λs)| � 1.76 years. (30)

The eigensystemof the Jacobian evaluated at xu is com-
posed by two real eigenvalues (λu,−λu) defining the
e-folding time

Te = 1/|λu | � 0.28 year. (31)

The resonance half-width ΔJ1 associated to (26), i.e.
the distance between J1 = 0 and the apex of the sepa-
ratrix satisfies

H̃(ΔJ1, us) = H̃(0, uu), (32)
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Fig. 1 Phase space of the
resonant integrable
approximation. The width
of the separatrix (red curve)
allows excursion of the
semi-major axis up to
2Δa = 54 km within the
libration domain. The
oscillations near the elliptic
fixed point (blue point) have
a period of about 1.76 years

that is

1

2
α0ΔJ 21 + h2,0 = −h2,0. (33)

Solving the last equality for ΔJ1, we find

ΔJ1 = 2

√
|h2,0|
|α0| ↔ Δa = 27 km, (34)

where the reader is referred to Fig. 1 for further quali-
tative details.

2.3.2 The 2-DoFpicture

When u̇2 
= 0, the energy function (19) defines a 2-
DoFproblem with the multiplet of three resonances
Ru1 ,Ru1+2g,Ru1−2g . Each isolated resonant problem
admits its own pendulum reduction,with the possibility
to overlap [9]. Analytical insights might be gained by

some simplifications. In fact, let us approximate (19)
with the following 2-DoFproblem

K = 1

2
α0 J

2
1 + 	gΓ + h2,0 cos(φ)

+ h2,−2 cos(φ + 2τ) + h2,2 cos(φ − 2τ), (35)

with φ = u1 + 2λ22, where we have assumed the rate
of variation of u2 = g to be ruled by theHJ2 part, that
is

u̇2 ≡ 	g = ∂HJ2

∂G
= 3

4
r2E J2

μ1/2

a7/2
5 cos2 i − 1

(1 − e2)2

∣
∣
∣
∣
œM

.

Therefore, u2 evolves linearly with time which we
denote as τ . Using the canonical equations, we find
the three resonance centres of Ru1 ,Ru1+2g,Ru1−2g

to be located, respectively, at
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⎧
⎪⎨

⎪⎩

cu1(J1) = 0,

cu1+2g(J1) = −2	g/α0,

cu1−2g(J1) = 2	g/α0.

(36)

The mutual distances of the centre of the resonances
with respect to the centre of Ru1 ,

{
δ(Ru1,Ru1+2g) = |cu1 − cu1+2g| = 2|	g/α0|,
δ(Ru1,Ru1−2g) = |cu1 − cu1−2g| = 2|	g/α0|,

are small given that iM ∼ i�, where 5 cos2 i� − 1 =
0 (critical inclination value). The corresponding δa
amounts to be less than 1 km. Treated as isolated, the
resonances Ru1 ,Ru1+2g,Ru1−2g have the respective
half-widths

⎧
⎪⎪⎨

⎪⎪⎩

ΔRu1
J1 = 2

√|h2,0|/|α0| ↔ ΔRu1
a = 27.5 km,

ΔRu1+2g J1 = 2
√|h2,2|/|α0| ↔ ΔRu1+2g a = 14.4 km,

ΔRu1−2g J1 = 2
√|h2,−2|/|α0| ↔ ΔRu1−2g a = 0.78 km.

As inferred from the numerical computation of h2,−2,
the resonance Ru1−2g is negligible for practical pur-
poses. Due to the inequalities

{
ΔRu1

+ ΔRu1+2g � δ(Ru1 ,Ru1+2g),

ΔRu1
+ ΔRu1−2g � δ(Ru1 ,Ru1−2g),

(37)

a complete resonance overlap takes place (i.e. the res-
onances are strongly overlapped), by which is meant
that the widths of the resonances (treated as isolated)
are much larger than their mutual separations. This
paradigm is encapsulated into an analogue of the so-
called modulated pendulum approximation (see, for
example, [27]). From this analogy, we might infer the
absence of large chaotic seas known to exist for simi-
lar eccentricity range but at lower inclination [10,14].
Instead, we expect chaotic motions to appear only in
the vicinity of the unperturbed separatrix [27,29], with
a librational region filled by stable orbits. This fact is
indeed corroborated by computing the Poincaré map.
Stroboscopic map. The Hamiltonian (35) is a 1-
DoFsystem periodically perturbed. Its phase space can
be described by computing the associated Poincaré
map,which is, given the periodic nature of the forcing, a
stroboscopic mapping [26,34]. Let us denote this map-
ping by P and by V(0) a neighbourhood of J1 = 0. By

defining the lift and projector operators, respectively,
as

l : V(0) × [0, 2π ] → V(0) × B × [0, 2π ]2, B ⊂ R,

z = (J1, u1) �→ l(z) = x = (J1, Γ, u1, τ ), (38)

and

p : V(0) × B × [0, 2π ]2 → V(0) × [0, 2π ],
x = (J1, Γ, u1, τ ) �→ p(x) = (J1, u1), (39)

the stroboscopic map is defined as

P : V(0) × [0, 2π ] → V(0) × [0, 2π ],
z �→ P(z) = z′ = p ◦ ΦTg ◦ l(z), (40)

where Φ t is the flow at time t associated to (35) and
Tg = 2π/	g. Note that the lift is parameterised by the
choice of τ(0) = g0. The “dummy” variable Γ does
not enter into the equations of motion. For Molniya-
like spacecraft, Tg defines a period of about 100 years
(i.e. the order of 104 orbital revolutions). The mapping
P is constructed numerically based on the numerical
propagation of the system (35). Given a value of g0,
the coordinates of the fixed points of the mapping P
(i.e. the periodic orbits of (35)) are determined using
a Newton method. Due to the periodicity

K(J1, u1; τ) = K(J1, u1; τ + π), (41)

the domain of g can be restricted to [0, π ]. Let us recall
that a fixed point z� of P , P(z�) = z�, is hyperbolic
when the linearisation has at least one eigenvalue with
modulus greater than one. In case of complex eigen-
values, the fixed point is elliptic. For g0 = 0, the two
fixed points (semi-major axis given in km) read as

{
xs = (a, u1) = (26554.841, 3.662),

xu = (a, u1) = (26554.850, 0.521).
(42)

Changing g0 alters slightly those coordinates and the
slope of the eigenvectors associated to the unstable
periodic orbit, which may widen the aperture of the
librational domain by a few kilometres. The stable and
unstable manifolds associated to an hyperbolic point
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Fig. 2 (Left) Poincaré section associated to (35) computed for
g(0) = 0. The unstable fixed point is labelled with the red cross,
and the blue circle surrounds the stable periodic orbit. The phase
space is similar to the integrable approximation but contains a

thin chaotic layer (scattered erratic points) surrounding the unper-
turbed separatrix. Each considered initial condition has been iter-
ated 100 times under P . (Right) Details of finite pieces of the
stable manifold Ws(xu)

z�,

{
Ws(z�) = {z ,

∥
∥Φ t (z) − z�

∥
∥ → 0, t → +∞},

Wu(z�) = {z ,
∥
∥Φ−t (z) − z�

∥
∥ → 0, t → +∞},

are grown by iterating points belonging to the funda-
mental domain I ⊂ Es,u , where Es,u are, respectively,
the stable and unstable eigenspaces associated to z�
(and derived from the eigensystem analysis). Recall
that Ws,u are locally tangent to Es,u . In Fig. 2, we
show the Poincaré section containing a chaotic zone
surrounding the “unperturbed separatrix”. A smaller
portion of the phase space shows the first lobes associ-
ated to the stable manifold. The analysis of the eigen-
system associated to the linearisation of P at the sad-
dle fixed point is enlightening in deriving the Lyapunov
timescale analytically. Let us recall that a Floquet char-
acteristic exponent μ is a complex number satisfying

λ = eμTg , (43)

where λ is an eigenvalue associated to the linearisation
DP about the fixed point. For the hyperbolic saddle,
the two eigenvalues {λ1, λ2 = 1/λ1} are real and so

are the corresponding {μ1, μ2}, called in this case the
Lyapunov exponents. From

μ = T−1
g log λ, (44)

the timescale of 1/μ ∼ 17 years is derived for the
largest eigenvalue. This timescale has been compared
with a brute-force estimation of themaximal Lyapunov
exponents χ based on the variational dynamics (and
their associated Lyapunov time τL = 1/χ ) in the vicin-
ity of the hyperbolic saddle. For hyperbolic orbits, we
foundLyapunov times in the rangeof 15−18years, thus
in very good agreement with the analytical timescale
based on DP .
Consequences of the chaotic layer. The presence
of the thin chaotic layer surrounding the unperturbed
separatrix brings important distinguishable qualitative
features to the dynamics: the semi-major axis might
display intermittency phenomena and the resonant
angle alternates between librational and circulational
regimes.We note that such features have been observed
for simulated geosynchronous orbits [5,35]. More pre-
cisely, for initial conditions in the chaotic layer, the
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Fig. 3 Composite plot illustrating the mechanisms of the inter-
mittency phenomena. The red line represents the separatrix of
the integrable model T . Realisations of the stable and unstable
manifolds, for ε 
= 0, ε � 1, are not shown for the sake of read-
ability. One hyperbolic orbit trapped in the hyperbolic tangle is

highlighted in the phase space, with a colour code depending
on the regime of the resonant angle. When the resonant angle
circulates (grey colour), the action takes negative Λ’s. When the
angle librates (black colour), the action variable performs the full
homoclinic loop and exhibit larger variations

orbit “swaps” between the “inner-libration” regime,
characterised by

〈J1〉lib.u1 � 0, (45)

and the “outer-circulation” regime for which

〈J1〉circ.u1 
� 0. (46)

The alternation takes place when the orbit returns close
enough to the hyperbolic saddle xu where the scattering
takes place.

Remark 1 This mechanism is illustrated and sum-
marised within the composite panel in Fig. 3 based on
the Hamiltonian model

T = 1

2
Λ2 + Λ1 + cos(ρ) + cos(ρ + ερ1), ε � 1.

(47)

For ε = 0, T is integrable and has a saddle structure at
(Λ, ρ) = (0, π). The separatrix has a cat-eye topology
with half-width Δ = 2

√
2. When ε 
= 0, ε � 1, the

resonancesRρ andRρ+ερ1 , ε-apart, produce a separa-
trix splitting. The resonant angle of an orbit with initial
condition in the hyperbolic set alternates among libra-
tion, 〈Λ〉ρ � 0, and circulation, 〈Λ〉ρ 
� 0. The “pro-
jection” of one orbit with initial condition close to the
saddle (trapped in the hyperbolic tangle) in the space
(Λ, ρ) shows that the orbit remains mainly guided
by the unperturbed separatrix. Under our selected ini-
tial condition, when the angle circulates, the action
is trapped in the tangle, evolving here in the domain
Λ− := {Λ, Λ < 0}. When the angle librates, the
action experiences full homoclinic loops and evolve
within Λ = Λ− ∪Λ+ This process continues and pos-
sibly alternates in the vicinity of the saddle, producing
scattering and contributing to the growth of the tangent
vector.

Limitations of the model K. The model (35) is based
on geopotential perturbations only. To build a more
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realistic model, the lunisolar perturbations, Moon and
Sun, need to be included. In its present form, model K
is limited in two ways:

1. Under the lunisolar effects and due to the proximity
to the critical inclination value, the hypothesis that
the argument of the perigee (g = u2) flows linearly
with time at a (constant) rate given by the J2 effect
is violated (a fact also observed at the data level).

2. The assumption that both the eccentricity and incli-
nation are parameters is no longer true under the
influence of the lunisolar perturbation.

Increasing the complexity of the model gradually, we
overcome the first limitation by decoupling the equa-
tions of motions. We isolate a simplified energy func-
tion L that dictates the time evolution of the argu-
ment of perigee, ġ = ∂GL, that we use to form a

6-dimensional dynamical system with constant eccen-
tricity and inclination. The variables (J1, u1) are then
studied. The second limitation is raised by introducing
a 3-DoFHamiltonian system,where both the eccentric-
ity and inclination vary according to the dynamics.

3 Secular Hamiltonian including lunisolar effects

3.1 The doubly averaged lunisolar Hamiltonian

We adopt a simplified sub-model of the quadrupolar
doubly averaged formulation to model the external
third-bodies perturbations. The quadrupolar approxi-
mation is commonly employed to study medium-Earth
orbit dynamics and has already demonstrated its rel-
evance (see, for example, [11,17]). Starting from the
Hamiltonians

⎧
⎪⎪⎨

⎪⎪⎩

HM = −μM

rM

( rM
‖r − rM‖ − r · rM

r2M

)
,

HS = −μS

rS

( rS
‖r − rS‖ − r · rS

r2S

)
,

where rM, rS denote the geocentric vectors of the
Moon and the Sun, rM, rS the corresponding geo-
centric distances and μM, μS their respective gravita-
tional parameters, a Legendre-like expansion of HM

and HS, truncated to l = 2 (quadrupolar hypothe-
sis), and averaged over the mean anomalies (M, MM)

and (M, MS), respectively, defines the so-called dou-
bly averaged third-body model. This averaging is per-
formed in closed form over the eccentricity. Contrarily
to the inner-perturbative part (geopotential), it requires
to use the differential relationship

dM = (1 − e cos E) dE, (48)

coming from Kepler’s equation (E refers to the eccen-
tric anomaly). The double-averaging

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HM = 1

(2π)2

∫ 2π

0

∫ 2π

0
HM dM dMM = 1

(2π)2

∫ 2π

0

∫ 2π

0
HM(1 − e cos E)

r2M

a2M

√

1 − e2M

dE d fM,

HS = 1

(2π)2

∫ 2π

0

∫ 2π

0
HS dM dMS = 1

(2π)2

∫ 2π

0

∫ 2π

0
HS(1 − e cos E)

r2S

a2S

√

1 − e2S

dE d fS,

reduces HM and HS to an expansion of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HM = hM0 (a, e, i) +
∑

j

hMj (a, e, i) cosφM
j ,

HS = hS0(a, e, i) +
∑

j

hSj (a, e, i) cosφS
j ,

where φM
i and φS

j are permitted linear combinations
of (ω,Ω,ΩM) and (ω,Ω), respectively. Given that
the angle ΩM does not enter φS

j , the summations are
homogenised by introducing φq , where

φq = q1ω + q2Ω + q3ΩM, (49)

with the convention that q3 = 0 for the permissi-
ble solar arguments. The quadrupolar doubly averaged
lunisolar Hamiltonian reads therefore

HMS = HM + HS = (hM0 + hS0)

+
∑

q∈Q
(hMq + hSq) cosφq , (50)
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with (under the quadrupolar assumption)

Q = {q ∈ Z
3
� | q1 ∈ {−2, 0, 2},

(q2, q3) ∈ {−2,−1, 0, 1, 2}2}. (51)

For the sake of concision, let us denote hMS
j = hMj +hSj .

The Hamiltonian (50) is in general non-autonomous as
time enters through the ecliptic precession of the lunar
node,well-approximated by the linear law (Moon’s ele-
ments are referred to the ecliptic plane)

ΩM � ΩM(0) + 	ΩM t, (52)

where 2π/|	ΩM | defines a period of about 18.6 years.
The Moon’s inclination to the ecliptic plane is set to
iM = 5◦15. However, as we will see hereafter, the sim-
plified model allowed by Molniya’s parameters leads
to a model independent of the argument of the Moon
and, therefore, to an autonomous model.

3.2 Model for the time evolution of ω

The so-called double resonance model employed in
[36] based on the lunisolar harmonics cos 2g and
cos 2g±h has shown to provide a realisticmodel to cap-
ture the time evolution of the argument of perigee. They
compared orbits generated using this model against
TLEs data on several cases and were able to repro-
duce qualitatively the time evolution of the argument
of perigee on several decades.More recently, [31] advo-
cated that the cos h term produces a significant contri-
bution to the dynamics ofω, where the reader is referred
to Appendix 6 for further details. We adopt the follow-
ing 2-DoFHamiltonian system

L(G, H, g, h) = L0(G, H) + L1(G, H, g, h), (53)

where

⎧
⎨

⎩

L0 = HJ2 + hMS
0 ,

L1 = hMS
2g cos(2g) + hMS

2g+h cos(2g + h) + hMS
2g−h cos(2g − h),

to model the time evolution of ω. From the canonical
equations derived from (53), we derive the dynamics of
g. The formal coefficients appearing in (53), expressed
using the Keplerian elements, are listed in Table 2. The

Table 2 Formal expression of the lunar and solar coefficients
associated to the harmonics 2g, 2g ± h and h. The obliquity of
the ecliptic with respect to the equatorial plane is ε = 23◦44. The
quantity iM refers to the inclination of the Moon with respect to
the ecliptic plane, iM = 5◦15

hMσ (a, e, i) σ

− 15μMa2e2 sin2 i(3 sin2 ε−2)(3 sin2 iM−2)
64a3Mη3M

2g

− 15μMa2e2(cos i+1) cos ε sin i sin ε(3 sin2 iM−2)
32a3Mη3M

2g + h

− 15μMa2e2(cos i−1) cos ε sin i sin ε(3 sin2 iM−2)
32a3Mη3M

2g − h

3μMa2(3e2+2) cos i cos ε sin i sin ε(3 sin2 iM−2)
16a3Mη3M

h

hSσ (a, e, i) σ

15μSa2e2 sin2 i(3 sin2 ε−2)
32a3Sη

3
S

2g

15μSa2e2(cos i+1) cos ε sin i sin ε

16a3Sη
3
S

2g + h

15μSa2e2(cos i−1) cos ε sin i sin ε

16a3Sη
3
S

2g − h

−3μSa2(3e2+2) cos i cos ε sin i sin ε

8a3Sη
3
S

h

terms hM0 and hS0 refer to the action dependent only
terms of HM and HS and read

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hM0 = μMa2(3e2 + 2)(3 sin2 i − 2)(3 sin2 ε − 2)(3 sin2 iM − 2)

64a3Mη3M

hS0 = −μSa2(3e2 + 2)(3 sin2 i − 2)(3 sin2 ε − 2)

32a3Sη
3
S

.

3.3 Effects of lunisolar perturbation on the tesseral
dynamics

We investigate now how the lunisolar perturbation
affects the hyperbolic structures of the tesseral prob-
lem for Molniya parameters.

The basic model dictates the time evolution of g
being established by (53); we focus nowon two dynam-
ical systems improving the caveats of (35):

1. First, we introduce the differential system in R
6

defined by the equations of motion (EoM):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J̇1 = −∂u1J (J1, u1, g),

u̇1 = ∂J1J (J1, u1, g),

Ġ = −∂gL(G, H, g, h),

ġ = ∂GL(G, H, g, h),

Ḣ = −∂hL(G, H, g, h),

ḣ = ∂HL(G, H, g, h).

(54)

where J is defined as,

J (J1, u1, g(t)) = 1

2
α0 J

2
1 + T2(u1, g(t)). (55)

Here L is the basic lunisolar Hamiltonian function.
For short, we refer to the EoM (54) as model J and
we denote the right-hand side by vJ .

2. Second, we consider the 3-DoFHamiltonian

S(I1, I2, I3, u1, u2, u3) = Hkep.(L) + 	EΓ

+ T2(L ,G, H, u1, g) + L(G, H, g, h), (56)

expressed within the resonant coordinates. With
respect to the model J , model S allows the
action terms to evolve under the correct dynamics.
In particular, the tesseral coefficients h2,0(a, e, i),
h2,±2(a, e, i) appearing in the dynamics of (I1, u1)
are no longer frozen (instead, they vary accord-
ing to the changes of the Delaunay action vector
(L ,G, H)). The right-hand side derived from S is
denoted by vS .

Let us emphasise that both models are π -periodic in g.
Molniya spacecraft have, in general, g ∼ 270◦ ± 20◦.
For both models, in order to reveal the dynamical tem-
plate on the (I1, u1)-plane, we compute the Fast Lya-
punov Indicators [18,25] on a500×500Cartesianmesh
of initial conditions. We use the following definition of
the FLI. For an n-dimensional autonomous ordinary
differential system defined on a open domain D ⊂ R

n ,
ẋ = f (x), the FLI at time t is derived from the linear
map Dx f at a point x :

Dx f : R
n → R

n,

w �→ Dx f (x)w, (57)

and the associated variational equations

{
ẋ = f (x),

ẇ = Dx f (x)w,
(58)

as

FLI(t) = sup
0≤τ≤t

log(‖w(τ)‖). (59)

The vector w ∈ R
n denotes the tangent (or deviation)

vector. The computation of the FLIs over resolved grid
of initial conditions discriminates efficiently the struc-
tures of a given dynamical system, including the stable
or unstable manifolds, ordered or chaotic seas. One
advantage of the FLI over the characteristic Lyapunov
exponent

λ(x, w) = lim
t→+∞

1

t
log(‖w(t)‖), (60)

is to get rid of the time-average computation, thus
speeding the stability determination process. For reg-
ular orbits, the deviation vector grows linearly with
time and therefore the FLI on regular KAM tori is
characterised by values close to log(τ f ). In hyperbolic
regions, the norm of the tangent vector grows exponen-
tially fast, and therefore the FLI displays a linear trend
surpassing quickly the value taken on KAM objects
(see [3], chapter 5, for perturbative estimates).

Remark 2 The parametric dependence on t in (59) is
raised after a calibration procedure. In our case, inte-
gration of several single orbits showed that τ f = 20
years are sufficient to obtain a sharp distinction. With
our choice of units, the FLI of regular orbits is charac-
terised by the value log(τ f ) = 4.99.

Remark 3 We restricted the computations of the FLIs
over Σ forward in time, i.e. on a time interval [0, τ f ],
τ f > 0, to obtain “positive in time FLIs”, FLIs+. It
is therefore understood that, in the context of the exis-
tence of hyperbolic invariants, these computations on
Σ would reveal the trace of the stable manifolds. Simi-
larly, backwards in time FLIs computed over [−τ f , 0],
FLIs− would reveal the trace of the unstablemanifolds.
Both manifolds can be displayed on Σ by plotting, for
example, the standard average

FLI = 1

2
(FLI+ + FLI−), (61)
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or any others weighted average (see, for example,
[18,25]). We computed a few of those maps backwards
in time, to display the averaged FLI. However, because
we are not particularly interested of highlighting homo-
clinic connections, we present hereafter only the for-
ward in time FLI maps (i.e. we display FLI+).

The FLIs computation are performed for the vector
fields vJ and vS over a Cartesian discretisation ofΣ ⊂
R
2, where

Σi0 = {
(I1, I2, I3, u1, u2, u3) : (I1, u1) ∈ D,

u2 = 270◦, u3 = 0, I2 = 0.7, I3(i0) = H� − 2L�

}
,

with

D = V(I �
1 ) × T, T ⊂ [0, 2π ], (62)

and an initial deviation vector w0 chosen arbitrarily6.
The neighbourhood of the resonant action V(I �

1 ) rep-
resents typically a range of 70 km in the semi-major
axis. Our numerical campaign is parametric through 4
allowed values of i0, namely

i0 ∈ {62.5◦, 63.4◦, 64.3◦, 65.2◦}, (63)

“piercing” the critical inclination value. This choice
enters Σi0 through

I3(i0) = L�

√
1 − e2 cos i0 − 2L�, e = 0.7. (64)

Although aware that the precise geometry of the hyper-
bolic structures depend on the initial phasing (ω,Ω),
our investigations focus on (ω,Ω) = (270◦, 0). All
the resulting maps of this numerical survey for models
J and S are reported in Appendix B to ease the read-
ability.We show hereafter in composite panels only the
relevant information for the analysis. From this survey,
we observe that:

1. Both models display a saddle-like point in Σ . This
suggests the existence of an unstable periodic orbit
(although this invariant has not been computed) for
both flows, similar to the unstable periodic orbit
we computed for model K. Following this idea,
the hyperbolic set (high values of FLIs with yellow

6 Instead of choosing a random vector w0, we could have com-
puted the FLIs over a basis of the tangent space. However, to
avoid spurious structures, this refinement is not pursued herein.

colour) emerging from the saddle-type structure is
very likely to represent the intersections of the sta-
blemanifold of the hyperbolic invariantwithΣ . The
fine mesh of initial conditions allows to recognise
lobes distinctively for model S.

2. The model J is overall weakly perturbed, and the
hyperbolic layer is very close to the unperturbed
separatrix.

3. On the contrary, the hyperbolic layer of S is much
more developed. This fact is imputable to the indi-
rect modulation of the coefficients h2,0(a, e, i) and
h2,±2(a, e, i) under the lunisolar effects. We there-
fore see the signature of the lunisolar coupling onto
the tesseral problem.

4. In general, the width of the hyperbolic layer along a
given line of u1 increases with the values of i0. For
u1 within the stable librational domain (say u1 ∼
3.6), the hyperbolic width along the line is about 1
km large in the semi-major axis (i0 = 62.5◦) up to∼
6 km large when i0 = 65.2◦. For u1 near the saddle,
for the same inclination values, the hyperbolic layer
foliates a width of about 10 km in the semi-major
axis for i0 = 62.5◦ and up to 30 km when i0 =
65.2◦.

5. Lastly, and more will be commented on that in
the following, we notice a growing asymmetry of
the hyperbolic layer for increasing values of i0. At
i0 = 65.2◦, the hyperbolic layer is clearly more
developed for the lower range of semi-major axis.

The dynamics associated to the hyperbolic layer of
modelS is similar tomodelT apart that the coefficients
of the respective resonances are slowly modulated in
time. This is exemplified for two orbits in the composite
panel of Fig. 4, together withmacro- andmicroviews of
the phase space structures. The orbit immersed within
the stable region displays oscillations, while the orbit
trapped into the hyperbolic layer displays the character-
istic intermittency. Let us underline that the hyperbolic
orbit, on the 20year timescale, displaysU-turns (i.e. the
alternation between libration and circulation regimes of
the resonant angle u1) always directed towards lower
semi-major axis, with a timescale of about 1.5 year.
The full homoclinic loop takes about 3 years. We inte-
grated the same orbit on a time interval 10 times larger
andwenoticed the unevenly distribution betweenupper
and lower U-turns, the latter being more frequent. This
property is clearly inferred from the thorough inspec-
tion and detailed geometry of the hyperbolic foldings
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Fig. 4 Composite plot highlighting themain features ofMolniya
semi-major axis dynamics. The global FLI map and a magnified
portion near the saddle-like structure detail the hyperbolic struc-
ture. Initial conditions within the hyperbolic layer display inter-
mittency phenomena, while stable orbits display regular oscilla-
tions. This is exemplified for two orbits whose initial conditions

are labelled with the white stars. The width of the layer, for a
fixed u1 but varying ω, might exhibit a complex geometry. For
Molniya’s prototypical range of values of ω, materialised by the
white shaded-line region around ω = 270◦, the width is limited
to a few kilometre in the semi-major axis only. See text for details

near the saddle-like structure. The close-up view of the
FLI map (see the magnified region materialised by the
green box, Fig. 4) reveals more foldings in the lower

part of the chart. Increasing the parametric value of
i0 makes this property even sharper, as shown in the
maps provided in Appendix B. The asymmetry of the
foldings emerges from the fact that
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Fig. 5 Time history of the semi-major axis and resonant angle u1 extracted from the TLE data for the satellite Molniya 1-69

δ(i0) = |h2,0(a, e, i)|
|h2,2(a, e, i)| , (65)

becomes larger along a solution x(t) = (
a(t), e(t),

i(t))
)
for initial conditions near xu .

The layer’s dependence upon ω0, for model S, is
shown for the fixed value of u1 = 3.6 in the last map
of the composite plot of Fig. 4 (bottom right). It reveals
a much wider width (roughly speaking on the order
of 10 km in the semi-major axis) for ω ∈ [π, 3π/2],
with petals structures. For ω ∈ [3π/2, π ], the hyper-
bolic structure is much simpler to apprehend. For Mol-
niya’s typical variation of ω ∼ 270◦ ± 20◦, this corre-
sponds to the rectangle materialised with white dashed
lines.

4 Connections and links with the dynamics of
Molniya 1-69 and Molniya 1-87

On inspecting the extracted semi-major axis usingMol-
niya 1-69 and Molniya 1-87 TLE data, we notice that
they display intermittency phenomena on their semi-
major axis7 as repeated in Figs. 5 and 6. The figures also
incorporate the time evolution of the resonant angle u1.
The relevant part of the data, in the light of the oscillat-
ing models previously derived, cover in both cases at
least 2 decades. Both data contain a transitory period,
possibly remnants of unknown manoeuvres. For Mol-

7 We extracted the mean semi-major axis (in the sense of
the underlying SGP4 theory) from the TLEs by following the
“un-Kozai” mean-motion procedure (one step iterative method)
presented in [20], section 6. See also [32], Eq. (7) or [21],
“Appendix” B, Sect. A.
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Fig. 6 Time history of the semi-major axis and resonant angle u1 extracted from the TLE data for the satellite Molniya 1-87

niya 1-87, after the epoch corresponding tomean Julian
day (MJD) of 57, 400, the satellite experienced a sig-
nificant semi-major axis reduction. We will not pay
attention to this part of the data. In the exploitable win-
dow, the resonant signature, consisting of alternation
between libration and circulation, is well-marked and
in accordance with the U-turns intermittent semi-major
axis variations. In both cases, the intermittency U-turns
take place for a ∼ 26, 550 km, compatible with the
locations of the hyperbolic foldings we located with
model S close to the saddle. It is worth mentioning that
Molniya 1-69 has been left untouched in [36], as judged
to “locate in the vicinity of this separatrix”. Below, we
give more credit to this claim, and we show that it is
also the case for its cousin Molniya 1-87. At the light
of the dynamical mechanisms presented in Sect. 3 and
the fingerprints just described, it is tempting to say that

both satellites evolve within the hyperbolic layer. To
give more weight to this claim, we performed the fol-
lowing steps:

1. At epochs t� corresponding to the apex of the first
U-turns, we extract from the TLEs the correspond-
ing orbital parameters and we record the values
of (a�, u�

1). For case Molniya 1-69, we selected
t� = 50, 418.06 (MJD), leading to the “instanta-
neous” elements

⎧
⎨

⎩

a = 26, 553.63 km, u1 = 0.5257,
e = 0.67633, ω = 269◦95,
i = 64◦2544, Ω = 249◦68.

(66)

For Molniya 1-87, we selected t� = 53, 433.24
(MJD), for which the sets of computed elements
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Fig. 7 Dynamical maps for Molniya 1-69 and Molniya 1-87. The locations of Molniya 1-69 and Molniya 1-87 are marked through the
black circle. Both satellites reside within the hyperbolic tangle

reads

⎧
⎨

⎩

a = 26, 550.06 km, u1 = 0.4749,
e = 0.6582, ω = 262◦68,
i = 64◦1995, Ω = 223◦01.

(67)

2. We compute the dynamical maps with the FLIs for
the vector field vS , using as parameters and phasing
for the sectionΣ those extracted from the respective
TLE at epoch t�.

3. On the obtained dynamical maps, the points of coor-
dinates

(
a(t�), u1(t�)

)
are spotted.

The obtained dynamics maps shown in Fig. 7 convinc-
ingly demonstrate that the satellites reside within the
hyperbolic tangle.

5 Conclusions

The constructed dynamical models and their analy-
sis allowed us to deepen the understanding of Mol-
niya’s semi-major axis dynamics. The hyperbolic struc-
tures organising the phase space have been portrayed
via variational indicators through a series of compact,
tractable and realistic secular models. The effect of
lunisolar perturbations, on the 20-year timescale, needs
to be taken into account to reconstruct the correct
dynamical template. In fact, the inducedmodulations of

the eccentricity and inclination contribute sufficiently
to change the “parameters” of the tesseral problem; the
coefficients we denoted by h2,0 and h2,±2. We con-
nected the 20-year-long fingerprints of two satellites,
Molniya 1-69 and Molniya 1-87, with the hyperbolic
layer surrounding the unperturbed cat-eye separatrix.
This hyperbolic layer, in absence of lunisolar perturba-
tions, would be too thin to sustain the dynamical sig-
natures visible at the publicly available data level. By
computing their associated dynamical maps, we pro-
vided evidence that the two satellites are trappedwithin
the hyperbolic tangle. The secular dynamics umbrella
provided a reliable and robust mould to approach and
explain the semi-major axis patterns extracted from the
TLE space datasets. As far aswe are aware, this result is
the first report of long time scale hyperbolicity corrob-
orated by pseudo-observations in the near-Earth space
environment. The mechanisms and tools depicted in
this contribution have relevance for other dynamical
regions, most notably for the geosynchronous altitude
where similar patterns have beenobservedon simulated
orbits [5,30,35].
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6 Appendix A: Dynamical models employed &
physical parameters

As we mentioned in the introduction, the aim of this
study is not to study with the greatest accuracy possible
Molniya dynamics, with a comprehensive force model
including uncertainty modelling and Monte Carlo like
approaches. Quite on the contrary, we leverage the
understanding of the dynamics of the semi-major axis
from the essential “building blocks” with tractable
contributions. In that respect, we would like to pro-
vide more context to the dynamical model we have
employed. We have approached the problem as a drag-
free model, with no solar radiation pressure, based
on a compact geopotential model including relevant
terms of the disturbing lunisolar potentials. Higher-
order zonal secular terms can be obtained in closed
form over the eccentricity following the same formal
procedure discussed in Sect. 2.1. In terms of the orbital
elements, up to order l = 5, they read:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

VJ3 = 3J3μr3Ee sin i(5 sin
2 i − 4)

8a4(1 − e2)5/2
sin(ω),

VJ4 =
(15J4μr4E sin

2 i(7 sin2 i − 6)

64a5(1 − e2)7/2

)
cos(2ω) − 3J4μr4E(3e2 + 2)(35 sin4 i − 40 sin2 i + 8)

128a5(1 − e2)7/2
,

VJ5 =
(15J5μr5Ee(3e

2 + 4) sin i(21 sin4 i − 28 sin2 i + 8)

128a6(1 − e2)9/2

)
sin(ω) −

(35J5μr5Ee
3 sin3 i(9 sin2 i − 8)

256a6(1 − e2)9/2

)
sin(3ω).

It is worthwhile to note that the resonant argument of
perigee also appears in the above secular contributions;
hence the idea that Molniya orbits, besides tesseral and
lunisolar resonances, gather also “zonal resonances”.
To include the second-order part term with factor J 22 in

the secular Hamiltonian, with the form

VJ 22
= J 22

(
A(a, e, i) cos 2ω + B(a, e, i)

)
, (68)

we used the formula given in [4,24]. The relevance
of our model S has been assessed by including those
effects, and the lunisolar hMS

h cos h to L. This model
forms an “extended” Hamiltonian model S̃ . We com-
puted the dynamical map for the Hamiltonian vector
field vS̃ with e = 0.7, i0 = 64◦3 and (ω,Ω) =
(270◦, 0) and we did not noticed significant macro-
scopic changes in the obtained dynamical template,
henceforth the relevance of the Hamiltonian model S.
Let us mention that even if the macroscopic structures
do not change drastically, hyperbolic orbits generated
under model S and S̃ will separate in time (sensitivity
to the slight change of physics), and the hope to follow
them beyond a few Lyapunov times is a useless effort.
The Lyapunov time τL computed as

⎧
⎨

⎩

χ = lim
s→+∞

1

s
log(‖w(s)‖),

τL = 1/χ,

is about 2 decades.
The physical parameters of this study read as fol-

lows. The Moon’s orbital parameters, referred to the
ecliptic plane, have been set to aM = 384, 748 km,
eM = 0.0554, iM = 5◦15, μM = 4902.8 km3/s2. The
Sun’s orbital parameters, referred to the Earth equator,
have been set to aS = 1.496 × 108 km, eS = 0.0167,
iS = 23◦4392911, μS = 1.32712 × 1011 km3/s2 .
The length unit is the Earth radius rE of 6378.1363 km,
μ = 398, 600.44 km3/s2.

B Dynamical maps

We computed dynamical maps for a fixed value of
e = 0.7 and i0 “piercing” the critical inclination. They
are presented in Fig. 8 for model S. Given that model
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Fig. 8 Intersections of the forward in time FLIs with the plane (a, u1) for model S computed on a 500× 500 grid of initial conditions
for i0 ∈ {62.5, 63.4, 64.3, 65.2} deg

J is slightly perturbed, we just show the maps for
i0 = 62◦5 and i0 = 65◦2 in Fig. 9. The maps have
been computed on a 500 × 500 grid of initial condi-
tions, forward in time, and over a time interval of 20
years.Wehave considered4values of the initial inclina-
tions, namely i0 ∈ {62◦5, 63◦4, 64◦3, 65◦2}. The ini-
tial phasing is set as (ω,Ω) = (270◦, 0◦). If a given
initial condition in themap fallwithin thehighest region
of the FLIs (yellow tone), then the orbit is hyperbolic
and exhibit sensitive dependence upon the initial con-

dition (i.e. any orbit starting with an initial condition
slightly different will have a long-term different future;
the orbits will separate with time). We note that the i0-
dependence of theJ model is quasi-absent. The model
J is very close to the integrable picture, in the sense
that the splitting of the separatrix is weak. The latter
is much more manifest for model S, where we recall,
the eccentricity and inclinations variables are no longer
frozen. For increasing values of i0, we underline the
growing asymmetry of the foldings near the saddle-
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Fig. 9 Intersections of the forward in time FLIs with the plane (a, u1) for model J computed on a 500× 500 grid of initial conditions
for i0 ∈ {62.5, 65.2} deg

like structure for the model S. This particular struc-
ture transfers directly at the single orbit level: an orbit
trapped within the hyperbolic layer is more likely to
display U-turns intermittency phenomena towards the
lower semi-major axis. This observation, based on the
thin structures of the lobes detected with a variational
dynamical indicator on our model, is also in agreement
with the actual two-line elements datasets for objects
M1-69 and M1-87.
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