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Abstract In this paper, we utilize the Riemann–
Hilbert approach to discuss multi-soliton solutions of
the N -component nonlinear Schrödinger equations.
Firstly, by transformed Lax pair, we construct the
matrix-valued functions P1,2 that satisfy the analyticity
and normalization and the corresponding jump matrix
can be determined. Then, in the reflectionless case,
we get the multi-soliton solutions ql (l = 1, . . . , N )

of the N -component nonlinear Schrödinger equations,
which are related to the spectral parameter η. Particu-
larly, the 2-soliton solutions q1, q2, and q3 of the three-
component nonlinear Schrödinger equations are given
and the corresponding 2-soliton diagrams are drawn.
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1 Introduction

Riemann–Hilbert (RH) problem is the 21st question
that Hilbert mentioned at the International Congress of
Mathematicians in Paris [1]. It belongs to the scope of
boundary value problem of matrix-valued functions on
the complex plane. Usually, the RH problem is defined
as follows [2]. Assume that � is a directed path on
the complex plane C, �0=�\{self-intersection of �}.
Suppose that there is a smooth map on �0

G(z) : �0 → ML(n, C).

Then, (�,G)determines aRHproblem, i.e., looking
for a n × n matrix P(z), which satisfies

• P(z) is analytical in C \ �;
• P(z) satisfies the following jump condition

P+(z) = P−(z)G(z), z ∈ �;
• P(z) → I, z → ∞.

In fact, the RH problem is a boundary value problem
of matrix value function on complex plane, and we can
convert it into integral equations. Because RH problem
is a problem on complex plane, the biggest advantage
of RH approach is to transform the problem solvable
on complex plane. For example, some definite integrals
are difficult to integrate in the real domain, but can be
solved when treated as complex integrals.

It is known that the methods by which the solutions
of the integral equations canbeobtained include inverse
scattering transformation [3], Darboux transformation
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[4], symmetry reduction method [5], Hirota bilinear
method [6], Lax pair nonlinear method [7], Wronskian
technique [8], and so on. RH approach is a direct and
simplemethod to solve the soliton equations. The prob-
lem can be solved by Lax pair of integrable systems and
analysis of the spectral function. One can construct the
RH problem similar to the above description, and then
get the soliton solutions of the original equations.

Now RH approach has been developed into a pow-
erful analytical tool to solve problems in a large
class of pure and applied mathematics, which can be
widely applied to initial boundary value problem [9–
16], asymptotic of orthogonal polynomials [17], Bäck-
lund transformation [18,19], and long-time asymp-
totics [20–22]. Afterward, It is found that the RH
approach can be used to obtain the solutions of inte-
gral equations by inverse scattering theory [23–30]. In
recent years, Wazwaz solved multiple soliton solutions
of the equations [31–34]. Then, RH approach has been
widely used to get multi-soliton solutions of multi-
dimensional equations [35–39].

In this paper, we mainly discuss multi-soliton
solutions of the N -component nonlinear Schrödinger
(NLS) equations by RH approach. The N -component
NLS equations [40] take the form

iqlt + 1

2
qlxx +

N∑

l=1

|ql |2ql = 0, l = 1, . . . , N , (1.1)

where ql = ql(t, x) (l = 1, . . . , N ) are functions and
the subscripts mean the partial derivatives.

The organization of this paper is given as follows.
In Sect. 2, we transform Lax pair to construct the RH
problem for the N -component NLS equations. In Sect.
3, the multi-soliton solutions for the N -component
NLS equations are obtained, which are relevant to the
spectral parameter. Then, the 2-soliton solutions of the
three-component NLS equations are given and the cor-
responding 2-soliton graphs are drawn. In Sect. 4, we
give the conclusion.

2 Riemann–Hilbert problem

Based on Eq. (1.1), we have the Lax pair
{

�x + iησ� = i Q�,

�t + iη2σ� = [iηQ + 1
2 (iσQ2 − σQx )]�,

(2.1)

where

Q =

⎛

⎜⎜⎜⎜⎜⎝

0 q∗
1 q∗

2 · · · q∗
N

q1 0 0 · · · 0
q2 0 0 · · · 0
...

...
...

. . .
...

qN 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
,

σ =

⎛

⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎠
,

(2.2)

η is the spectral parameter. Then, we get the Jost solu-
tion of Lax pair (2.1) with asymptotic form by

� ∼ e−iησ x−iη2σ t , |x | → ∞. (2.3)

In order to facilitate calculation, we define a matrix
function � = �(x, t; η). Letting

� = �e−iησ x−iη2σ t , (2.4)

then we have

� → I, |x | → ∞. (2.5)

The Lax pair (2.1) can be rewritten as
{

�x + iη[σ,�] = U1�,

�t + iη2[σ,�] = U2�,
(2.6)

where U1 = i Q and U2 = iηQ + 1
2 (iσQ2 − σQx ).

Then, the Volterra integral equations can be expressed
as

�1(t, x; η)

= I +
∫ x

−∞
e−iη(x−x ′)σU1�1e

iη(x−x ′)σdx ′,

�2(t, x; η)

= I −
∫ +∞

x
e−iη(x−x ′)σU1�2e

iη(x−x ′)σdx ′.

(2.7)

By calculation, we can know

e−iη(x−x ′)σU1e
iη(x−x ′)σ =

⎛

⎜⎜⎜⎝

0 iq∗
1 e

2iη(x−x ′) · · · iq∗
Ne

2iη(x−x ′)

iq1e−2iη(x−x ′) 0 · · · 0
...

...
. . .

...

iqN e−2iη(x−x ′) 0 · · · 0

⎞

⎟⎟⎟⎠ .

(2.8)

Let �1 = ([�1]1, [�1]2, . . . , [�1]N+1) and �2 =
([�2]1, [�2]2, . . . [�2]N+1)). Then, it can be obtained
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that [�1]1 is analytic in C−, [�1]2, . . . , [�1]N+1

are analytic in C+. [�2]1 is analytic in C+, [�2]2,
. . . , [�2]N+1 are analytic in C−. We can rewrite �1,2

as follows

�1 = ([�1]1, [�1]2, . . . , [�1]N+1)

= (�−
1 , �+

1 , . . . , �+
1 ), (2.9)

�2 = ([�2]1, [�2]2, . . . , [�2]N+1)

= (�+
2 , �−

2 , . . . , �−
2 ). (2.10)

Based on the properties of �1,2 and tr Q=0, we can
know that det�1,2 are independent for all x . By the
asymptotic conditions �1,2 → I as |x | → ∞, we
know that

det�1,2 = 1. (2.11)

Therefore, �1,2 are linearly related by a spectral
matrix S(η) = (sk j (η))(N+1)×(N+1), which can be
expressed as

�1E = �2ES(η), E = e−iησ x . (2.12)

Then, we have

det S(η) = 1. (2.13)

Taking the inverse of both sides of Eq. (2.12), we
can obtain

�−1
1 = ES(η)−1E−1�−1

2 . (2.14)

Applying Eq. (2.14) and the analytic properties of
column vectors of �1,2, we can get the analytic prop-
erties of �−1

1,2, that is

�−1
1 =

⎛

⎜⎜⎜⎝

(�−1
1 )1

(�−1
1 )2

...

(�−1
1 )N+1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

�̂+
1

�̂−
1

...

�̂−
1

⎞

⎟⎟⎟⎠ ,

�−1
2 =

⎛

⎜⎜⎜⎝

(�−1
2 )1

(�−1
2 )2

...

(�−1
2 )N+1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

�̂−
2

�̂+
2

...

�̂+
2

⎞

⎟⎟⎟⎠ .

(2.15)

In order to construct a matrix RH problem, we need
to determine two matrix functions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 = ([�2]1, [�1]2, . . . , [�1]N+1)

= (�+
2 , �+

1 , . . . , �+
1 ), η ∈ C+,

P2 =

⎛

⎜⎜⎜⎜⎝

(�−1
2 )1

(�−1
1 )2

...

(�−1
1 )N+1

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

�̂−
2

�̂−
1

...

�̂−
1

⎞

⎟⎟⎟⎟⎠
, η ∈ C−.

(2.16)

Let

B1 =

⎛

⎜⎜⎜⎝

0 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞

⎟⎟⎟⎠ , B2 =

⎛

⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞

⎟⎟⎟⎠ . (2.17)

Then, P1,2 can be rewritten as

P1 = �1B1 + �2B2

= �1

⎛

⎜⎜⎜⎝

r11 0 · · · 0
e−2iηxr21 1 · · · 0
...

...
. . .

...

e−2iηxrN+1,1 0 · · · 1

⎞

⎟⎟⎟⎠ , (2.18)

P2 = B1�
−1
1 + B2�

−1
2

=

⎛

⎜⎜⎜⎝

s11 e2iηx s12 · · · e2iηx s1,N+1

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞

⎟⎟⎟⎠ �−1
1 , (2.19)

where R(η) = S−1(η) = (rk j (η))(N+1)×(N+1). We
can study the asymptotic expansion of P1

P1 = P(0)
1 + P(1)

1

η
+ P(2)

1

η2
+ o(η−3). (2.20)

Submitting (2.20) into the first equation of (2.6)
and comparing the corresponding coefficients of η, we
obtain
O(η1) : i[σ, P(0)

1 ] = 0,

O(η0) : P(0)
1,x + i[σ, P(1)

1 ] = U1P
(0)
1 .

(2.21)

We can get

P1 → I, η ∈ C+ → ∞. (2.22)

Similarly,

P2 → I, η ∈ C− → ∞. (2.23)

By the above calculation, we propose the RH problem
of the N -component NLS equations

• P1(t, x; η) is analytic in C+, P2(t, x; η) is analytic
in C−.

• P2(t, x; η)P1(t, x; η) = G(t, x; η), η ∈ R,
• P1,2(t, x; η) → I, as η → ∞,

where the jump matrix takes the form

G(t, x; η)

=

⎛

⎜⎜⎜⎝

1 e2iηx s12 · · · e2iηx s1,N+1

e−2iηxr21 1 · · · 0
...

...
. . .

...

e−2iηxrN+1,1 0 · · · 1

⎞

⎟⎟⎟⎠ .

(2.24)
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Fig. 1 Evolution plot of the 2-soliton |q1|, Req1, and Imq1

Fig. 2 The soliton along the x-axis with different t

3 Multi-soliton solutions of the N-component NLS
equations

3.1 Multi-soliton solutions

In this section, we can get the multi-soliton solutions
of Eq. (1.1). Firstly, we should derive the properties of
the zeros of det P1,2(η). On the basis of Eqs. (2.18) and
(2.19), we can get

det P1(η) = r11(η), η ∈ C+,

det P2(η) = s11(η), η ∈ C−.
(3.1)

In other words, zeros of det P1(η) are zeros of r11(η)

and zeros of det P2(η) are zeros of s11(η). Obviously,

Q defined by (2.2) is a Hermite matrix, that is

Q† = Q, (3.2)

where † means conjugate transpose. Using Eqs. (2.18)-
(2.19) and �

†
1,2(η

∗) = �−1
1,2(η), we can get the follow-

ing relationship

P†
2 (η∗) = P1(η). (3.3)

Then, it follows from the scattering relation (2.12)
that

S†(η∗) = S−1(η), s∗
11(η

∗) = r11(η). (3.4)

The points η j ( j = 1, 2, . . . , N ) are zeros of
det P1(η) in C+, and η∗

j ( j = 1, 2, . . . , N ) are zeros
of det P2(η) in C−. According to det P1(η j ) =
det P∗

2 (η∗
j ), we suppose that nonzero column vectors

ν j and nonzero row vectors ν∗
j are the solutions of the

following linear equations, respectively,

P1(η j )ν j (η j ) = 0,

ν∗
j (η

∗
j )P2(η

∗
j ) = 0.

(3.5)

In fact, the scattering data for solving the RH
problem (2.24) is composed of the discrete scattering
data {η j , η

∗
j , ν j , ν

∗
j } and the continuous scattering data{s21, s31, . . . , sN+1,1}. From Eqs. (3.3) to (3.5), we get

ν∗
j = ν

†
j . (3.6)

Differentiating Eq. (3.5) with respect to x and con-
sidering Lax pair (2.6) and Eq. (3.6), we obtain
{

ν j = e−iη jσ x−iη2jσ tν j,0,

ν∗
j = ν

†
j,0e

iη∗
jσ x+iη∗

j
2σ t

,
(3.7)

where ν j0 are the (N+1)-dimensional constant column
vectors. Then, we can get multi-soliton solutions for
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Fig. 3 Evolution plot of the 2-soliton |q2|, Req2, and Imq2

Fig. 4 The soliton along the x-axis with different t

Eq. (1.1) in the reflectionless case. Define the matrix
M = (Mkj )(N+1)×(N+1)

Mkj = ν∗
k ν j

η j − η∗
k
. (3.8)

Based on the canonical normalization condition
(2.16), the RH problem has the unique solution

P1(η) = I −
N∑

k, j=1

νkν
∗
j (M

−1)k j

η − η∗
j

,

P2(η) = I +
N∑

k, j=1

νkν
∗
j (M

−1)k j

η − ηk
.

(3.9)

Then, we can expand P1 as follows

P1 = P(0)
1 + P(1)

1

η
+ P(2)

1

η2
+ o(η−3). (3.10)

Putting the asymptotic expansion (3.10) into Eq.
(2.6), we have

i[σ, P(1)
1 ] = i Q. (3.11)

Hence, the potential functions ql (l = 1, 2, . . . , N ) can
be expressed as

ql = 2(P(1)
1 )l+1,1, l = 1, 2, . . . , N , (3.12)

where (P(1)
1 )l+1,1 (l = 1, 2, . . . , N ) are the (l + 1,1)

entry of matrix P(1)
1 , which can be obtained from Eq.

(3.9), that is

P(1)
1 = −

N∑

k, j=1

νkν
∗
j (M

−1)k j . (3.13)

Substituting Eq. (3.7) into Eq. (3.13), a general
multi-soliton solutions for the N -component NLS
equations can be shown as

ql = −2
N∑

k, j=1

νk,l+1ν
∗
j,1(M

−1)k j , l = 1, 2, . . . , N ,

(3.14)

where νk = (νk1, νk2, . . . , νk,N+1)
T and ν∗

j = (ν∗
j1,

ν∗
j2, . . . , ν

∗
j,N+1) (k, j = 1, 2, . . . , N ) are defined by

Eq. (3.7).
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Fig. 5 Evolution plot of the 2-soliton |q3|, Req3, and Imq3

3.2 2-soliton solutions

Particularly, we can study the case of N = 3. The
three-component NLS equations can be written as

iqlt + 1

2
qlxx +

3∑

l=1

|ql |2ql = 0, l = 1, 2, 3. (3.15)

We can obtain the soliton solutions for this particu-
lar case. Assuming ν1,0 = (α1, β1, γ1, ε1)

T , ν2,0 =
(α2, β2, γ2, ε2)

T , and letting ξ1 = −iη1x − iη21t ,
ξ2 = −iη2x − iη22t , η1 = a1 + ib1, η2 = a2 + ib2. We
can get 2-soliton solutions as follows

q1 = −2(β1α
∗
1e

ξ1−ξ∗
1m22 − β1α

∗
2e

ξ1−ξ∗
2m12 − β2α

∗
1e

ξ2−ξ∗
1m21 + β2α

∗
2e

ξ2−ξ∗
2m11)

m11m22 − m12m21
, (3.16)

q2 = −2(γ1α∗
1e

ξ1−ξ∗
1m22 − γ1α

∗
2e

ξ1−ξ∗
2m12 − γ2α

∗
1e

ξ2−ξ∗
1m21 + γ2α

∗
2e

ξ2−ξ∗
2m11)

m11m22 − m12m21
, (3.17)

q3 = −2(ε1α∗
1e

ξ1−ξ∗
1m22 − ε1α

∗
2e

ξ1−ξ∗
2m12 − ε2α

∗
1e

ξ2−ξ∗
1m21 + ε2α

∗
2e

ξ2−ξ∗
2m11)

m11m22 − m12m21
, (3.18)

where

m11 = α∗
1α1e−ξ∗

1 −ξ1 + β∗
1β1eξ∗

1 +ξ1 + γ ∗
1 γ1eξ∗

1 +ξ1 + ε∗
1ε1e

ξ∗
1 +ξ1

η1 − η∗
1

, (3.19)

m12 = α∗
1α2e−ξ∗

1 −ξ2 + β∗
1β2eξ∗

1 +ξ2 + γ ∗
1 γ2eξ∗

1 +ξ2 + ε∗
1ε2e

ξ∗
1 +ξ2

η2 − η∗
1

, (3.20)

m21 = α∗
2α1e−ξ∗

2 −ξ1 + β∗
2β1eξ∗

2 +ξ1 + γ ∗
2 γ1eξ∗

2 +ξ1 + ε∗
2ε1e

ξ∗
2 +ξ1

η1 − η∗
2

, (3.21)

m22 = α∗
2α2e−ξ∗

2 −ξ2 + β∗
2β2eξ∗

2 +ξ2 + γ ∗
2 γ2eξ∗

2 +ξ2 + ε∗
2ε2e

ξ∗
2 +ξ2

η2 − η∗
2

. (3.22)

By selecting appropriate parameter values α1 =
α2 = 1, β1 = β2 = 1

4 , γ1 = γ2 =
√
59
8 , ε1 = ε2 = 1

8 ,
a1 = −0.1, b1 = 0.2, a2 = 0.2, and b2 = 0.3, three-
dimensional plots and x-curves of solutions are shown
in Figs. 1, 2, 3, 4, 5, and 6.

4 Conclusion

In general, we investigate the multi-soliton solutions of
the N -component NLS equations via RH approach.
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Fig. 6 The soliton along the x-axis with different t

By the Volterra equations, the corresponding analyt-
ical properties can be obtained. Then, we define P1
and P2 to construct the RH problem. In reflectionless
case, making full use of the symmetric relation of the
potential matrix and giving the zero point relation of
the determinant of two analytic matrix functions in the
problem, one can construct the multi-soliton solutions.
For the multi-component NLS equations, it is more
complicated than standard NLS equations. The multi-
soliton solutions of N-dimensional NLS equations via
the RH approach have not been well studied before,
and therefore we take the factor of multi-component
into consideration.

RH approach can be used not only to solve the initial
boundary value problem of integrable systems, but also
to analyze the solution of long-time behavior, quantum
field theory and statistical model, orthogonal polyno-
mial theory, and random matrix theory. In addition,
it can be used in plasma physics, ocean engineering,
atmospheric sciences, Bose–Einstein condensate, non-
linear optics and so on. The Riemann–Hilbert approach
can be applied to many equations of similar types. In
future, we can innovate and improve the method and
apply it to many more complex equations.
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