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Abstract This paper aims at reviewing nonlinear
methods for model order reduction in structures with
geometric nonlinearity, with a special emphasis on the
techniques based on invariant manifold theory. Non-
linear methods differ from linear-based techniques by
their use of a nonlinear mapping instead of adding new
vectors to enlarge the projection basis. Invariant man-
ifolds have been first introduced in vibration theory
within the context of nonlinear normal modes and have
been initially computed from the modal basis, using
either a graph representation or a normal form approach
to compute mappings and reduced dynamics. These
developments are first recalled following a historical
perspective, where the main applications were first ori-
ented toward structural models that can be expressed
thanks to partial differential equations. They are then
replaced in the more general context of the parametri-
sation of invariant manifold that allows unifying the
approaches. Then, the specific case of structures dis-
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cretised with the finite element method is addressed.
Implicit condensation, giving rise to a projection onto
a stress manifold, and modal derivatives, used in the
frameworkof the quadraticmanifold, arefirst reviewed.
Finally, recent developments allowing direct computa-
tion of reduced-order models relying on invariant man-
ifolds theory are detailed. Applicative examples are
shown and the extension of the methods to deal with
further complications are reviewed. Finally, open prob-
lems and future directions are highlighted.

Keywords Reduced order modeling · Geometric
nonlinearity · Thin structures · Invariant manifold ·
Nonlinear mapping

1 Introduction

The scope of the present contribution is the nonlinear
dynamics exhibited by elastic structures subjected to
large amplitude vibrations, such that geometric nonlin-
earities are excited. The focus is set on the derivation of
efficient, predictive and simulation-free reduced-order
models (ROM).

Geometric nonlinearities are associated with large
amplitude vibrations of thin structures such as beams,
plates and shells, because of their relatively low bend-
ing stiffness. By its nature, it is a distributed nonlin-
earity, which means that all the degrees of freedom of
the model are nonlinearly coupled. On the contrary,
other types of nonlinearities, such as those related to
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contact, are associated with localized nonlinearities.
In this latter case, reduction methods are often asso-
ciated with substructuring (see, e.g. [2,38,123,133]),
which cannot be transposed to the present case of geo-
metric nonlinearities. Applications to real-world engi-
neering problems are numerous and tend to increase
since lightweight thinner structures are being increas-
ingly used. The range of applications thus spans
from aeronautics to transportation industry [114,163,
179,216,224,226,232,271], wind energy systems [74,
160], musical instruments [30,106,184] and micro-
/nanoelectromechanical systems (M/NEMS), in which
those nonlinearities must be mastered to design effi-
cient structures [61,138,164,245,322]. The vibratory
phenomena arising from the nonlinear dynamics of
geometrically nonlinear structures can also be inten-
tionally used for the purpose of new designs, espe-
cially in the M/NEMS domain or for energy har-
vesting, where for example internal resonances or
parametric driving are conceived with specific goals
[58,96,148,157,231,248,258,270,319].

With regard to the aim of deriving effective ROM,
geometric nonlinearity presents two important diffi-
culties. The first one is connected to the nonlinear
dynamics itself and the number of different solutions
arising when nonlinearity comes into play. Instabili-
ties, bifurcations, important changes in the nature of
the solutions, the emergence of more complex dynam-
ics including quasiperiodic solutions, chaotic solu-
tions and even wave turbulence in structural vibra-
tions, have been observed experimentally and numeri-
cally studied with models (see, e.g. [78,158,195,199]
for examples of dynamics exhibited by oscillating sys-
tems and [4,25,129,198,274] for nonlinear phenom-
ena in beams, plates and shells). The second issue is
connected to the distributed nature of the nonlinearity
and the resulting nonlinear coupling that appears in the
equations of motion. Of course, these two characteris-
tics are the two faces of the same coin since the cou-
plings are the most important drivers of the complexity
observed in dynamical solutions. Nonetheless, while
the first problem concerns analysis and treatment of
complex dynamical phenomena often observed when
nonlinearities are present, the second is more directly
related to model order reduction, which needs specific
methods for geometrical nonlinearities, often alleviated
to an efficient choice of a reduction basis that could take
into account these couplings.

Most of the model order reduction methods can be
seen as linear methods, where the aim is to find the
best orthogonal basis to represent the dynamics and
add new basis vectors until convergence. In this setting,
the main problem is to have a computational method
allowing one to automatically compute the basis vec-
tors. Linear modes have been used for a long time for
such problems for their ease of computation and their
clear physical meaning [173,174,199,207]. However,
their main drawback is the number of nonlinear cou-
plings. In a finite element context, it imposes reduc-
tion bases with a prohibitive number of modes to reach
convergence, most of them having natural frequencies
out of the frequency band of interest [69,295]. Those
drawbacks can be compensated for with the addition
of extra vectors in the basis such as modal deriva-
tives [90,91] or dual modes [118]. Proper orthogonal
decomposition [15,86], arising from statistical meth-
ods (Karhunen–Loeve decomposition) [108,122] and
having a direct link with the singular value decom-
position [149], have also been used with success in
numerous applications related to nonlinear vibrations
[7,72,113,124,150,246]. The major drawback of this
strategy is the need of preliminary data to compute
the basis vectors, often obtained by time integration
of a full scale model. More recently, proper general-
ized decomposition (PGD), aiming at generalizing the
POD approach [32,175], has also been used in a con-
text of nonlinear vibration problems [75,176]. Since
the topic of this review article is focused on nonlinear
reduction methods, all these linear methods will thus
not be covered (or only cited for illustrative purposes),
and the reader is referred to already existing reviews on
these methods for further information [2,32,153,182].

The focus of this paper is to review the reduction
methods that are essentially nonlinear, in the sense that
they are based on defining new variables that are non-
linearly related to the initial ones, instead of produc-
ing a linear change of basis as in the above-cited tech-
niques. Being nonlinear, they also associate the ROM
with a curved structure in phase space: a manifold. In
this realm, particular subsets are of main importance.
The invariant manifolds of a dynamical system are
indeed particularly suitable domains onwhich reducing
the dynamics. By definition, it is a region of the phase
space which is invariant under the action of the dynam-
ical system. In otherwords, any trajectory of the system
that is initiated in the invariant manifold is entirely con-
tained in it for all time. Hence, the invariance property
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ensures that the trajectories of the ROM are also tra-
jectories of the full system, which is a very important
prerequisite to define accurate reduction techniques. If
this is not fulfilled, then the meaning of the simulation
producedby theROMwith regard to the full systemwill
remain unclear. Moreover, the curvature of the invari-
ant manifolds in the phase space directly embeds the
non-resonant couplings and thus represents in a sin-
gle object the slave coupled modes, without the need
of adding new vector basis to catch these couplings,
nor finding a correct computational method for sorting
themout. In short, using invariantmanifolds transforms
the question of reduction to a problem of geometry in
the phase space.

The perspective of this review paper is thus strongly
related to the application of invariant manifold-based
techniques for model order reduction in nonlinear
vibratory systems. A special emphasis is also put on
methods applicable to finite element problems. Since
the vast majority of engineering calculations are nowa-
days performedusing afinite element (FE) procedure to
discretize the spatial geometry of the structure, numer-
ous reduction techniques have tackled the problem of
geometric nonlinearity with special adaptation to com-
ply with FE formulation. An important feature arising
from this viewpoint led to a distinction between intru-
sive and non-intrusive methods. By non-intrusive, it is
meant that the reduction method can take advantage of
the basic capabilities of any FE code, without the need
to enter at the elementary level to perform specific cal-
culations. In practice, a standard FE code is used with
its already existing features, which are then specifically
post-processed to build a ROM. On the other hand,
intrusive methods compute the needed quantity at the
elementary level, such that an open (or in-house) code
is needed.

The paper is organized as follows. Section 2 details
the starting point and the typical equations of motion
one has to deal with when geometric nonlinearity is
taken into account. A short review of models is given
in Sect. 2.1 and the general form of the equations of
motion that will be used in the rest of the paper is also
given. Section 2.3 gives a rapid survey of the most clas-
sical nonlinear phenomena and their consequence in
the correct choice of a ROM. Section 3 reviews the
derivation of ROMs for nonlinear vibratory systems
expressed in the modal basis. It starts with a short sur-
vey of the underlying mathematical developments in
Sect. 3.1. Graph style and normal form styles are then

reviewed in Sects. 3.2 and 3.3 , and Spectral Submani-
folds in Sect. 3.4. Section 4 then discusses the applica-
tion to FE models. The Stiffness Evaluation Procedure
(STEP) is first reviewed in Sect. 4.1, and then, implicit
condensation is detailed in Sect. 4.2. The construc-
tion of a quadratic manifold with modal derivatives is
reported in Sect. 4.3. These last two methods produce
different manifolds that are compared to the invariant
ones. Finally, direct computations of invariant mani-
folds from the physical space and thus directly appli-
cable to FE discretization, are explained in Sects. 4.4
and 4.5 . The paper closes with a discussion on open
problems and future directions in Sect. 5.

2 Framework

This Section is devoted to delineate the framework of
the problems addressed in this review. First, the dif-
ferent kinds of models used to tackle large amplitude
vibrations of thin structures with geometric nonlin-
earity are surveyed. Some simplified analytical mod-
els, obtained thanks to a selected number of assump-
tions and allowing the derivation of partial differen-
tial equations (PDE), are first recalled, to introduce the
main physical consequences of geometric nonlinear-
ity. Then, basic features of finite element modeling and
its specificities are exposed. Finally, the most common
types of dynamical solutions exhibited by such systems
are described, the analysis of which being necessary to
better ascertain the ROM needed.

2.1 Equations of motion

Geometric nonlinearity is a consequence of a large
amplitude change of geometry, beyond the small
motion assumptions ensuring the validity of a lin-
earizedmodel. For thin structures, they become evident
once the transverse vibration amplitude is of the order
of the structure’s thickness [4,199,205]. Other nonlin-
earities can also be observed at large amplitude, such as
material nonlinearities (plasticity, large deformations
of soft materials, nonlinear piezoelectricity…). In this
paper, only a linear elastic constitutive law for themate-
rial is considered, valid for small strains, to focus on
geometrical nonlinearities. In practice, this situation
is often encountered for thin structures, for which the
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Fig. 1 Illustration of the
two main families of models
for geometrically nonlinear
thin structures

Cross section rotation

Large rotations / geometrically exact

Membrane forces

Membrane / bending coupling

(a) (b)

small thickness allows large transverse displacements
with small strains.

Importantly, the nonlinearity is polynomial as a
function of the unknowns (generally displacements and
velocities), again in contrast to contact and friction
that involve steeper functional forms and may be mod-
elled with non-smooth terms. The aim of this section is
twofold. First, it will be shown that for common struc-
tural models (beams, plates, shells, three-dimensional
continuous media of arbitrary shape), either analyti-
cal or discretised by a finite-element method, quadratic
and cubic nonlinear terms are sufficient to describe the
geometric nonlinearity. Second, the focus is set on the
main physical and structuralmechanisms that give birth
to geometric nonlinearities, and which involve either
membrane/bending coupling or large rotations in thin
structures. The objective is not to provide a complete
discussion on approximate beam/plate models, which
can be seen themselves as a reduction technique, but
rather on delivering simple keys to the vibration analyst
to understand the source of the nonlinearities and also
help him to choose a correct model.

2.1.1 Analytical PDE models

A number of models have been derived for beams,
arches, plates and shells, based on simplifying assump-
tions, and only a few, representative, are recalled here,
mainly to survey the related physical phenomena.Most
thin structure models are based on the assumption that
the cross sections are subjected to a rigid body kine-
matics. Then, depending on the range of amplitude of
the rotation of the cross sections, two main families of
models are considered, as illustrated in Fig. 1.

The first one can be denoted as the “von Kármán”
family of models. It is based on a clever truncation
of the membrane strains (the only nonlinearities kept
in the strains expressions are quadratic terms in the

rotation angles of the cross section) due to Theodore
von Kármán [298]. This assumption, directly linked
to a truncation of the rotations of the cross section,
enables one towrite very simple analytical (and numer-
ical) models, that have been used in a large number
of contributions. For a straight beam of length l with
homogeneous cross section, the governing PDE reads
[14,199,312]:

ρSẅ + E Iw′′′′ − Nw′′ = p, N = E I

2l

∫ l

0
w′2 dy,

(1)

and for a plate, one has [11,14,16,136,269]:

ρhẅ + DΔΔw − L(w, F) = p,

ΔΔF = − Eh

2
L(w,w). (2)

In those models, w(y, t) (resp. w(y, t)) is the trans-
verse displacement at time t and location y in the mid-
dle line of the beam (resp. location y in the middle
plane of the plate), ẇ = ∂w/∂t , w′ = ∂w/∂y, Δ is the
bidimensional Laplacian, L(◦, ◦) is a bilinear opera-
tor, (E, ρ) are the density and Young’s modulus of the
material, (S, I ) the area and second moment of area of
the cross section of the beam, h the thickness of the
plate, D = Eh3/12(1 − ν2) its bending stiffness and
p(y, t) (p(y, t)) an external force per unit length (resp.
area). The axial (resp. membrane) inertia is neglected,
enabling one to obtain a uniform axial force N (t) in
the beam and a scalar Airy stress function F(y, t)
to represent the membrane strains in the plate. Their
main characteristics are that they accurately model
the axial/longitudinal (resp. membrane/bending) cou-
pling, that is the first physical source of geometric
nonlinearities, illustrated in Fig. 1a. Indeed, when the
structure is subjected to a transverse displacement w,
its length (for the beam) or the metric of its neu-
tral surface (for the plate) is modified, thus creating
axial/membrane stresses proportional to the square of
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w, which thus nonlinearly increase the bending stiff-
ness. This can be seen in Eqs. (1) and (2), in which N
and F are quadratically coupled tow, which in turn cre-
ates cubic terms in the equations of motion, classically
related to a hardening behaviour.

If the initial geometry of the structure shows a cur-
vature, Eq. (2) can bemodified to the following shallow
shell equation [3,26,214]:

ρhẅ + DΔΔw − L(w0, F) − L(w, F) = p,

ΔΔF + EhL(w0, w) = − Eh

2
L(w,w), (3)

in which the geometry of the middle surface is rep-
resented by the static deflection w0(x) (that has to be
small to ensure the validity of the model). Compared
to the plate Eq. (2), two additional terms appear. They
are responsible for a linear membrane / bending cou-
pling, but also for a quadratic nonlinear coupling, both
directly linked to the non-flat geometry of the shell
(a nonzero w0) [273]. This quadratic coupling can be
responsible for a softening behaviour of the vibration
modes [3,106,284,285,288].

The second family of models, illustrated in Fig. 1b
and usually known as “geometrically exact models”, is
more refined since no simplifying assumption on the
modelling of the spatial rotation of the cross sections
is formulated. The writing of those models as partial
differential equations (PDE) is explicit only for simple
geometries, and their solving often relies on numerical
discretization techniques like FE (see, e.g. [259] for
shells and [66] for beams) or finite-difference [137].
Because of the untruncated rotation operator, the non-
linearities appear in the PDEs in terms of sine and
cosine functions1 of the cross-sectional rotations (see
the case of a straight cantilever beam in, e.g. [271]).
In the case of a cantilever beam, one can obtain a very
accurate and widely used model due to Crespo da Silva
and Glynn [41], which reads [271]:

1 In fact, the parametrisation of the rotations in geometrically
exact models can take several forms (full rotation matrix, quater-
nions, Lie groups…[39,66]), mainly to avoid singularities in
the case of very large rotations (of several turns). The minimal
sine/cosine parametrisation discussed here allows the descrip-
tion of the planar motion of a beam, but not a full 3D motion.
It is shown here only to formally understand the nature of the
nonlinear couplings.

ρSẅ + E Iw′′′′ + E I (w′w′′2 + w′2w′′′)︸ ︷︷ ︸
curvature

+ ρS

2

[
w′
∫ x

l

(∫ x

0
w′2dy

)..

dy

]′

︸ ︷︷ ︸
axial inertia

= p. (4)

It is obtained from the geometrically exact model of
the cantilever beam by (i) using an inextensibility con-
dition to condense the axial motion into the transverse
equation ofmotion and (ii) truncating Taylor expansion
of the trigonometric functions of the cross-sectional
rotation to the third order. To this end, it is interest-
ing to compare Eqs. (4) and (1). In the case of a can-
tilever beam, the axial force is null (N = 0) because of
the free end boundary condition, and the von Kármán
model (1) becomes linear. On the contrary, the large
rotation model (4) makes appear two higher order non-
linear terms, related (i) to the large rotation of the cross
section (curvature term) and (ii) to its axial inertia, con-
densed in the transverse motion.

The conclusion is that geometric nonlinearity can be
created by different physical effects. In the first family
(Fig. 1a), it comes from amembrane/bending coupling,
which is effective only if the structure is constrained in
the axial direction. For a 1D structure, this effect is
observed only if the ends are axially restrained [132],
thus explaining why the von Kármán model of a can-
tilever beam is linear. For plates and shells, the validity
of the model depends on the deformed shape during
vibrations. Most of the time, the deformation changes
the metric of the middle surface (most of mode shapes
of a plate/shell are not developable surfaces) and the
von Kármán model can be thus used safely since offer-
ing accurate predictions. On the contrary, the second
family (Fig. 1b) of models is mandatorily needed if the
rotations of the cross sections are large (from several
tens of degrees to several turns). They make appear
higher order stiffness couplings as well as nonlinear
terms due to the inertia (with time derivatives).

Another important point is the hardening/softening
effects, the latter being created either by a loss of trans-
verse symmetry of the geometry of the structure in its
transverse direction (due to curvature and/or a non-
symmetric laminated structure [270]) in the case of a
von Kármán model, or because of inertia effects like in
Eq. (4) (the firstmode of a cantilever beam is hardening,
whereas the others are softening [201]).

A key feature of the models described above is that,
thanks to given assumptions, they are able to provide

123



1146 C. Touzé et al.

the equations of motion under the form of a PDE. In
essence, they are limited to simple geometries, due to
the fact that analytical models for producing PDE need
to rely on a specific coordinate system. This limita-
tion is generally relaxed for the shape of a shell model,
since w0(y) can be chosen arbitrary in Eq. (3). But
even in this case, the shape of the imperfect plate needs
to be rectangular or circular to coincide with a simple
coordinate system. All thesemodels also clearly under-
line the nature of the geometric nonlinearity, which is
distributed and involves only quadratic and cubic non-
linear terms as a function of the displacement. Finally,
separating the models within the two families under-
lined above helps in understanding numerical simula-
tions, in particular in terms of hardening / softening
behaviour, in relation to membrane/bending coupling,
curvature or inertia nonlinearities.

2.1.2 Finite elements and space discretization

Most of the engineering applications now use space
discretization based on the finite element (FE) proce-
dure [13], mostly because of the geometry of the struc-
tural elements that can be more easily accounted for.
From amodeling point of view, this choice has formain
consequence that one cannot rely anymore on a PDE
to derive mathematical tools for reduced-order mod-
eling. Nowadays, a number of codes are available so
that one can easily perform standard operations such
as computing the eigenvalues and eigenvectors of a
vibratory problem. Since all these codes are routinely
used for engineering applications, the notion of non-
intrusiveness has emerged as an important feature for
deriving reduced-order models.

FE discretisation techniques can be applied to all
classical PDEs of mechanical models (after a proper
variational formulation) and in particular to the non-
linear beam, plate and shell models discussed in
Sect. 2.1.1, for which 1D/beam or 2D/plate FE are
used. It is also possible to avoid the thin structure cross-
sectional kinematical constraint and to use 3D FE. In
this case, the framework considered in this article is
a full Lagrangian formulation with a Green–Lagrange
strain measure E, conjugated with the second Piola–
Kirchhoff stress measure S, for which the strong form
of the problem reads [67,87,289]:

div(FS) + fb = ρü, S = CE,

E = 1

2

(
∇u + ∇Tu + ∇Tu∇u

)
, (5)

where u(y, t) is the displacement field at point y of
the 3D domain occupied by the structure. The first of
the above equation is the equation of motion, in which
fb(y, t) is an external body force field and F the defor-
mationgradient; the second equation is the linear elastic
constitutive law, withC the four-dimensional elasticity
tensor; the third equation is the definitionof the strainE.
The operators div and ∇ are the vector divergence and
the tensor gradient.2 SinceF = I+∇u (with I the iden-
tity tensor), formally eliminating F, S and E as a func-
tion of u in the equilibrium equation leads to obtain an
equation of motion with a polynomial stiffness opera-
tor with quadratic and cubic nonlinear terms. The scope
of this formulation is generic, exact (no assumption on
the kinematics of the continuous media have been for-
mulated) and theoretically embeds the thin structure
models of Sect. 2.1.1.

The starting equations for this contribution is the
semi-discretised equations of motion: discretised in
space and continuous in time. If one starts from a PDE
(like those of Sect. 2.1.1), then the space discretisation
can be obtained using any Rayleigh–Ritz or Galerkin
procedure or any othermethod that fits to the problemat
hand, including a FE procedure. Another choice could
be a 3D FE discretization of Eq. (5). In all cases, all
unknowns resulting from the space discretization pro-
cedure are gathered in the displacement vector X(t). In
case of a PDE and, e.g. a Rayleigh–Ritzmethod,X con-
tains all the unknown generalised coordinates related
to the shape functions used to discretise the problem.
In case of a FE procedure, X gathers all the degrees of
freedom (dofs) of the model (displacements/rotations
at each nodes). Denoting by N the size of X, the semi-
discretised equations of motion for our geometrically
nonlinear problem reads:

MẌ + KX + fnl(X) = fe, (6)

where M is the mass matrix, K the tangent stiffness
matrix at the equilibrium of the structure and fe(t) is
a vector of external forcing. In a general framework,
fe may also depend on the displacement vector X (an
example of which being follower forces); however, this
case is not considered here for the sake of simplic-
ity. In the present framework, it is first assumed that
the geometric nonlinearities give rise only to quadratic

2 For any tensor field A, the i-th Cartesian component of its
divergence is

∑
j ∂Ai j/∂y j where yi is the i-th component of

the position vector; for any vector field v, the (i, j) Cartesian
component of its tensor gradient is ∂vi/∂y j .
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and cubic polynomial terms involving only the dis-
placement vector X (see the models of Sect. 2.1.1 and
Eq. (5)). They are expressed in the following internal
force vector:

fnl(X) = G(X, X) + H(X, X, X), (7)

thanks to the terms G(X, X) and H(X, X, X), using a
functional notation for the quadratic and cubic terms
with coefficients gathered in third-order tensor3 G and
fourth-order tensor H. Their explicit indicial expres-
sions read:

G(X, X) =
N∑

r=1

N∑
s=1

Grs Xr Xs, (8a)

H(X, X, X) =
N∑

r=1

N∑
s=1

N∑
t=1

Hrst Xr Xs Xt , (8b)

whereGrs, Hrst are the N -dimensional vectors of coef-
ficients Gl

rs , H
l
rst , for l = 1, . . . , N . In practice, the

components of G and H are rarely computed, since it
would lead to a huge computational burden and mem-
ory requirement for large values of N (G has N 3 com-
ponents while H has N 4). In standard FE codes, fnl(X)

is computed by standard assembly procedure.
Simple extensions of this framework could include

systems with polynomial terms involving the veloci-
ties, arising in different fields. For ease of reading, these
cases are not considered in detail, but will be empha-
sised when needed. Note that all the methods explained
henceforth are extendable to handle such cases.

2.2 Modal expansion

Equation (6) expresses the semi-discretised equations
of motion in physical space. For all the next develop-
ments, the equations in the modal space need to be
defined. Let (ωp,φ p) be the p-th eigenfrequency and
eigenvector of the linearized problem, which satisfy:

(K − ω2
pM)φ p = 0. (9)

Using normalization with respect to mass, one has

VT MV = I, and VT KV = Ω2, (10)

3 The term “tensor” used here simply refers to a multidimen-
sional array of dimension larger than two, and not to a multilin-
ear map, as used in mechanical models of stress and strain for
instance.

with V the matrix of all eigenvectors, V = [φ1, . . . ,

φN ], I the identity matrix, and Ω2 a diagonal matrix
composed of the square of the natural frequencies,
Ω2 = diag(ω2

p). The linear change of coordinate
X = Vx is used to go from the physical to the modal
space, where x is the N -dimensional full vector of
modal displacements. The dynamics reads:

ẍ + Ω2x + g(x, x) + h(x, x, x) = 0, (11)

where the third- and fourth-order tensors g and h
express the nonlinear modal coupling coefficients.
They are linked to their equivalentG andH in the phys-
ical basis via:

gi j = VT G(φi ,φ j ), (12a)

hi jk = VT H(φi ,φ j ,φk). (12b)

The modal equations of motion can be detailed line by
line, ∀ p = 1, . . . N :

ẍ p + ω2
pxp +

N∑
i=1

N∑
j=1

gp
i j xi x j

+
N∑
i=1

N∑
j=1

N∑
k=1

h p
i jk xi x j xk = 0. (13)

It can be noticed that the above equation is not written
with the upper-triangular form4 of the tensors g and h,
which is often used due to the commutative property
of the usual product (see, e.g. [69,287]). As explained
in “Appendix A”, we assume in this contribution that
the internal force vector k(X) = KX + fnl(X) derives
from a potential energy, which leads to particular sym-
metry relationships in the nonlinear quadratic and cubic
coefficients. These symmetry relationships are differ-
ent, dependingon the fact that the upper-triangular form
is adopted or not. “Appendix A” recalls all these rela-
tionships in a unified manner.

In the above modal expansion, the maximum num-
ber of modes N has been formally retained since in the
present paper, Eq. (13) is not used for computational
purpose. This point will be addressed in Sect. 4.1. The
number of nonlinear coupling terms (scaling as N 4)
being a very large number, it is important to under-
stand the different roles played by the monomials.

4 In Eq. (13), some coefficients can be grouped together since

being related to the samemonomial: gp
i j xi x j+gp

ji x j xi = ĝ p
i j xi x j

with ĝ p
i j = gp

i j + gp
ji , j > i , one of the upper triangular coeffi-

cient, see “Appendix A”.
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“Appendix B” recalls the terminology used to classify
these terms, that will be used throughout the paper.
Among them, some play a very important role for
understanding the idea of invariance that is key for
the computation of invariant manifolds. Let us assume
that m is the main mode having most of the vibra-
tional energy (for example in the case of a harmonic
forcing in the vicinity of ωm). Then, all terms gp

mmx2m
and h p

mmmx3m for all other equations labelled p are
invariant-breaking terms. Indeed, the sole presence of
these terms creates a coupling that breaks the invariance
of the linear eigensubspace [280,287] and thus, feeds
energy to the other linear modes that cannot be easily
neglected. Tracking those specific terms will thus be of
importance in all the next derivations.

The second classification criterion is linked to the
fact that the nonlinear terms can be interpreted as a
forcing on the p-th oscillator. This interpretation leads
to the definition of resonant and non-resonant mono-
mials. For a given monomial, its resonant (or non res-
onant) nature depends on the oscillator to which it
belongs, its order and also to eventual internal reso-
nances between the oscillation frequencies of the oscil-
lators. Resonant terms have a major importance in the
mode couplings and the related exchanges of energy.
This is more detailed in “Appendix B” and in the
remainder of the text.

2.3 Which ROM for which dynamics?

The choice of a ROM capable of producing accurate
predictive results for a structure with geometric nonlin-
earity must rely on a correct analysis and understand-
ing of the dynamics one wants to reproduce or pre-
dict with the model. Since nonlinearities are present,
the behaviour of the system is amplitude-dependent.
A correct two-dimensional parameter space to classify
possible dynamics and advise on the choice of a ROM
should include the frequency content of the forcing and
the vibration amplitude of the structure. Depending on
this vibration amplitude, very complex phenomena can
be observed and the analysts should have a clear idea of
the type of dynamical solutions they want to simulate
with the ROM. Thus, the nature of the ROM will also
condition the type of dynamical solutions one wants to
represent.

In the rest of the paper, we will denote as “mas-
ter coordinates” the variables kept in order to describe

the dynamics of the reduced model, and “slave coor-
dinates” all the others. Of course, one looks for ROM
strategies in which the number of master coordinates
is as small as possible. In the case where the vibra-
tion amplitude is moderate so that the system is close
to linear vibrations and weakly nonlinear, the number
of master coordinates needed to describe the dynamics
should follow the same rules as in the linear case. This
means that the number of master modes must be nearly
equal to the number of eigenfrequencies contained in
the frequency band of the forcing. In particular, a good
ROM should account for the non-resonant couplings
existing between the linear modes, even if they are out
of the frequency band of interest and embed them in
the reduction process. An example of this is the mem-
brane/bending coupling in thin structures, discussed
in Sect. 2.1.1, for which the low frequency bending
modes are nonlinearly coupled to high-frequency axial
modes, the latter being sometimes very far from the
frequency band of interest [69]. In the case of 3D FE
models, some similar couplings occur with very-high-
frequency thickness modes, as investigated in [295].

Consequently, an accurate ROM should contain
only the driven transverse modes and enslave the
axial/thickness motions directly in a transparent and
automatic manner, such that the analyst does not need
to derive a cumbersome convergence study to verify the
accuracy of the reduction. This is one of the properties
of the invariant manifold-based approach, thus mak-
ing them particularly appealing. As long as the vibra-
tion amplitude is moderate, then the number of mas-
ter modes can be selected according to the frequency
band of the forcing. If the forcing is harmonic with
moderate amplitude, then reduction to a single master
mode should be targeted in order to describe the back-
bone curve. If a band-limited noise excitation drives
the structure, then the number of selected master coor-
dinates should be equal to the number of modes in the
excitation frequency band.

This simple picture is, however, complicated by the
presence of resonant interactions between the modes,
which are linked to the existence of internal resonance
relationships between the eigenfrequencies of the struc-
ture.A second-order internal resonance is a relationship
of the formωp±ωk = ω j between three eigenfrequen-
cies of the structure, which can degenerate in the sim-
ple 1:2 internal resonance when one has ω j = 2ωl .
These second-order internal resonances are directly
connected to the quadratic terms of the nonlinear restor-
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ing force and can be linked to three-waves interac-
tions in the field of nonlinear waves [52,53,202,321].
Third-order internal resonance involves commensura-
bility between four eigenfrequencies ωp ± ωk ± ωl =
ω j and are also related to four-waves interactions.
This includes the simplest case of 1:1 internal reso-
nance when ω j = ωl as well as 1:3 resonance when
ω j = 3ωl and is connected to cubic nonlinearity.
When such internal resonances exist, resonant cou-
plings occur and strong energy exchange may take
place (see “Appendix B” for more details). In such
a case, a ROM should then retain as master, all the
modes whose eigenfrequencies possess internal reso-
nance relationships with the directly driven ones, since
peculiar couplings leading to bifurcations can appear.
This complicates a little the analysis but fortunately,
the first analysis of internal resonance can be done on
the eigenfrequencies which are generally known.

Moving to larger amplitudes, the picture com-
plexifies again with the appearance of internal reso-
nance between the nonlinear frequencies of the sys-
tem. Indeed, since the oscillation frequencies depend
on amplitude, an internal resonance relationship can
be fulfilled at moderate to large amplitudes, with the
response frequencies of the system. This is more diffi-
cult to predict beforehand since it can be analysed only
by computing the backbone curves of each mode and
verify that no strong internal resonance can be fulfilled
at larger amplitudes.

These two cases are illustrated in Fig. 2a, b with a
clamped–clamped beam. Fig. 2a shows the frequency
response curve of such a beam that is allowed to vibrate
out of plane, in both transverse directions and having a
square cross section. Consequently, the two fundamen-
tal bending modes in each polarization have the same
eigenfrequency and the structure naturally possesses a
1:1 resonance. The beam is excited with a force in only
one direction. Out of the resonance, only the driven,
directly excited mode, participates to the vibration, its
companion staying quiescent (blue curve). A pitch-
fork bifurcation (PF) gives rise to a coupled solution
where both modes are vibrating (green curve). Along
this coupled branch, two Neimark–Sacker bifurcations
are observed(NS), from which a quasiperiodic regime
emerges. Two saddle-node (SN) bifurcations also exist,
as it is the case for an equivalent single dof nonlinear
oscillator. This example shows that a simple system
composed of only two master modes in 1:1 resonance
can already display very different dynamical solutions.

It also underlines that theminimal ROMshould contain
two master modes.

A second example is shown in Fig. 2b, where the
backbone curve of the second mode of a straight
clamped–clamped beam is plotted. Its cross section is
chosen without symmetries to avoid a 1:1 internal res-
onance. For small amplitudes, a hardening behaviour is
observed, and this could be reported by a ROM having
a single master mode. However, for larger amplitudes,
a loop appears in the solution branch, denoting a strong
interaction and the emergence of an internal resonance.
It is also responsible of a folding of the corresponding
invariant manifold, as shown in Fig. 3 and discussed
in Sect. 3. What is interesting in this case is that the
resonance relationship occurs between the nonlinear
frequencies, whereas the natural frequencies were not
close enough to fulfill the resonance relationship. In
this particular case, a 1:3 resonance occurs with mode
4, creating a strong interaction. A correct ROM should
then includemode 4 as additionalmaster coordinates to
fully recover the coupling. Thismeans in particular that
the choice of the master modes is made difficult and is
strongly amplitude-dependent, since possible internal
resonance between nonlinear frequencies could appear.
Consequently, the simple analysis of the relationships
between the natural frequencies might not be enough.

As mentioned at the beginning of this section, the
parameter space allowing one to get a rough idea of
the possible dynamics should include the frequency
content but also the vibration amplitude. This ampli-
tude dependence, already addressed above concerning
Fig. 2b, can also be illustrated by inspecting how a
thin structure bifurcates to complex regimes when it is
forced harmonically with increasing amplitudes. Fol-
lowing numerous experiments and numerical simula-
tions reported in [30,283,286], a general scenario for
the transition can be observed. It is illustrated in Fig. 2c
reporting an experimental measurement on a plate, har-
monically excited at 151Hz. For small vibration ampli-
tudes, the regime isweaklynonlinear, andonlyharmon-
ics of the solution appear in the response. The ROM
targeted for reproducing such a dynamics should con-
tain one master mode. A first bifurcation occurs where
the spectrum of the vibration response is enriched by a
number of extra peaks. The appearingpeaks correspond
to internally resonant modes, such that the energy is
now spread between all the modes that are strongly
coupled to the driven one. In the case reported in the fig-
ure, only one mode appears through a 1:2 internal reso-
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Fig. 2 a Frequency response of a clamped–clamped beam
excited in the vicinity of its first bending mode, in 1:1 resonance
with the companion mode in the other bending direction [257].
Maximumamplitude over one period of the directly excitedmode
at the driving point (at 0.275 times the length of the beam from
one end), scaled by the thickness of the beam. Horizontal axis
scaled by the first eigenfrequency. The forced response shows the
existence of bifurcation points, typical of 1:1 resonance: pitch-
fork (PF), saddle-node (SN) and Neimark–Sacker (NS). ‘dashed
line’: stable branches; ‘dotted line’: unstable branches. b Back-

bone curve and forced responses, at various amplitudes, of the
second bending mode of a clamped–clamped beam, showing the
characteristic loop due to activation of 1:3 internal resonance
between the nonlinear frequencies of modes 2 and 4 [69,297].
Same vertical axis as (a), the horizontal axis being scaled by
the second natural frequency. c Experimental spectrogram of the
vibration response of a rectangular plate harmonically forced
with frequency 151 Hz and increasing amplitude, showing tran-
sitions from periodic solutions to wave turbulence [283]. Points
A, B, C and D in (b) refers to Fig. 3 and are used subsequently

nance, with eigenfrequency at 75 Hz. For this range of
vibration amplitude, a ROM containing only the inter-
nally resonant modes must be enough to reproduce this
dynamics. At larger amplitudes, a second bifurcation
occurs, leading to a more complex regime character-
ized by a broadband Fourier spectrum. This regime is
typical of wave turbulence. Wave turbulence has been
studied in a number of physical contexts, and the inter-
ested reader is referred to [202,206,321] for a complete
view of the theory and its applications. Application to
plate vibrations has been investigated since the pio-
neering work by Düring, Josserand and Rica [52,53],
including numerous experimental and numerical stud-
ies, see, e.g. [18,50,88,183,185,186,317] as well as
the review chapter [25]. In this dynamical regime, an
energy cascade occurs with a flux from the low- to the
high-frequency range, typical of a turbulent behaviour
following a Richardson’s-like cascade. Consequently,
all the modes are excited through this mechanism. One
then understands that building a ROM to reproduce
such complexnonlinear dynamics including a complete
transfer of energy is difficult and not achievable with
small order subsets.

We now turn to the presentation of nonlinear meth-
ods for model order reduction, with a special emphasis
on methods based on invariant manifold theory.

3 Nonlinear methods and invariant manifolds

The aim of this section is to introduce the nonlinear
methods for model order reduction based on the con-
cept of invariant manifold. A special emphasis is put
on understanding the problem from a geometric per-
spective in the phase space. In this Section, we will
focus on explaining the methods from the equations of
motion in modal space, taking Eq. (11) as a starting
point. Section 4 will consider the case of equations in
physical space as starting point, Eq. (6), with a special
attention to methods in a FE context. In the course of
this Section, we will also see that a key point is on the
extension of the definition of linear modes to the non-
linear regime. We begin with a short introduction on
the mathematical foundation and the developments in
the theory of invariant manifolds from the dynamical
system point of view.

3.1 Invariant manifolds for dynamical systems

Dynamical systems theory offers a geometrical point of
view on the global organization of trajectories inside
the phase space, thus giving a complete understand-
ing of the long-term behaviour of solutions. The phase
space is structured by the fixed points and the invari-
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Fig. 3 3D representations of the invariant manifold (LSM) asso-
ciated with the backbone curve of Fig. 2b, in the subspace
spanned by the modal coordinates (x2, ẋ2, x4), showing a 1:3
internal resonance between the second and fourth modes of a
clamped/clamped beam. The four views of the developing man-

ifold correspond to points A, B, C and D indicated in Fig. 2b,
plotted by assembling the periodic orbits for increasing arclength
of the numerical continuation with the software Manlab [77,78],
and showing an apparent folding in this 3d representation

ant manifolds emerging from their linearized eigendi-
rections with their stability dictated by the eigen-
spectrum [76,127,311]. The centre manifold theorem
[28,29,111,247] has long been used as a major tool in
the spirit of model-order reduction. Using the terminol-
ogy introduced in [159,316], the long-term dynamics is
driven by the central modes and reduction to the centre
manifold allows an adiabatic elimination of the slave
coordinates.

Reduction to centre manifolds and invariant man-
ifolds has then been used in a number of context
in the community of applied mathematics, see, e.g.
[40,46,188,189,240–242], see also the concept of
inertial manifold as exponentially attracting invari-
ant and finite subspaces [43,59,60,268]. The method
has been used in particular in fluid dynamics for
model-order reduction in different problems, see, e.g.
[27,82,109,151,159,180,278], but also in unsteady
magnetic dynamos [151] and plasma physics [21]. For
conservative or near-conservative systems, a straight-
forward application of centre manifold is, however,

more difficult due to the small (or vanishing) decay
rates.

An important step with regard to the general under-
standing of the invariant manifold theory and its link
to other important theorems from dynamical systems
(centre manifold, normal form approach) has been
realized with the introduction of the parametrisation
method for invariant manifolds by Cabré, Fontich and
de la Llave [22–24]. The book by Haro et al. [83] gives
a complete presentation, and the reader is referred to
the first chapters for an accurate understanding. Here,
a very short presentation of the main ideas is given
following their notations and for the case of the com-
putation of invariant manifolds of vector fields in the
vicinity of a fixed point. An autonomous dynamical
system is considered as:

ż = F(z), (14)

with z = [z1, . . . , zn]t a n-dimensional vector and F
the nonlinear vector field. Let z� be a fixed point, such
that F(z�) = 0 and let W be a d-dimensional invari-
ant manifold (with d � n), tangent to the linear d-
dimensional subspace V L at z�. A parametrisation is
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introduced as a nonlinear mapping between the orig-
inal coordinates z (of dim. n) and newly introduced
coordinates s = [s1, . . . , sd ]t (d-dimensional vector of
master coordinates). This nonlinear change of coordi-
nates is written in general form as

z = W(s), (15)

where W is unknown at this stage. The reduced-order
dynamics, i.e. the dynamics on the invariant manifold,
also unknown at this stage, writes

ṡ = f(s), (16)

with f(0) = 0. To compute both W and f , we replace
the nonlinear mapping (15) in Eq. (14). Using the chain
rule, one obtains by differentiating (15) with respect to
time ż = DW(s)ṡ = F(W(s)), with DW the derivative
of W. Using Eq. (16), one finally obtains:

F(W(s)) = DW(s)f(s), (17)

sometimeswrittenF◦W = DW f [83]. Since this equa-
tion is independent of time, it enforces the invariance
property of W . It is known as the invariance equation
and enables to compute high-order expansions of both
W and f .

The remaining of the calculation as presented in
[83] introduces polynomial expansions for the two
unknowns W and f into the invariance equation, from
which order-by-order identification leads to the so-
called co-homological equations, related to the tangent
(master coordinates) and normal (slave coordinates)
parts. Full details are given in [83], and a short summary
is proposed in “Appendix C”. Those co-homological
equations enables one to compute, order by order, the
two unknowns W and f . However, their solution is not
unique and a choice on the parametrisation has to be
done. Haro et al. introduce the two main parametrisa-
tion methods that one can use to solve the problem.

The first one is called the graph style and leads
to a functional relationship between slave and mas-
ter coordinates, in which the master coordinates are
only linearly related to the original ones. The second
one is the normal form style and leads to the intro-
duction of new coordinates, nonlinearly related to the
original ones. The idea in this case is to simplify as
much as possible the reduced-order dynamics, by keep-
ing only the resonant monomials, and discarding all
other non-essential terms for the dynamical analysis.
This leads to a more complex calculation, and a full
nonlinear mapping between original coordinates and

reducedones. Thedrawback is that calculations are a bit
more involved (which is particularly truewhen there are
numerous internal resonances to handle). The advan-
tage is that the parametrisation is able to go over the
foldings of themanifold. Finally, since other parametri-
sations exist (an infinite number),mixed styles can also
be used, but the first two are the extreme cases and
mixed styles are only variations using both graph and
normal form styles.

Now, restricting ourselves to the case of vibratory
systems, it is important to distinguish the conserva-
tive and dissipative case. In the conservative case,
the eigenspectrum is purely imaginary with pairs of
complex conjugates {±iωp}p=1,...,N . A centre the-
orem from Lyapunov then states the existence of
two-dimensional manifolds densely filled with peri-
odic orbits, for each couple of imaginary eigenval-
ues [73,112,155,310], under the assumption of non-
resonance condition. These invariant manifolds are
named Lyapunov subcentre manifold (LSM). The exis-
tence of these LSM leads to the definition of nonlin-
ear normal modes (NNM), which are the extension of
the (linear) eigenmodes (LM) to the nonlinear range.
Two properties of the linear modes can be extended to
the nonlinear case, giving two complementary defini-
tions of an NNM. The first one, historically proposed
by Rosenberg in the sixties, and modernised by many
contributions since, is to define an NNM as a family of
periodic orbits [115,119,120,217,233,243,290,292].
From this definition, numerous investigations tackled
the problem of constructing NNMs thanks to pertur-
bative approaches, that could be inserted directly into
the PDE of motion, also including internal resonances
[130,193,194,196–198,200] . Then, Shaw & Pierre
proposed in 1991 to define an NNM as an invariant
manifold of the phase space. This second definition nat-
urally allows the derivation of accurate reduced-order
models: this will be the subject of the next sections.
In the conservative case, both definitions are equiva-
lent. For dissipative vibratory systems, existence theo-
rems for the manifolds have been proven only recently
by Haller and Ponsioen [80], leading to the notion of
spectral submanifolds (SSM). This case will be more
deeply analysed in Sect. 3.4.

The presentation will now follow the chronological
order, which is also coherent with the separation into
graph style and normal form style proposed by Haro et
al. [83].
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3.2 The graph style: nonlinear normal modes as
invariant manifolds

The first step for defining ROMs based on invariant
manifold theory has been proposed by Steve Shaw and
Christophe Pierre in the early 1990s. The key idea is
to use the centre manifold theorem, as given in most
classical textbooks on dynamical systems (see, e.g.
[28,76,159,311]) as a technical method in order to
derive the equations describing the geometry of the
invariant manifold in phase space. Replacing this cal-
culation in the light of the parametrisation method,
one understands that the technique as proposed by
Shaw and Pierre [252–254] for conservative nonlinear
vibratory systems is equivalent to the parametrisation
method of LSM following the graph style.

In the next sections, the method and main results
from the graph style approach, following the devel-
opments led by Shaw, Pierre and coworkers, will
be reviewed. In order to introduce progressively the
details, Sect. 3.2.1 considers the case of a single master
mode. Then, Sect. 3.2.2 extends the results to multiple
master coordinates, opening the doors tomore complex
geometry of invariant manifolds. Finally, Sect. 3.2.3
summarizes all the results obtained with the method,
including the addition of damping and forcing, piece-
wise linear restoring force, and numerical computa-
tions.

3.2.1 Two-dimensional invariant manifold

In this section, we restrict ourselves to the case of a
single master coordinate, labelled m. Rewriting the
pth equation of (11) at first-order, one obtains, ∀ p =
1, . . . N :

ẋ p = yp (18a)

ẏp = −ω2
pxp − f p(x1, . . . , xN ), (18b)

with y the velocity and f p the function grouping
quadratic and cubic nonlinear terms:

f p(x1, . . . , xN ) =
N∑
i=1

N∑
j=1

gp
i j xi x j

+
N∑
i=1

N∑
j=1

N∑
k=1

h p
i jk xi x j xk . (19)

The idea is to assume the existence of a functional rela-
tionship between all the slave coordinate s and themas-
ter onem, i.e. ∀ s �= m, there exist two functionsUs and
Vs , solely depending on the displacement and velocities
of the master coordinates (xm, ym), such that

xs = Us(xm, ym), (20a)

ys = Vs(xm, ym). (20b)

At this stage, Us and Vs are the unknowns, and it is
important to remark that:

– the dependence is written for both displacements
and velocities. Since oscillations occur on two-
dimensional surface involving two independent
coordinates, the velocities shall not be neglected.
This also reflects the fact that the eigenspace of a
mode is two-dimensional, with eigenvalues ±iω.

– a functional dependence between the modal vari-
ables is searched for, which is different from a
change of coordinate or nonlinear mapping intro-
ducing new coordinates. This is typical of the graph
style for the parametrisation of the invariant mani-
fold.

The methodology to find the unknown functionsUs

and Vs consists in deriving Eq. (20) with respect to
time and substitute in the dynamical Eq. (18) whenever
possible in order to eliminate all explicit dependence on
time, thus following a similar development as the one
shown in Sect. 3.1 to arrive at the invariance equation.
The development leads to, ∀ s �= m:

∂Us

∂xm
ym + ∂Us

∂ym

(
−ω2

mUm − fm
)

= Vs(xm, ym),

(21a)

∂Vs
∂xm

ym + ∂Vs
∂ym

(
−ω2

mUm − fm
)

= −ω2
sUs − fs .

(21b)

Equation (21) are a set of 2N − 2 partial differen-
tial equations depending on the master coordinates
(xm, ym). They describe the geometry of the two-
dimensional invariant manifold in the 2N -dimensional
phase space. The solutions of Eq. (21) will give the
N − 1 unknown functions (Us, Vs). Unfortunately,
these equations contain all the nonlinearities of the ini-
tial problem through the f p functions. Consequently
obtaining simple solutions to (21) is generally out of
reach. In their first papers, Shaw and Pierre proposed to
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solve them using asymptotic expansions. This will be
detailed next since it gives the first significant terms in
the developments, that can be used for direct compar-
isons with other methods. In subsequent developments,
They also propose to solve (21) numerically. This will
be reviewed in Sect. 3.2.3.

Since the invariant manifold is tangent to its linear
counterpart close to the origin, the functions (Us, Vs)
shall contain neither constant terms, nor linear ones.
Consequently, the asymptotic expansion begins with
second-order terms. The analytical developments to
arrive at the coefficients are given in [223], we here
simply recall the obtained results. Up to third order,
the solution reads:

xs = asmx
2
m + bsm y

2
m + csmx

3
m + dsmxm y

2
m, (22a)

ys = αsmxm ym + βsmx
2
m y

2
m + γsm y

3
m . (22b)

One can note in particular that all the coefficients of
the multivariate polynomials (xm, ym) are not present.
Indeed, some of them are vanishing due to the conser-
vative nature of the nonlinear restoring force assumed
from the beginning. However, addingmore terms to the
initial problem (e.g. damping, gyroscopic force, …)
will complete the polynomial expansions with other
coefficients. The expressions of the quadratic coeffi-
cients,whichwill be used after for explicit comparisons
with other reduction methods, reads:

asm = 2ω2
m − ω2

s

ω2
s (ω

2
s − 4ω2

m)
gsmm, (23a)

bsm = 2

ω2
s (ω

2
s − 4ω2

m)
gsmm, (23b)

αsm = −2

ω2
s − 4ω2

m
gsmm . (23c)

One can note the two following important features: (i)
the coefficients are proportional to gsmm which is the
coefficient of the invariant-breaking term X2

m on slave
mode s. (ii) The formulas are valid as long as no second-
order internal resonanceωs = 2ωm exist between slave
andmaster coordinates. This is fully logical since in that
case a strong coupling exists between the two modes
and reduction to a single master mode m is not mean-
ingful.

The reduced dynamics on the invariant manifold is
found by substituting the functional relationships (20)
into the equation of motion for the master mode m :

ẍm + ω2
mxm + fm(U1(xm, ym), . . . , xm, ym, . . . ,

UN (xm, ym)) = 0. (24)

Given the expressions of the coefficients in Eqs. (23),
(24) can be explicitly written as [222,223,255]:

ẍm + ω2
mxm + gmmmx

2
m + xm⎛

⎜⎜⎝
N∑

s=1
s �=m

2 gmmsg
s
mm

[
2ω2

m − ω2
s

ω2
s (ω

2
s − 4ω2

m)
x2m + 2

ω2
s (ω

2
s − 4ω2

m)
y2m

])

+hmmmmx
3
m = 0. (25)

One can note in particular that the “self-quadratic” term
gmmmx

2
m stays in the reduced dynamics. The cubic term

hmmmmx
3
m is balanced by two other cubic terms, one

involving the x3m monomial, while the other involves
xm y2m and the coefficient is a summation on all the
slave modes, showing how their effect is gathered in
the nonlinear dynamics on the invariant manifold. The
expression assumes a third-order truncation in both the
relationship between slave and master coordinates as
well as for the reduced dynamics. Asymptotic devel-
opments can be pushed further at the expense of more
involved derivations.We now turn to the generalization
with a multi-mode manifold.

3.2.2 Multi-dimensional invariant manifold

Themulti-dimensional extension of the previous devel-
opment has been first given in [223], in order to propose
ROMs with a larger number of master modes that can
handle internal resonance and more complex nonlinear
dynamical phenomena. Themethodology is unchanged
as compared to the previous case but is complexified
by the fact that numerous master modes are taken into
account. The starting point is to distinguish master and
slave coordinates. For the sake of simplicity, let us
note as 1, . . . ,m the index of the m master modes and
m + 1, . . . , N the index of the remaining slave modes.
The functional relationship now reads, ∀s ∈ [m+1, N ]
(slave coordinates):

xs = Us(x1, y1, . . . , xm, ym), (26a)

ys = Vs(x1, y1, . . . , xm, ym). (26b)
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In order to derive the unknown functions (Us, Vs), s =
m + 1, . . . N , one has to solve:

m∑
r=1

(
∂Us

∂xr
yr + ∂Us

∂ yr

[
−ω2

r Ur − fr
])

= Vs, (27a)

m∑
r=1

(
∂Vs
∂xr

yr + ∂Vs
∂ yr

[
−ω2

r Ur − fr
])

= −ω2
sUs − fs .

(27b)

These 2(N − m) equations describe the geometry of
the 2m-dimensional invariant manifold in the phase
space. Again, the solution of these PDE is generally
out of reach, and asymptotic solutions up to order three
are a convenient way to work it out. The method can
also be written in a systematic manner, highlighting the
repeating structures appearing at each order and thus
opening the doors to automated high-order solutions.
The individual coefficients up to order three are given in
[222,223] undermatrix form instead of explicit expres-
sions. The reduced dynamics on the manifold is simply
found by replacing (26) in the master coordinates in
(18).

3.2.3 Applications

Thefirst applications of the invariantmanifold approach
have been mainly proposed on beam examples: a sim-
ply supported beam resting on a nonlinear elastic foun-
dation is considered in [251,254], a linear beam with
local nonlinear springs attached either at the ends (tor-
sional springs) in [254], or at centre (transverse spring)
in [223], and a nonlinear rotating beam in [226]. Appli-
cations to planar frames and simply supported beam
have also been reported in [168,169].

An important advantage of the method, based on the
centre manifold theorem, is to express the geometry of
the invariantmanifold (the reduction subspace) in terms
of a partial differential equation describing its geome-
try in phase space, Eq. (21) for single master coordi-
nate and (27) for the multi-dimensional manifold with
m master coordinates. Consequently, all the numerical
tools for solving PDEs can be implemented in order to
propose a fully numerical yet accurate computation of
themanifold and the reduced dynamics, thus bypassing
the intrinsic limitation of any asymptotic development.
However, the starting point assuming a graph relation-
ship inherently precludes the method to overcome the

possible folding of the manifold [17,83,225], so that
in any case the method will have a limit in terms of
amplitude at the first folding point.

Based on this idea, a numerical procedure has been
developed in [225] for numerical computation of two-
dimensional manifold and has then been extended
to the case of multiple mode invariant manifolds in
[104]. Using this numerical procedure, extension of the
method in order to properly take into account forcing
and damping in order to compute frequency responses
has been proposed in [105], whereas the forced case is
also considered in [64] using series expansions. Also,
the case of piecewise linear systems has been tackled
in [31,103]. With regard to applications, the case of
a rotating beam is considered in [104], and a rotating
shaft in [140]. Along the same lines, different numeri-
cal procedures have been proposed in [17,212,236] to
solve the nonlinear PDEs of the invariant manifold, and
a more general review of numerical methods (includ-
ing other approaches) is reported in [237]. Figure 4
shows two illustrations from these works. Finally, one
can also note that the invariant manifold parametri-
sation with graph style has also been used in combi-
nation with Lyapunov–Floquet transform for systems
with periodic coefficients [261], and the technique for
augmenting the state space for forced systems has been
investigated in [64,234].

With regard to finite element applications, one can
note that several examples using a FE procedure in
order to semi-discretize the problem have been imple-
mented, for example a linear FE beam with a nonlinear
rotational spring at one end is considered in [105,225]
and a one-dimensional finite-element model represent-
ing the axial and transverse motions of a cantilever
rotating beam is selected in [9]. Applications to planar
frames discretised by the FE method are also shown
in [167,263]. But in all these cases, a relative simple
geometry is considered and the first step is the full pro-
jection of the system equation on the modal equations.
As it will be discussed in Sect. 4, the problem of very
large FE models having millions of DOFs—thus pre-
venting such a first step—has not been addressed in
these studies.

As a short conclusion, the method strictly follows
the graph style for the parametrisation of an invariant
manifold. Expressing the geometry of the invariant sub-
set as a PDE is an advantage since opening the doors to
numerical solution.However, the assumptionof a graph
relationship between slave and master coordinates puts
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Fig. 4 a Comparison of the invariant manifold as computed
from a third-order asymptotic development and numerically
obtained by direct numerical solution of (21) (solution depicted
as “Galerkin” in the figure) for a linear beam with a nonlinear
torsional spring at boundary, in an amplitude-phase (a, φ) rep-
resentation. Reprinted with permission from [225]. b Frequency

response for the same beam with damping and forcing, compari-
son between reference full-order solution (continuous line: stable
solution, dotted line: unstable solution) and ROMwith one mas-
ter mode, graph style parametrisation (circles). Reprinted from
[105]

a clear limitation to the method that will never be able
to pass through folding points of the manifold. The
method has, however, an important generality and ver-
satility and shall be used in a number of contexts.

3.3 Normal form approach

The normal form approach, used with the purpose
of analysis and model-order reduction in vibratory
systems, has been proposed and developed from the
following papers [102,279,287]. It relies on a com-
plete normal form calculation, following the general
guidelines of dynamical systems theory [51,57,82,92–
95,159,191,227], adapted to the framework of vibra-
tory systems and then followed by a truncation to
achieve reduction by selecting only a few of the result-
ing coordinates as master. By doing so, one retrieves
an equivalent procedure to the one proposed for the
parametrisationmethodof invariantmanifolds, but now
with a normal form style [83].

In its first derivation reported in [279,287], the com-
plete normal form is computed by keeping oscillator-
like equations (with second-order derivatives in time),
to better fit the usual mechanical framework, thus arriv-
ing at a real-valued normal transform. On the other
hand, all mathematical derivations use a complex for-
mulation with diagonalized linear part [57,93,102]. A
complete nonlinear mapping is thus derived, allow-
ing one to express the dynamics with new coordinates

related to the individual invariantmanifolds ascertained
in the previous section. Consequently, the method gen-
eralizes the asymptotic approach described in 3.2.2,
since the complete change of coordinates is derived.
The master coordinates are selected after the transform
thus offering versatility to the method and easy imple-
mentation of ROMs with arbitrary number of master
modes. On the other hand, the calculation as shown in
[279,287] has been limited to the third-order.

3.3.1 Method and main results

The derivation of the complete nonlinear mapping for
conservative nonlinear vibratory systems expressed in
the modal basis, i.e. taking Eq. (11) as starting point,
is established in [279,280,287], following the general
guidelines of normal form theory [93,191]. In essence,
the calculations are led order by order, and the proce-
dure at each order is to inject an unknown nonlinear
mapping, derive the associated homological equation
[134,279], which is solved by assuming that the goal is
to eliminate as many monomials as possible, to arrive
at a reduced dynamics (the normal form) having the
simplest expression. In case of no internal resonance,
the normal form is linear (Poincaré’s theorem),whereas
existence of nonlinear resonance leads to a more com-
plex normal form where only the resonant monomials
finally stay (Poincaré–Dulac’s theorem).
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An important feature related to conservative vibra-
tory systems is the presence of trivial resonance rela-
tionships (see “Appendix B” and [280,287] for the def-
inition), meaning that a vibratory system can never
be linearized: the normal form will always contain
resonant monomials. Importantly, the monomials con-
nected to trivial resonances have an odd order, meaning
for example that cubic terms are especially important as
compared to quadratic ones. In particular, the process-
ing of the calculation is to eliminate at order n the non-
resonant terms thanks to an order n nonlinear mapping,
creating in turn new terms at order n+1. Consequently,
quadratic terms can be eliminated (under the assump-
tion of no second-order internal resonance), and the
effect of this elimination will result in modified cubic
terms that can be derived. While the presence of triv-
ial resonance is not a good news from themathematical
point of view (leading tomore involved calculations), it
is meaningful in a nonlinear vibration context since the
resulting cubic termswill drive the hardening/softening
behaviour.

Up to the third order, the nonlinear change of
coordinates, following the real formalism proposed in
[279,280,287], can be written, for each pair of dis-
placements and velocities (xk, yk), ∀ k = 1 . . . N , as

xk = Rk +
N∑
i=1

N∑
j=1

aki j Ri R j +
N∑
i=1

N∑
j=1

bki j Si S j

+
N∑
i=1

N∑
j=1

N∑
l=1

rki jl Ri R j Rl +
N∑
i=1

N∑
j=1

N∑
l=1

uki jl Ri S j Sl ,

(28a)

yk = Sk +
N∑
i=1

N∑
j=1

γ k
i j Ri S j +

N∑
i=1

N∑
j=1

N∑
l=1

μk
i jl Si S j Sl

+
N∑
i=1

N∑
j=1

N∑
l=1

νki jl Si R j Rl , (28b)

where the newly introduced normal coordinates Ri

and Si = Ṙi are, respectively, homogeneous to a dis-
placement and a velocity. The calculation has been
done once and for all with N variables, and the full
expressions of all the reconstruction coefficients aki j ,

bki j , γ
k
i j , r

k
i jl , u

k
i jl , μ

k
i jl , and νki jl are given in [287,297].

The nonlinear mapping takes velocities into account,
based on the fact that in vibration theory, velocities

are mandatorily needed as second independent vari-
ables in order to construct oscillations as closed orbits
in a two-dimensional subspace. It is identity-tangent,
meaning that at the lowest order, the usual eigenspaces
are retrieved. Higher-order (quadratic and cubic) terms
lead to expressions for the curvature of the invariant
manifold in phase space, and thus the dependence of
modal quantities with respect to amplitude.

As shown in [279,287], the method expresses the
reduced dynamics in an invariant-based span of the
phase space. These can be written for the general case
where no internal resonance exists between the eigen-
frequencies of the system. When an internal resonance
is present, some terms are vanishing in Eq. (28), lead-
ing to extra terms staying in the normal form of the
system.

The reduction step consists of selecting a few mas-
ter normal coordinates, say m � N , and eliminating
all the others. Assuming for simplicity that the mas-
ter coordinates are for p = 1 . . .m, this means that
∀ j = m + 1, . . . , N , R j = S j = 0, hence transform-
ing the one-to-one diffeomorphism (28) to a nonlinear
mapping parametrising the invariant manifold associ-
ated with the master coordinates.

In case of no internal resonance, the reduced dynam-
ics on this m-dimensional manifold can be written
explicitly as, ∀r = 1, . . . , m:

R̈r + ω2
r Rr + (Ar

rrr + hrrrr )R
3
r + (Br

rrr )Rr Ṙ
2
r

+ Rr

m∑
j �=r

(Ar
j jr + Ar

jr j + Ar
r j j + 3hrr j j )R

2
j

+ Rr

m∑
j �=r

(Br
r j j )Ṙ

2
j

+ Ṙr

m∑
j �=r

(Br
j jr + Br

jr j )R j Ṙ j = 0.

(29)

This dynamical equation is the real normal form of
the problem, where only the resonant monomials cor-
responding to trivial resonances are present, all other
terms being cancelled. As stated, quadratic terms have
disappeared and only cubic terms are present. The
result of this operation appears through the new fourth-
order tensors A and B, that gathers the elimination of
the quadratic terms andwhose expression only contains
quadratic coupling coefficients gp

i j . Their expressions
from themodal basis can be found in [287] and are here
recalled:
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Ar
i jk =

N∑
s=1

2 grisa
s
jk, (30a)

Br
i jk =

N∑
s=1

2 grisb
s
jk . (30b)

One can note in particular that the same invariant sub-
spaces are computed as in Sect. 3.2, only the parametri-
sation and thus themeaning of the reduced coordinates,
is different. In the graph style, the master coordinates
are a subset of the original ones (x, ẋ). In the normal
form style, new coordinates (R, Ṙ), nonlinearly related
to the original ones, are introduced.

To be more specific, let us compare the geometry of
the manifold given by the two methods when restricted
to the case of a single master coordinate. From the nor-
mal form approach, the geometry of the manifold is
expressed by Eq. (28). Assuming only modem as mas-
ter, limiting to the second order for the sake of sim-
plicity, and replacing the coefficients a, b and γ by
their explicit expressions given in [287], the geometry
is given by, ∀s �= m

xs = (2ω2
m − ω2

s )g
s
mm

ω2
s (ω

2
s − 4ω2

m)
R2
m + 2 gsmm

ω2
s (ω

2
s − 4ω2

m)
Ṙ2
m,

(31a)

ys = 2 gsmm

4ω2
m − ω2

s
Rm Ṙm . (31b)

These equations are exactly those given in (22)–(23),
meaning that at second order of the development, the
two different styles of parametrisation give the same
quadratic terms for the geometry of the manifold on
the slave modes. The developments then start to depart
one from another at the next orders, due to the use of
different coordinates. For the reduced dynamics, the
difference starts to appear from the second order as
shown next.

The reduced dynamics obtained with the normal
form approach restricted to a single master coordinate
Rm reads

R̈m + ω2
m Rm + (Am

mmm + hmmmm)R3
m

+ Bm
mmm Rm Ṙ2

m = 0. (32)

Comparing to Eq. (25), one can observe in partic-
ular that Eq. (25) contains a quadratic term which is
not present in (32). This difference is only related to
the meaning of the variables used in each method and

their nonlinear relationship. Introducing the normal
variables defined by Eq. (28) in the reduced dynamics
given by Eq. (25), the same equation is obtained. This
is demonstrated in “Appendix D”. In particular, the two
methods predict exactly the same and correct harden-
ing/softening behaviour. Using a perturbative expan-
sion, the nonlinear frequency/amplitude relationship
can be written as ωNL = ωm(1 + Γma2), with ωNL

the nonlinear radian frequency, a the amplitude, and
Γm the nonlinear coefficient dictating the type of non-
linearity. In each case, the same coefficient is found
as:

Γm = − 5

12 ω2
m

(
gmmm

ωm

)2

+ 3

8ω2
m⎛

⎜⎜⎝hmmmm −
N∑

s=1
s �=m

2

(
gsmm

ωs

)2 (
1 + 4ω2

m

3(ω2
s − 4ω2

m)

)
⎞
⎟⎟⎠ ,

(33)

where the symmetry relationships on the gp
i j coeffi-

cients have been used, see Eq. (64) in “Appendix A”.

3.3.2 Applications

The normal form approach and its use in model-order
reduction has been first extended to handle the case of
linear modal damping ratio in the change of coordi-
nates [281], thus opening the doors to the computation
of forced-damped dynamics and frequency responses,
by also adding an external forcing with a first-order
assumption under its modal formulation. In this case,
special care has to be taken in order to follow the trivial
resonances, that are destroyed with added damping. As
shown in [280,281], this can be done using parameter-
dependent normal forms as derived in [82,93], enforc-
ing the dissipative case to tend to the conservative
case when damping is vanishing. Thanks to this deriva-
tion, the reduced dynamics driven by the master modes
displays a damping factor that takes into account the
damping coefficients of all the slave modes, ensuring a
more proper estimate of the decay rates on the invariant
manifold. As an interesting particular result, it has been
shown in [281] that the damping can affect the type of
nonlinearity.

Applications to beams have been first reported in
[287,288]. Then, the case of circular cylindrical shells
has been tackled in [281], including a comparison with
the POD method in [8]. Interestingly, these shells have
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degenerate eigenmodes leading to 1:1 internal reso-
nance and a complex dynamics including Neimark–
Sacker (NS) bifurcation points. The bifurcation dia-
gram in the frequency response function (FRF) was
very well predicted by the ROM including two mas-
ter coordinates, as shown in Fig. 5a, b. This underlines
that aminimalmodelwith only twomaster coordinates,
computed directly from the model equations, is able to
retrieve all the dynamical features of the full-order solu-
tion, including the quasiperiodic solutions developing
in between the two NS bifurcations. Fig. 5c shows a
geometrical interpretation in phase space. Two clouds
of points obtained by Poincaré section and generated
from the full-order system are shown. They have been,
respectively, obtained for a periodic solution (point p)
and a quasiperiodic solution (point q). The magenta
axes are the reduction directions given by the POD
method, undoubtedly showing that two directions are
necessary in this plane to correctly represent the data
[7,8]. On the other hand, the section through the four-
dimensional invariant manifold in this plane shows that
the reduced subspace goes exactly in the vicinity of
the data, underlining the geometrical accuracy of the
reduction process, and thus the need of fewer master
coordinates.

Shallow spherical shells have been investigated in
[285], and the method has been used to predict the cor-
rect type of nonlinearity for each mode of such struc-
tures as a function of the curvature. FRFs for different
type of shells (hyperbolic paraboloid panel, circular
cylindrical panel and closed circular cylindrical shell)
have been exhibited in [282]. Also, the transition to
chaotic vibrations has been investigated with a ROM
composed of only the two modes in 1:1 resonance in
[8], showing the limitation of the method (based on
an asymptotic expansion) for very large amplitudes.
Finally, applications of the method to FE structures
have been considered in [289,295], but still taking the
modal equations as a starting point. Direct computation
of the normal form from the FE model is discussed in
Sect. 4.4.

Another interesting aspect of the normal form
approach is to provide the simplest formulation of the
reduced-order dynamics with only resonant monomi-
als, thus opening the doors to the derivation of efficient
ex-nihilo models [280,287]. In short, the normal form
is the skeleton of the dynamics and contains the correct
qualitative picture and the same bifurcations as the full
system. It is thus a powerful tool to understand themin-

imal models driving dynamical solutions and to build
ad-hoc models containing the observed bifurcations.
Important consequences are in the field of identifica-
tion methods, where minimal nonlinear models can be
used reliably, see, e.g. circular plates with 1:1 inter-
nal resonances [68,70,272], shallow shells with 1:1:2
and 1:2:2:4 internal resonances [106,184,274],MEMS
structure with 1:2 and 1:3 resonance [42,71], and the
identification of the hardening/softening behaviour of
particular modes of a structure [45].

The normal form approach has also been used by
numerous other authors in the context of vibration, and
the first introduction can be traced back to Jézéquel
and Lamarque [102]. The method has then be investi-
gated byNayfehwho reduces it to a simple perturbation
method [192], and by Leung and Zhangwho developed
close approaches [145,146]. Higher-order approxima-
tions of normal transforms have also been developed
using symbolic processors, see, e.g. [89,147,323], and
application to plate vibration featuring 1:1 resonance is
investigated in [320]. More recently, it has been intro-
duced for second-order vibratory systems, in a man-
ner very similar to the presentation given in this sec-
tion [203,204], with in view the derivation of solu-
tions for nonlinear vibration problem by using a single-
harmonic assumption for the normal dynamics to derive
analytical predictions. Also, only the first term in the
normal form expansion was taken into account, lead-
ing to an incorrect prediction of the type of nonlinear-
ity for systems with quadratic and cubic nonlinearity,
as underlined in [19]. The problem has then been cor-
rected and the link to reduced-order models underlined
in [152]. Other contributions also tackled the problem
of systems with periodic coefficients and/or periodic
forcing, combining the Lyapunov–Floquet with a nor-
mal transform, see, e.g. [260,305,313], or the compu-
tation of time-dependent normal form for handling the
harmonic forcing [56,63].

3.4 Spectral submanifold

Spectral submanifolds (SSMs) have been first intro-
duced by Haller and Ponsioen in [80] with the aim
of emphasising the problem of existence and unique-
ness in the case of dissipative systems that had not
been clearly elucidated in the previous works, as well
as eliminating ambiguities in the terminology being
used in the field of nonlinear normal modes. As under-
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Fig. 5 Reduced-order models using normal form approach for
circular cylindrical shells featuring 1:1 resonance. a–b Fre-
quency response to harmonic excitationω in the vicinity of mode
(1,5), with eigenfrequency ω1,5, from [281]. A1,5 is the coordi-
nate of the driven mode and B1,5 the companion mode. Black:
reference, full-order solution. Blue: ROMwith two master coor-
dinates. NS: Neimark-Sacker bifurcation, PF: pitchfork bifurca-

tion. Solid line: stable solutions, dashed and dotted lines: unsta-
ble solutions. c Partial representation of the phase space with two
retained coordinates, the driven mode A1,5 and the axisymmet-
ric slave mode A1,0. Poincaré section of the temporal solutions
obtained from points p and q. POD axes in magenta, invariant
manifold (NNM) in red. Figure reworked from [8]. (Color figure
online)

lined in Sect. 3.1, the problem of existence and unique-
ness is tackled for conservative systems thanks to
strong results by Lyapunov and Kelley [110,155], and
LSM (Lyapunov subcentre manifolds) are known to be
densely filled with periodic orbits under non-resonance
conditions, thus naturally extending the linear modal
subspaces. The picture is completely different for dis-
sipative systems, with an immediate loss of uniqueness
which has been underlined in different investigations
[36,80,203]. In that case, the structure of the phase
space is dominated by strongly decaying modes lead-
ing to fast contraction of the flow. As a consequence,
there are infinitely many invariant manifolds tangent to
any subspace spanned bymodes having small damping
ratios (see [36,80,203] for simple illustrations on linear
and nonlinear systems). SSMs have been introduced in
[80] with the aim of proving existence and uniqueness
of the searched subspaces, using involved mathemati-
cal tools from the most recent development in dynam-
ical system theory. They are defined as the smoothest
nonlinear continuation of a spectral subspace of the
linearized system. From the theoretical point of view,
the understanding of the transition between conserva-
tive and dissipative structures is always delicate and
challenging, and only very recent studies draw out the
connection between LSM and SSM [47].

The existence theorem for SSM given in [80] is
linked to conditions on the regularity of the nonlin-

ear vector field (that are fulfilled in our case of geo-
metric nonlinearity since polynomial restoring forces
are infinitely smooth) and non-resonance conditions on
eigenfrequencies. Furthermore, the spectral quotient
σout is defined as the integer part of the ratio between
the largest damping rate of the slavemodes to the small-
est damping rate of the master modes. To be more
specific, let us suppose that linear viscous damping
of the form σk ẋk is appended to each modal oscilla-
tor equation in Eq. (11). Then, the eigenvalues reads

λk = −σk ± iωk

(
1 − σ 2

k
ω2
k

)1/2

. Assume one wants to

construct the SSM associated with the first d linear
modes (x1, . . . , xd), with d � N . Then, the spectral
quotient reads:

σout = Int

[
max j=d+1,...,N |σ j |
minp=1,...,d |σp|

]
, (34)

where Int refers to the integer part. Existence, unique-
ness and persistence of d-dimensional SSM are stated
in [80], under the general conditions given above. Fur-
thermore, the SSM is unique among all other invari-
ant manifolds of smoothness σout + 1 that share the
same properties. In other words, uniqueness is reached
only when the SSM can be computed by an asymptotic
expansion which has an order at least equal to σout +1.
All prior developments, of lower order, are not unique
and are only an approximation of the exact SSM. In
most real structures, it is commonly observed that the
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damping ratios of the modes are increasing with fre-
quency. Consequently, the spectral quotient is expected
to be very large in a number of applications and shall go
to infinity in some cases. Importantly, lower-order trun-
cations of the series will also approximate an infinity
of other invariant manifolds which share locally sim-
ilar properties. This very important result a posteriori
justifies older developments shown in the previous sec-
tions, that give approximate low-order development of
the searched LSM and/or SSM once the damping is
taken into account.

In view of model order reduction, the computational
procedure proposed in [80] is technically detailed in
[229], by restricting to the case of a single master
mode (two-dimensional SSM). Note that the develop-
ments shown in the two previous sectionswere not rely-
ing on the formalism of the parametrisation method
of invariant manifolds developed in [22–24,83], which
was not available at that time, but rather usedmore clas-
sical techniques proposed in centre manifold theorem
and homological equations for the normal form deriva-
tion. On the contrary, the computational scheme pro-
posed in [229] closely follows the general guidelines
of the parametrisation method as given in [83]. The
mechanical equations of motion are set into the first-
order, and Eq. (17) is rewritten for mechanical oscil-
latory systems. Asymptotic polynomial expansions are
then introduced, and the tangent and normal cohomo-
logical equations are derived, while the normal form
style is used to solve out the coefficients. The proce-
dure has been automated and coded in the software
SSMtool [229]. A special care is taken for the near-
inner resonance, occurring for small damping values.
Indeed, as stated in [266,280,281], trivial resonances
occur easily at third order due to the particular shape of
the eigenspectrum of a conservative vibratory system
{±iωk}k=1,...,N . When damping is added, then these
resonances are destroyed; however, with the assump-
tion of small damping it is important to retain these
terms in the resulting dynamics (normal form) to avoid
small divisors and linearisation. In such a case of near-
inner resonance, the nearly resonant monomials are
kept in the normal form (reduced dynamics) and the
associated term in the nonlinear mapping are set to
zero. Even though this procedure is named as using
a mixed style in [229], the calculation is equivalent
to the one used in [280,281] which is justified thanks
to parameter-dependent normal form and thus, can be
sorted as a normal form style. The main advantages of

the computational procedure derived in [80,229] are: (i)
to take easily into account dissipative forces and exter-
nal harmonic forcing by resorting to a time-dependent
SSM, (ii) to offer an integrated and high-order solution
since series expansions up to any order are technically
possible. The only limitation to higher orders then rely
in the memory requirements; in particular, computa-
tions up to order 15 are shown, also underlining that
orders higher than 15 are generally too expensive in
terms of memory consumption for standard comput-
ers.

In [229], the derivation is limited to a two-dimensional
invariant manifold, meaning that extending the method
to more than one master mode needs an extra cal-
culation. The reduced-order dynamics is given in
polar coordinates, thus providing a direct amplitude-
frequency relationship that does not require the reduced
model to be integrated in time. This is again an
advantage since directly providing the coefficients of
the development of the nonlinear amplitude-frequency
relationship (backbone curve), paid at the price of
loosing oscillator-like equations.Whereas the develop-
ments shown in the two previous sections tried to fit the
mathematical theories to the framework of mechanical
systems, the point of viewdeveloped in [80,229] is to fit
the mechanical context into dynamical system formal-
ism, with the important gain of more versatility, more
generality and possibility of high-order expansions, up
to converged results to large amplitude vibrations.

SSMs have already been applied to a number of dif-
ferent problems and contexts. A nonlinear Timoshenko
beam is used as illustrative example in [229] while a
linear Rayleigh beam resting on a cubic nonlinear foun-
dation is tackled in [121]. Backbone curves and their
relationship to frequency responses are investigated
in [19], and the link with the identification problem
using experimental data is illustrated in [266]. Forced
response calculations, involving a non-autonomous
manifold, are shown on a linear Euler–Bernoulli beam
with a nonlinear spring at its end in [228]. Time domain
simulations are reported on a von Kàrmàn beam in
[100]. Finally, isolated solutions have also been pre-
dicted thanks to SSM [230].

4 ROMs for finite element problems

This section is specifically devoted to reduction meth-
ods for the case of geometrically nonlinear structures
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discretised with a finite element (FE) procedure. Four
main reasons explain the need of having a dedicated
section for this case. First, FE procedures are nowa-
days the most commonly used methods in engineering.
Application of reduction methods to this class of prob-
lem is thus of specific interest, since the potential appli-
cations are numerous. Second, the starting point is not
given under the form of a PDE or under the modal form
as inEq. (11). Instead, the starting point is semi-discrete
equations in the physical space as in Eq. (6). Conse-
quently reduction methods need to comply with this
formalism. Third, numerous FE codes (commercial or
open source) exist and offer large capabilities in terms
of computational power. Hence, the idea of using the
existing codes as such, without entering deeply inside
their core, and use of classical features already devel-
oped, to produce a ROM, has led to the emergence of
non-intrusive or indirect methods [182]. A fully non-
intrusivemethod has a lot of inherent advantages in this
respect as it is easily applicable to any existing FE code.
Fourth, FE models generally use fine meshes involving
millions of dofs, thus raising the curse of dimension-
ality. Consequently, the methods need to be adapted
to overcome this specific issue. In particular, using the
modal basis as starting point is generally out of reach
and thus, themethods presented in the previous sections
need to be adapted.

4.1 FE procedure and stiffness evaluation

The derivation of ROMs for FE structures featuring
geometric nonlinearity is made difficult by the fact that
existing codes do not give access to the quadratic and
cubic terms, either in physical space, G and H, or in
modal space, g and h. Non-intrusive methods started
to develop in the early 2000’s with the idea of using
static computations of FE software to derive some of
these coefficients, needed to build a ROM, since the
access to k(X) = KX + fnl(X) is easily provided.
Two different methods have then been proposed: the
first one where a prescribed displacement is imposed
to the structure, and a second one where an imposed
static force is applied. While the first method has then
been named as stiffness evaluation procedure (STEP),
the second method gives rise to implicit condensation
which is fully detailed in Sect. 4.2.

The STEP has been first introduced by Muravyov
and Rizzi in [190], with the aim of computing in a

non-intrusive way, the nonlinear modal coupling coef-
ficients gp

i j and h p
i jk appearing in Eq. (13). The idea is

to use a set of well-chosen prescribed displacements
as inputs for a static computation, a standard opera-
tion that is easily performed by any FE code. Then
from the resulting deformed structure, a simple alge-
bra allows one to retrieve all the coefficients from the
internal force vector given by the FE code, the key
idea being to impose plus/minus the displacement with
selected combinations of modes.

The method is fully explained in [190]; here, we
illustrate the procedure by deriving the sole computa-
tion of coefficients gkpp and hkppp. The following static
displacements are prescribed to the structure:

Xp = ±λφ p ⇒
{
xp = λ,

x j = 0 ∀ j �= p,
(35)

whereλ refers to an amplitude, the value ofwhich has to
be carefully selected (see, e.g. [69,190] for discussions
on this choice). Introducing Eq. (35) into Eqs. (6) and
(13) leads to, for all k = 1, . . . , N :

λ2gkpp + λ3hkppp = φT
k fnl(λφ p)/mk, (36a)

λ2gkpp − λ3hkppp = φT
k fnl(−λφ p)/mk, (36b)

wheremk is themodal mass (which could be unity with
mass normalisation). The unknown quadratic and cubic
coefficients are thus obtained by solving this linear sys-
tem in (gkpp, h

k
ppp), which depends on the computation

of fnl(±λφ p), which requires only the computation of
reaction forces due to the prescribed displacements in
the FE code, and no nonlinear Newton–Raphson proce-
dure. Similar algebraicmanipulationswithmoremodes
involved in the prescribed displacements then allow
one to get the full family of quadratic and cubic coef-
ficients, which are solutions of other linear systems,
not reported here for the sake of brevity. In addition to
be non-intrusive, this procedure is then very time effi-
cient since only linear operations are required, with no
nonlinear system solving.

At this stage, it is important to underline that the
STEP is not a reduction method, but only a non-
intrusive algebraic manipulation that can be used as
a tool to derive some desired nonlinear characteristics
from simple FE calculation. In its first development as
given by [190], it was used to get access to the non-
linear modal coupling coefficients, meaning that the
anticipated ROM that can be simply derived from that
is the projection onto the linearmodes basis,with all the
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known problems due to this projection (loss of invari-
ance and nonlinear cross-coupling terms).One can note
also that further developments used the procedure with
different inputs, that are not necessarily combinations
of modes, see, e.g. [297]. A key feature is related to the
amplitude λ the user has to select to obtain the modal
coupling coefficients. As shown in a number of studies,
see, e.g. [69,190], there exists a large range of λ val-
ues conducting to stable values of the gp

i j and h p
i jk , the

main idea being that the imposed displacement needs
to be not too small so as to correctly excite geomet-
ric nonlinearity, and not too large to stay in the range
of moderate transformations (see [69] for quantitative
descriptions).

The STEP has been used in a number of different
contexts, see, e.g. [69,117,138,154,181,182,295]. An
important improvement in the computational complex-
ity has been proposed in [220], where the tangent stiff-
ness matrix is used in order to divide by an order of
magnitude the number of needed operations. It has also
been proposed in [116] to compute the needed quanti-
ties at the elementary levels, in order to speed up com-
putations; however, it seems intrusive. Finally, direct
methods have also been proposed in order to compute
intrusively the nonlinear modal coupling coefficients,
see, e.g. [289] for a direct computationonMITC (mixed
interpolation of tensorial components) shell elements,
[249] for 3DFEand [49]with beamelements and appli-
cation to shape optimization.

4.2 Implicit condensation and stress manifold

The implicit condensation and expansion (ICE)method
has been first introduced in a series of papers from two
different groups. The first developments date back from
the PhD thesis byMatthewMc Ewan defended in 2001
[170,171], then continued and improved by Hollkamp
and Gordon [84,85], who introduced the acronym ICE
for the method. Recently, it has been further investi-
gated and used by Kuether, Allen et al. [125,126], as
well as by Frangi and Gobat [61], who introduced the
term stress manifold to describe the reduction subspace
used to build the ROM. Themethod realizes an implicit
condensation of the non-modelled degrees of freedom
and is shown to be fully equivalent to the classical
static condensation if all equations are fully known
[84,182,255], implying that it can never perform better
than a static condensation.

The ICEmethod is non-intrusive in nature and relies
on two different steps. The first one can be realized by
any FE code since using a standard procedure of static
nonlinear computation. A series of body forces fe that
are proportional to the inertia of the linear modes, fe =
βiMφi withβi ∈ R, are imposed to the structure,where
i = 1 . . .m, m being the number of selected master
modes. The resulting structural deformation X is com-
puted in statics by the FE software and back-projected
onto the eigenmodes in order to retrieve eachmodal dis-
placement x j , j = 1 . . .m. Since nonlinear couplings
are present, the resulting xi are not directly proportional
to the forcing. Instead, slave modes are excited through
invariant-breaking terms, such that the resulting nonlin-
ear displacements of the master mode follows a stress
manifold that implicitly realizes the condensation of
the non-modelled coordinates. “Appendix E” gives a
few more technical details on this computation and
better highlights the link with explicit static condensa-
tion. A full mapping is constructed from this series of
computation, with entries βi and outputs x j , describing
the stress manifold. The second step is a fitting proce-
dure that has to be undertaken, assuming the mapping
x j (βi ) is invertible. Hence, from the computed clouds
of points, functional forms can describe the resulting
nonlinear restoring force spanning the stress manifold.

In many applications, the fitting procedure is real-
ized thanks to polynomial expansions. The versatility
of the method can here lead to using higher-order poly-
nomials or other test functions (e.g. splines), with the
aim of getting more accurate results on a larger span of
displacements. From the development of the method,
one also easily understands that the fitted coefficients
depend on the amplitudes of the scaling factors βi used
to construct the stress manifold, as observed in [209].
Indeed, this reduction subspace being curved, differ-
ent polynomial fittings are obtained when varying the
amplitude [255]. This is in contrast to the STEP, where
prescribed displacements are used to compute the non-
linear modal coupling coefficients. Since the modal
eigenspaces are straight planes, the STEP coefficients
are constant on a large range of applied displacements
[69].

The ICE method has been compared to invariant
manifolds in [81,255]. First, the stress manifold is not
an invariant subspace. Second, the constructionmethod
is static in nature such that the resulting stress manifold
does not depend on the velocities. This has important
consequences on the accuracy and is for example illus-
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Fig. 6 Comparison of stress manifold obtained with static con-
densation (light blue), and invariant manifold obtained from
numerical continuation of periodic orbits (yellow) in phase space
for a two-dof system of coupled nonlinear oscillators. In each fig-

ure, ω1 = 1 while ω2 is increased to meet the slow/fast assump-
tion. (a) ω2 = 2.5, (b) ω2 = 10. (c) Correction factor R as
function of ρ = ω2/ω1. Figure reworked from [255]. (Color
figure online)

trated in Fig. 6, which compares the stress manifold
and the actual invariant manifold (IM) for a two-dofs
nonlinear system, where the IM has been computed
numerically with a continuation method. Two figures
are shown, realized for two different values of the two
selected eigenfrequencies ω1 and ω2 of the system.
While ω1 = 1 for both figures, ω2 =2.5 for Fig. 6a and
ω2 =10 for Fig. 6b. In the first case, one can observe
very important differences between the stress and the
invariant manifolds, underlining the fact that neglect-
ing the velocities leads to important mistakes, and that
the ICE method produces a very simplistic manifold
that is far from the correct reduction subspace. On the
other hand when ω2 =10, both manifolds tend to the
same geometry.

This example illustrates the need of fulfilling a
slow/fast assumption for the ICE method to produce
correct results. The slow/fast partition refers to the fact
that the eigenfrequencies of the slave modes are very
large as compared to those of the master modes. When
this is verified, then from the theorem demonstrated
in [81] and the analytical and numerical calculations
shown in [255], the results given by ICE method are
reliable and the stress manifold tends to the invariant
manifold. On the other hand, incorrect predictions will
be given by the ICEmethod if the slow/fast assumption
is not fulfilled.

Let us exemplify this result on the type of nonlinear-
ity (hardening/softening behaviour). Assumingm is the
master mode, the reduced dynamics on the stress man-
ifold, up to cubic order, can thus be written as [255]:

ẍm + ω2
mXm + gmmmX

2
m

+

⎛
⎜⎜⎝hmmmm −

N∑
s=1
s �=m

2
gmmsg

s
mm

ω2
s

⎞
⎟⎟⎠ x3m

+O(x4m) = 0, (37)

where this equation has been obtained assuming all
the coefficients of the model are known and applying
explicit static condensation. Using the same notation
as in Sect. 3.3.1, i.e. ωNL = ωm(1 + Γ ICE

m a2) for the
amplitude-frequency relationship, the predicted type of
nonlinearity given by condensation can be written as:

Γ ICE
m = − 5

12 ω2
m

(
gmmm

ωm

)2

+ 3

8 ω2
m⎛

⎜⎜⎝hmmmm −
N∑

s=1
s �=m

2

(
gsmm

ωs

)2

⎞
⎟⎟⎠ . (38)

One can now compare the prediction given by Eq. (38)
to that given by following the actual family of periodic
orbits lying in the invariant manifold of the system,
Eq. (33), and observe that the first terms are exactly
the same, the only difference being in the last summed
terms. One can then construct the ratio R of these
last summed term, denoted as correction factors in
[255,295,296], thus exactly comparing the difference
between the two approaches, which simply reads:

R = ω2
s − 8

3ω
2
m

ω2
s − 4ω2

m
= ρ2 − 8

3

ρ2 − 4
, (39)

where it has been assumed for the sake of simplicity
that a single slave mode s exists. This correction factor
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has been expressed as a function of ρ = ωs/ωm , and
interestingly it does not depend either on quadratic or
on cubic coefficients. The behaviour ofR as a function
of ρ is reported in Fig. 6c [255]. One can observe that
the divergence when ρ = 2 is not given by the ICE
method. The divergence of the type of nonlinearity in
the case of 2:1 internal resonance is a known effect
already reported in Sect. 3.2. In this area, a strong cou-
pling exists and the reduction to a single master mode
is meaningless, see, e.g. [10,83,144,235,255,285] for
more discussions on this subject. More importantly,
one can clearly observe that R is tending to 1 when
ρ increases, showing that the prediction given by the
ICEmethod is correct only when the slow/fast assump-
tion is fulfilled. From Eq. (39), a 1% error on the type
of nonlinearity is predicted when ρ = 11.7 and a 10%
error when ρ = 4.15. The incorrect prediction of the
ICE method on the type of nonlinearity has been illus-
trated in [257] in the case of a linear beam resting on a
nonlinear elastic foundation.

As a conclusion on the ICE method, one can note
the important advantage of being fully non-intrusive
and simple to implement on any FE code. From a the-
oretical viewpoint, the main benefit of the method is to
realize an implicit condensation of the non-modelled
dofs. This is particularly meaningful for planar struc-
tures where the eigenspectrum between bending and
in-plane modes is particularly well separated, but will
become an obstacle when dealing with curved struc-
tures such as arches and shells.Also themethod appears
particularly appealing when reducing to a single mode,
since allowing easily a higher-order polynomial fitting,
the method could be able to follow backbone curves
up to larger amplitudes than methods limited to third-
order expansions. On the other hand, the main draw-
backs of the method are that no velocity is taken into
account when building the reduced dynamics, and a
slow/fast assumption is mandatorily needed for pro-
viding accurate predictions, otherwise incorrect results
are provided. The last drawback is connected to the fit-
ting procedure and the construction methods in cases
where the number of master modes becomes larger. As
underlined in [255], with more than one master coordi-
nate, the method becomes very sensitive to the choice
of the load scale factors βi , leading to a lack of robust-
ness and a too strong dependence on small variations
of inputs.

A last known drawback of the method relies on its
inability to properly take into account cases where iner-

tia nonlinearity is important, as underlined for example
in the case of the cantilever beam [117,208,257], or a
micromirror in [213]. A method to bring a correction
for this specific case has been implemented recently
in [208]. In particular, the technique proposed in [208]
is equivalent to using the quadratic manifold approach
with static modal derivatives orthogonal to the mas-
ter modes if stopped at the second order. However,
the derivation allows an easy computation of higher
orders, beyond the second-order term contained in the
quadratic manifold detailed in the next section. Never-
theless, the method still relies on the slow/fast separa-
tion of modes to deliver accurate predictions.

Finally, one can also note that investigations have
tried to combine STEP and ICE method. For exam-
ple, dual modes as introduced in [118,182,221,301,
302,304] combine a set of bending modes (with non-
linear coefficients given by the STEP), to added dual
modes obtained from static imposed body forces—as
in the first step of the ICE method—but then anal-
ysed with an SVD/POD method to determine the most
important patterns. Results fromdualmodes andmodal
derivatives covered in the next section are reported in
[156,300]. Also a modified STEP (M-STEP) proposed
in [172,295], selects only a subset of master nodes of
the FE mesh to apply the prescribed displacements,
letting the other free, so as to implicitly condense their
nonlinear relationship to the masters. Application of
M-STEP to symmetric structures such as beams and
plates but also symmetric laminated panels with piezo-
electric patches have shown good results thanks to the
fulfillment of the slow/fast assumption [67,295]. In the
same trend, static condensation is also applied in [303]
to reduce the information of a 3D model of a slender
structure to a 1D equivalent beam model.

4.3 Modal derivatives and quadratic manifold

Modal derivatives (MD) have been first introduced by
Idehlson and Cardona to solve structural vibrations
problems with a nonlinear stiffness matrix [90,91],
with the key idea of taking into account the ampli-
tude dependence of mode shapes and eigenfrequen-
cies. It has been generally used in a number of dif-
ferent context as added vectors that can be appended
to the projection basis in order to enrich the rep-
resentation and better take into account nonlinear
effects [156,262,264,277,306,307,314,315]. Follow-
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ing [91,296,307], let us denote as φ̃i (X) this amplitude-
dependent vector, such that for small amplitude one

retrieve the usual eigenmode:
[
φ̃i (X)

]
X=0

= φi . The

i j-th MD �i j is the derivative of φ̃i (X) with respect to
a displacement enforced along the direction of the j-th
eigenvector φ j :

�i j
.= ∂φ̃i (X)

∂x j

∣∣∣∣
X=0

. (40)

In order to arrive at a computable definition of the
MD that can also be used in a simulation-free con-
text, one can first derive the eigenvalue problem with
respect to amplitude. The first term retrieves the stan-
dard linear eigenvalue problem, while the second one
makes appear the MD [296,307]. However, the deriva-
tive of the eigenfrequency with respect to amplitude
also comes into play, so that the problem becomes
underdeterminate. To close the system, the usual pro-
cedure is to derive the same Taylor expansion on the
mass normalization equation, leading to:

[
K − ω2

i M −Mφi
−φT

i M 0

]{
�i j
∂ω2

i
∂x j

}
=
{−2G(φ j ,φi )

0

}
,

(41)

where it is possible to see that the introduction of
the mass normalisation equation coincides with a con-
straint on the MD to be mass-orthogonal to the i-th
mode, thus rendering the system solvable. However, in
most of the studies, a simplification of this formula-
tion is used by introducing the static modal derivative
(SMD)�(S)

i j by neglecting the terms related to themass
matrix:

K�
(S)
i j = −2G(φ j ,φi ). (42)

Themain argument for this simplification resides in the
fact that operation (42) can be easily implemented in a
non-intrusive manner in any FE software, which is not
the case for (41).

Since MDs and SMDs are directly linked to the
quadratic terms of the nonlinear restoring force, the
natural extension of the method is to define a non-
linear mapping where the linear part is conveyed by
the standard eigenvectors while the quadratic part is
expanded on the modal derivatives. This idea leads to
the quadratic manifold (QM) approach developed in
[101,244], where a second-order nonlinear mapping
is defined between master coordinates gathered in a x

vector of small dimension, and the original physical
coordinates, reading:

X = �x + 1

2
�(x, x) =

m∑
i=1

φi xi + 1

2

m∑
i=1

m∑
j=1

�̄i j xi x j ,

(43)

where �̄i j = (�i j + � j i )/2 is the symmetrised MDs,
which can be selected either as a full or a static MD.
One can note in particular that the linear part is an
expansion onto the master linear modes of interest,
while the quadratic part takes into account the nonlinear
dependence with amplitude through a spanning of the
phase space expressed by the modal derivatives. The
reduced-order model is obtained by deriving Eq. (43)
twice with respect to time and applying a standard
Galerkin projection, see, e.g. [101,244] for technical
details and [257,296] for developed indicial expres-
sions up to order three.

Figure 7 illustrates how the predictions given by
QM-MD and QM-SMD may depart from the correct
result given by the full model if the method is strictly
used, with a single master coordinate, and truncating
the dynamics up to third order. A clamped–clamped
beam with increasing curvature is selected. For the flat
beam case, both QM-MD and SMD allow predicting
accurately the nonlinear response. On the other hand,
for the second case with slight curvature, the SMD
method departs from the correct prediction. Increasing
again the curvature to arrive at a non-shallow arch, then
both methods are not able anymore to reproduce the
correct softening behaviour with a single master coor-
dinate. Note that incorrect predictions given by other
SDOF reductions have also been reported before for
buckled beams and truncation to single linear mode,
see, e.g. [128,131,197].

The quadratic manifold approach withMD has been
fully compared to the normal form approach in [296],
while rigorous theorems are provided in [81] in order
to assess the merits and drawbacks of the method as
compared to invariant manifold based techniques. To
summarize the main findings, one can first note that
the MDs and the associated nonlinear mapping (QM)
do not take into account the velocity from the begin-
ning of the development, either in Eq. (40) or in (43).
This has important consequences and leads to the fact
that the QM as derived in Eq. (43) is independent from
the velocity in phase space and is thus not an invariant
manifold. The second consequence is that the method

123



Model order reduction methods for geometrically nonlinear structures: a review 1167

(a) (b) (c)

Fig. 7 Comparison of backbone curves obtained from QMwith
MDs (dark orange) and SMDs (yellow), for the three tested struc-
tures: a flat beam, b shallow arch, c non-shallow arch. Nondi-
mensional amplitude of bending displacement (along y, nondi-
mensionalised with respect to the thickness) of the central node

of each beam as a function of ω/ω1 where ω1 refers to the eigen-
frequency of the first bending mode. The backbone curves are
contrasted to the FRF obtained on the full system (Full model,
violet) with numerical continuation and a small amount of damp-
ing. Figure reworked from [296]. (Color figure online)

needs again a slow/fast assumption between slave and
master coordinates in order to predict correct results, as
demonstrated in [81] and illustrated in [296] in several
examples. In particular, phase space comparisons of the
geometry of QM and IM are reported in [296], illustrat-
ing the differences between reduction subspaces, when
slow/fast assumption is not met.

In order to give more quantitative understanding of
the predictions given by the QM approach, the type of
nonlinearity can be computed from the reduced dynam-
ics. Using the QM method with either MD or SMD
leads to coefficients ΓMD and ΓSMD as [296]

ΓMD = − 5

12 ω2
m

(
gmmm

ωm

)2

+ 3

8 ω2
m⎛

⎜⎜⎝hmmmm −
n∑

s=1
s �=m

2

(
gsmm

ωs

)2

(
1 + ω2

m(4ω2
s − 3ω2

m)

3(ω2
s − ω2

m)2

))
, (44a)

ΓSMD = − 5

12 ω2
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gmmm
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+ 3

8 ω2
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⎜⎜⎝hmmmm −
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2

(
gsmm

ωs

)2 (
1 + 4ω2

m

3ω2
s

)
⎞
⎟⎟⎠ .

(44b)

Comparing these two formulas with the correct pre-
diction given by following the family of periodic orbits
foliating the associated invariant manifold, Eq. (33),
leads to the quantitative conclusion thatQMcanbeused
if the ratio between slave and master eigenfrequencies
is larger than 4 [296]. For flat structures where the sep-
aration between bending modes and in-plane modes is
clear, this is not problematic andMDcanbe used safely.
On the other hand for curved beams or shell problems
where more couplings between bending modes exist
and where the slow/fast separation has no reason to be
fulfilled, this could be problematic and lead to erro-
neous predictions. Illustrations on a simple analytical
model (linear beam resting on nonlinear elastic foun-
dation) are given in [257], while the case of shallow
spherical shells is investigated in [256].

Further developments on the amplitude of the har-
monics of the solution also underline that the QM
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with SMD leads to an incorrect treatment of the “self-
quadratic” term gmmmX

2
m withm being the master mode

(see [296] for details). Consequently when this term
is present, which arises for curved structures such as
arches or shells, the QM-SMDmethod cannot produce
a correct prediction of the backbone curve, even if the
slow/fast assumption is verified.

All these features are illustrated in Fig. 7, taking as
an illustrative example a clamped–clamped beam with
increasing curvature. For the flat beam case, QMmeth-
ods (either with MD and SMD) give excellent results
due to the fulfillment of the slow/fast assumption and
the absence of quadratic couplings between bending
modes. When a slight curvature is added, leading to
a shallow arch with quadratic couplings, even though
the slow/fast assumption is met, one can observe that
QM-SMDmethod departs from the exact solution, due
to the incorrect treatment of the self-quadratic term.
Finally, increasing again the curvature, the slow/fast
assumption is not met anymore, and both QMmethods
fail in predicting the correct type of nonlinearity.

Modal derivatives have been applied to a number
of problems, and we can mention in particular the lat-
est contributions, apart from the ones already cited at
the beginning of this section. Beams and panels are
considered in [156], while the computation of back-
bone curves up to large amplitudes are addressed in
[264], underlining that numerous MDs need to be
added as vector basis in order to catch internal res-
onance in particular. Transient analysis are used in
[98] to enrich a quadratic manifold with linear modes
and MDs. Finally, shape imperfections and defects are
taken into account in [161,162], and comparisons with
dual modes are commented in [156,300].

As a short conclusion on modal derivatives, one
can first note the number of advantages it offers: it
is a simulation-free approach, it is non-intrusive in
nature and can be used easily from any FE code. In
most of the applications, modal derivatives are used as
added basis vectors allowing for a proficient method
able to report involved nonlinear phenomena [264].
The framework of QM, while appearing as logical and
attractive, shows, however, some inherent limitations.
Most of the limitations (need of slow/fast assumption
and incorrect treatment of self-quadratic term for SMD)
fundamentally rely on the fact that the method does not
assume any dependence with the velocity, which is a
strong drawback since in vibration theory velocities are
independent variables and are needed in a phase space

perspective in order to construct periodic orbits repre-
senting the oscillations. Interestingly, if one wants to
insert the velocity dependence from the beginning, then
the found nonlinear mapping is exactly the one derived
from normal form theory exposed in Sect. 3.3.1. This
is further illustrated in the next section where a direct
computation of the normal form is shown, in order to
apply the method from the FE discretization.

4.4 Direct computation of normal form

The direct normal form (DNF)5 approach has been first
introduced in [297]. Themain idea is to propose a com-
putational scheme that does not need the full modal
basis calculation as a starting point, so that a direct
nonlinear mapping from the physical space (dofs of
the original problem) to the reduced subspace given
by invariant manifolds is retrieved. In a FE context
where the number of dofs can be extremely large and
attain millions, application of the formulas given in
Sect. 3.3.1 is indeed inoperable, since the cost of diag-
onalizing the linear part is far too expensive. Conse-
quently, adapting the method and giving a direct com-
putation of the normal form is an important improve-
ment, allowing to derive efficient reduced-order mod-
els.

In the first development of the method reported in
[297], real-valued mappings are used and the calcula-
tions followed closely the general guidelines given in
[280,281,287], with the main difference that all the
formulas are rewritten from the physical space. As
reported in Sect. 3.3, a complete change of coordinate
with summations up to all the dofs of the system is
first derived, then followed by a truncation to retain the
selected master modes. The advantage of proceeding
like this is that the calculation is done once and for
all, whatever the number of master coordinates to be
retained.

Damping and external forcing are also considered
in [297], following the general guidelines given in
[280,281,287]. Modal forcing is added to the reduced
dynamical equations. For the damping, the general for-
mulas given in [281] have been adapted to the case

5 One can note that the terminology DNF for direct normal form
has been introduced before in [55], but with a different purpose
as the one used here. In [55], “direct” is used to specify that
the normal form is computed from the second-order oscillator
equations, without using first-order, state-space formulation.
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of FE models in [297] by (i) assuming small damping
for the master modes so that only the first-order terms
(in damping) of the general formulas given in [281]
are used, (ii) assuming Rayleigh damping as a spe-
cific input in order to comply with the general assump-
tions used to model losses in most of the FE codes. Of
course, this specific damping is not restrictive and one
can come back to the general formulas given for any
modal damping in [281].

The DNF has then been completely rewritten in
[213], using complex-valued formalism inherited from
using first-order, state-space formulation from the
beginning of the calculation. The main advantages of
the complete rewriting are to use symmetric formu-
lations throughout the derivation, while keeping clear
the mechanical context by always referring, in all the
developments, to mass and stiffness matrix M and K,
quadratic and cubic terms G and H. The homologi-
cal equations have then been fully rewritten with these
notations, opening the doors to numerous extensions
of the method in order to go to higher orders or to add
new physical phenomena described by new forces. The
linkwith real-valuedmappings derived in [297] is com-
pletely detailed. Finally, the treatment of second-order
internal resonances is highlighted, a development that
had not been tackled before in [281,287].

Let us describe with a few equations some of the
main features of the method in the conservative frame-
work, and how it compares to previous developments
and in particular to modal derivatives described in
Sect. 4.3. The starting point is a nonlinear change of
coordinates between the initial displacement-velocity
vectors X, Y = Ẋ, and the normal variables (R, S) as:

X = Ψ̂ (R, S), (45a)

Y = Υ̂ (R, S), (45b)

with Ψ̂ , Υ̂ polynomial mappings in R, S. Following
the real-valued expressions, and by considering only
second-order terms for the sake of brevity, the nonlinear
mapping reads [213,297]:

X =
N∑

k=1

φk Rk +
N∑
i=1

N∑
j=1

(
âi j Ri R j + b̂i j Si S j + ĉi j Ri S j

)
,

(46a)

Y =
N∑

k=1

φk Sk +
N∑

k=1

N∑
l=1

(
α̂i j Ri R j + β̂ i j Si S j + γ̂ i j Ri S j

)
.

(46b)

It is worth mentioning that the nonlinear mapping Ψ̂ ,
Υ̂ are not independent from one another in the context
of vibratory systems so fewer calculations are required
to compute them for each polynomial order. Also, sum-
mations up to N (the number of dofs) are given in
Eq. (46); nevertheless in practice only a small subset
of m master normal coordinates (Rk, Sk)k=1,...,m , with
m � N ; are selected. Cancelling all slave normal coor-
dinates in Eq. (46) leads to rewriting sumations up to
m.

The unknown vectors of coefficients âi j , b̂i j , ĉi j ,
α̂i j , β̂ i j and γ̂ i j are derived from the second-order
homological equations, see [213,279,287] for more
details. These vectors of coefficients are the equiva-
lent in physical coordinates of the vectors in Eq. (28),
and for this reason they are denoted here by theˆsuper-
script. Thanks to the above-mentioned dependence of
the velocity mapping Ψ̂ from the displacement one Υ̂ ,
only three of those six vectors are independent in the
general case, reducing to only two in the case of a con-
servative system. The six unknown vectors can thus
be fully computed from the two following vectors of

coefficients Ψ̂
(P)

i j and Ψ̂
(N)

i j , defined as:

Ψ̂
(P)

i j =
[
(+ωi + ω j )

2M − K
]−1

G
(
φi ,φ j

)
, (47a)

Ψ̂
(N)

i j =
[
(+ωi − ω j )

2M − K
]−1

G
(
φi ,φ j

)
. (47b)

The following solutions are found:

âi j = 1

2

(
Ψ̂

(P)

i j + Ψ̂
(N)

i j

)
, (48a)

b̂i j = − 1

2ωiω j

(
Ψ̂

(P)

i j − Ψ̂
(N)

i j

)
, (48b)

ĉi j = 0, (48c)

α̂i j = 0, (48d)

β̂ i j = 0, (48e)

γ̂ i j = ω j + ωi

ω j
Ψ̂

(P)

i j + ω j − ωi

ω j
Ψ̂

(N)

i j . (48f)
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One can see in particular that the quadratic manifold
built from MD as explicited in Eq. (43) is a simplifi-
cation of the more general formula given in Eq. (46)
where the velocity-dependence has been properly taken
into account. Putting back the velocities as independent
coordinates leads to bypass the slow/fast assumption
that was limiting the QM approach, thus proposing a
uniformly valid and simulation-free method. Interest-
ingly, a conference paper onMDs [293] has proposed a
first step in this direction, by generalizing the quadratic
manifold by taking the velocities into account, finally
arriving at formulas equivalent to Eq. (48). The devel-
opments reported in [213,297] settles down the full
formulation, unfolds the link with the parametrisation
method of invariant manifolds, and opens the door
to higher-order developments by giving the recursive
general formulations. From the computational point of
view, the real-valued formalism can also be fully writ-
ten in a non-intrusive manner, such that the method as
derived in [297] can be used from any FE code, pro-
vided the code allows a user to script for performing
matrix operations online, such that all outputs can be
computed without the need to export the full mass and
stiffness matrices.

TheDNFmethodhas been already applied to numer-
ous different examples, with or without internal reso-
nance. A fan blade and a clamped–clamped beam are
considered in [297]. The fan blade shows an industrial
examplewith complexgeometrywhile the beam is used
to show how themethod can handle internal resonances
occurring with nonlinear frequencies at large vibration
amplitude. Numerous other examples of beams have
been considered in [257], including a 1:1 internal reso-
nance between the two polarizations of a beam, an arch
with increasing curvature, and a cantilever beam. In
[257], the results provided by DNF are also compared
to the QM method with MDs and the ICE technique.
Finally, complex MEMS structures are considered in
[213], including a micromirror with large rotations and
complex assemblies of beams and arches featuring 1:2
and 1:3 internal resonance. Figure 8 shows two exam-
ples of the results obtained. The left column, Fig. 8a,
c reports the case of a clamped–clamped beam with
a pointwise excitation with harmonic content in the
vicinity of the second eigenfrequency. The frequency
response function (FRF) displayed in Fig. 8c shows
the particular loop corresponding to the activation of a
strong 1:3 internal resonance with mode 4. Figure 8b, d
reports the case of an arch MEMS resonator featuring

a 1:2 internal resonance between the first two bending
modes. The arch is then excited with a modal forcing
(having the shape of the first eigenmode), in the vicinity
of ω1, and the typical FRF of systems with 1:2 inter-
nal resonance is retrieved by the ROM with only two
modes.

In most of the examples reported in [213,257,297],
the second-orderDNF has been used, where the nonlin-
ear mapping is truncated at order twowhile the reduced
dynamics is truncated at the third-order, showing that
such a simple development already allows one to obtain
excellent results for numerous test cases up to comfort-
able vibration amplitudes. Another important remark
formulated in [297] relates to the fact that using second-
order DNF, the analyst does not need to care about
internal resonances higher than second-order. Indeed,
since no further development is sought, all possible
internal resonances from the third order are not treated
and can thus be excited. Hence, the loss in accuracy
on the geometry of the manifold (limited to order two)
is compensated with a more easy treatment of inter-
nal resonances in the reduced dynamics. The reported
gains in computational times are in general impressive,
with a burden of the order of 1-2 days for the compu-
tation of the full-order solution to obtain a complete
frequency response curve, as compared to 1-2 minutes
for the ROMs. Scalability of themethods up tomillions
of dofs is also illustrated in [213], illustrating that up to
3 millions of dofs the time needed to build the ROM is
less than one hour. As a general note, one can observe
that memory requirements and computational burden
of the method are not important, generalizing the QM
method with MD and proposing ROMS at the same
light computational cost. Note that the second-order
DNF will be released as a command in the version of
the open FE code code_aster [54] from version
15.4 (June 2021).

4.5 Direct computation of SSM

Direct computation of ROMS using parametrisation
method of invariant manifolds has been proposed in
[97,294], following the previous developments led on
the definition of SSMs, reported in Sect. 3.4. In the
first contribution [294], the direct formulation is given
by selecting a single master mode, and up to the third-
order. The general formula are written for an initial
system with mixed coordinates, since the master mode
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(a) (b)

(c) (d)

Fig. 8 Comparisons of full-order solutions and ROMS using
DNF for two different structures including forcing and damping.
a Mesh, second and fourth mode of a clamped–clamped beam. c
FRF in the vicinity of the second eigenfrequency, with the char-
acteristic loop due to the excitation of the 1:3 resonance between
modes 2 and 4, already mentioned in Fig. 2b. Figure reworked
from [297]. bMesh, first and secondmode of aMEMS-like arch.

d FRF featuring a 1:2 internal resonance between the first two
modes, for two different levels of excitation amplitude. Reprinted
from [213]. Frequency axis normalized by the eigenfrequency of
the driven mode (ω2 in (b) and ω1 in (d)), amplitude axis nor-
malized by the thickness (in (d) the thickness of the sub-beam
has been selected)

is assumed to be expressed in the modal basis, while
all the slave modes are given in the physical space.
When damping is not considered, reduction to a LSM
is given. Interestingly, the authors use the graph style
for parametrising the LSM, probably due to the ini-
tial choice for expressing the dynamics. The reduction
formula they give are thus very close to the general
formula given in [223], but fully rewritten from the
physical space for the slave coordinates only, thusmak-
ing appear the mass and stiffness matrices (truncated
to slave coordinates), as well as the quadratic nonlin-
earity. The reduced dynamics is equivalent to Eq. (25).
When forcing and damping is added, the formulation is
extended to reduction onto SSM as derived in their pre-
vious papers [80,229]. Although generalizing impor-

tant previous developments, the starting point selected
by the authors in this contribution is not generically
used and is a priori not standard for FE models, and
a first linear transform needs to be sorted out for an
easy use of the given formulas. In [294], the method is
applied to a chain of oscillators and to a Timoshenko
beam, but not directly to large FE models.

The direct computation has been fully tackled in
[97], starting from the equations of motion in physi-
cal space, such that direct applications to FE models
are proposed. General formulations are given without
specific a priori restrictions neither on the eigensolu-
tions (self-adjointness of linear operators not manda-
torily required), nor on the form of the nonlinearities.
Constant, periodic and quasi-periodic forcing terms are
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included in the framework. The equations ofmotion are
written as first-order system in order to fit the guide-
lines of dynamical system theory, so that the starting
point is a system written as

Bż = Az + F(z) + εFext(z,φ), (49a)

φ̇ = Ω, (49b)

where z is the 2N -dimensional vector including dis-
placements and velocities, A and B are the first-order
matrices composed of the usual stiffness, mass and
damping matrices of the N -dof mechanical system,
F gathers the nonlinear terms, ε is a small parame-
ter and Fext is the external forcing composed of K
forcing radian frequencies grouped in the vector Ω =
(ω1, . . . , ωK ).

The invariance Eq. (17) is then rewritten to fit this
starting point with A and B matrices, thus reading [97]:

B(DW)R = AW + F ◦ W, (50)

where W stands for the nonlinear mapping as in
Eq. (15), while R represents the reduced dynamics
on the invariant manifold. The computational pro-
cedure then proceeds following canonical rules with
asymptotic polynomial expansions. Identifications of
co-homological equations are a bit more involved since
their writing in physical space is less obvious, nev-
ertheless with correct projections onto kernels, closed
expressions are attainable. Both graph style and normal
form style are highlighted, and recursive expressions to
deal with higher-order expansions are given, thus offer-
ing an automated version of the whole procedure. All
the developments are coded in an open software, SSM-
tools 2.0, which is interfaced with a FE solver. In [97],
A FE model of a von Kàrmàn beam having 30 dofs is
used as first example, then a shallow parabolic panel
with 1320 dofs is selected and the softening frequency
response curve is computed. Finally, a FE model of
an aircraft wing with 133 920 dofs is investigated, and
the hardening behaviour is reported. Even though the
framework is given in its most general formulation,
examples reported in [97] are restricted to single mas-
ter mode dynamics without internal resonance, and to
geometric nonlinearity, such that extensions to handle
different kind of nonlinear terms still remains to be
shown.

5 Open problems and future directions

This section aims at underlining open problems related
to the use of invariant manifold theory for reduced-
ordermodeling of the nonlinear dynamics of structures,
in order to point to possible further developments and
future research directions.

A first open question is related to the folding of
invariant manifolds in phase space and the conse-
quences on the dynamics, the parametrisation and the
performance of the ROM. The theoretical develop-
ments on the parametrisation method underline a main
difference between graph style and normal form style.
While normal form style is theoretically able to over-
come the potential foldings of the IM, such a distinc-
tion has never been clearly emphasised and illustrated
in nonlinear vibration theory. Indeed, most of the fold-
ings reported in the literature appear through loops in
the backbone curve (see Figs. 2b, 3) and are related
to the appearance of an internal resonance between
the nonlinear frequencies of the system. However, the
folding seems to be apparent and only due to the pro-
jection of (at least) four-dimensional manifolds into
3d representation. Finding out a clear folding without
internal resonance would underline the difference in
the parametrisation styles.

A second open and important problem is related to
the a priori estimate of the quality of the ROM devel-
oped using IM approach. For linear reduction methods
such as POD for example, a priori estimates are easy
to find since the magnitude of the singular values gives
the amount of energy captured by the ROM, which can
be directly linked to the accuracy of the reduction. For
nonlinear methods, the picture is less clear since using
curved manifolds to represent the dynamics, one can-
not rely on linear ideas for error estimate. The problem
is addressed in [83], and a priori and a posteriori esti-
mates are proposed based on errors on the invariance
equation or errors on the orbits. An upper bound for
validity limits of normal transform is also proposed in
[134]. However, all these preliminary ideas did not yet
translate to a simple tool and are also related to the ease
of developing high-order approximations. In this realm,
the automated computations of higher orders proposed
in [97,229] gives a different point of view first devel-
oped by these authors. Instead of using added vectors to
reach convergence of the ROM, the idea is to state that
the dimension of the manifold is given by the dynam-
ics at hand, such that convergence is simply reached by
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adding higher-orders up to a converged backbone (or
frequency response curve). Whereas this can work in
many cases, the problem of internal resonance between
the nonlinear frequencies of the system (thus appearing
at higher vibration amplitudes) still remains an obstacle
for blind application of this idea. Indeed, the parametri-
sation method can only check resonance relationships
between the linear eigenfrequencies of the problem and
canwarn that additionalmastermodes are neededbased
on this inspection. Moving to higher amplitudes, reso-
nance can be fulfilled between nonlinear frequencies.
Developing new methodologies to give accurate and
uniform a priori estimates is thus still a question that
deserves further investigations.

Future research directions along these lines should
enlarge the scope of the methodologies given in
Sects. 4.4–4.5. Indeed, strong results from dynami-
cal system theory ensure that long-term behaviour of
the dynamical solutions are contained within attract-
ing centre sets [28,268]. Hence, the reduction methods
based on these theorems are the most accurate way of
deriving efficient ROMs, the main question being more
their accurate computation. In this way, recent progress
reported in 4.4–4.5 shows that effective methods can
now be used for a direct computation from the physical
space. Enlarging these recent results appears thus as a
logical path to the improvement of ROM computation.

In this realm, the following directions should be
investigated soon as direct applications of the general
method. First of all, applications to different physi-
cal problems, including different types of nonlinear
forces, should be investigated, as for example nonlin-
ear damping laws [5,6,37], coupling with other phys-
ical forces such as piezoelectric couplings [68,138,
250], piezoelectric material nonlinearities [62,139,
299], non-local models for nanostructures [238,239],
often used in energy-harvesting problems, electrostatic
forces inMEMS dynamics [319], centrifugal and Cori-
olis effects in rotating systems [44,267] with applica-
tions to blades [79,224,226,271], large strain elastic
nonlinear constitutive laws [187], fluid-structure inter-
action [107,165] and coupling with nonlinear aeroe-
lastic forces [48]; or thermal effects [99,219], to cite a
few of the most obvious directions where the general
reduction strategy could be easily extended. Extensions
to structures with symmetries, in order to get more
quantitative informations and highlight the link with
mode localization, could be also used with such tools
[65,291,308,309].

Another interesting research direction would be to
enlarge the scope of invariant-based ROMs to tackle
more complex dynamics involving a larger number of
master modes. While most of the reported applications
uses 1-3mastermodes, jumping to 10-20mastermodes
and investigate the transition to more complex dynam-
ics and the limits of the methods with regard to chaotic
vibrations andwave turbulence raises a number of open
questions. Also in this realm, a link with more involved
mathematical analysis related to the existence of iner-
tial manifold and global attractors in structural dynam-
ics [12,33–35] should be of interest.

A closer connection and better understanding of
other theoretical efforts could also help in unifying
the concepts and calculation methods. In this direc-
tion, the link with Koopman operator and Koopman
modes is an interesting topic that has been first inves-
tigated in [36], based on the general results derived
for example in [135,166,177,178]. In short and fol-
lowing [36], the Koopman operator replaces a finite
dimensional nonlinear dynamical system by an infi-
nite dimensional linear system. The eigensolutions of
the Koopman operator are infinite and contains all the
eigensolutions of the original dynamical system, say
eigenvectors φ1, . . . ,φN with associated eigenvalues
λ1, . . . , λN , as well as all possible combinations of the
formφ

k1
1 ×φ

k2
2 ×· · ·×φ

kN
N for (k1, . . . kN ) integers,with

eigenvalues k1λ1 +· · ·+ kNλN . By making appear the
nonlinear resonance relationships as Koopman modes
allows redefining the problem with a large (infinite)
dimension instead of seeing them appearing order by
order. Investigating further the computational proper-
ties of this equivalence might be helpful for deriving
other numerical methods.

For nonlinear systems, identification methods are
also a very active field of research in order to extract
important model characteristics from experimental
data [210]. In this field, invariant manifold theory is
already used throughNNMs and identification of back-
bone curves with generalization of, e.g. phase separa-
tion or force appropriation techniques, see [211,215,
218] and references therein. The use of normal form to
select ex nihilo a suitable nonlinearmodel before exper-
imental identification, especially in the case of internal
resonances, is also a powerful tool [106,184,272,274],
which has been recently coupled to phase locked loop
experimental continuation method [45,70]. The use of
SSM has also been reported for model identification in
[266], and a recent contribution proposes to enlarge the

123



1174 C. Touzé et al.

scope by using spectral foliations in model identifica-
tion in order to better take into account transients and
orthogonal directions to the SSMs [265].

A long-term research direction is the application
of invariant manifold theory to nonsmooth problems
occurring in mechanics, mainly through contact and
friction problems. The main limitation appears on the
smoothness of the dynamical system, since all the the-
orems used in [83] assumes a sufficiently smooth map,
and the smoothness order is directly linked to the order
of the SSM, see, e.g. [80]. Research in these directions
considers Filippov systems, see, e.g. [1,20,142,143],
while penalisation and regularisationmethods are often
used and could be adapted. Recent attempts to set-
tle down a nonsmooth modal analysis and extends the
invariant manifolds to impacting systems are investi-
gated in [141,275,276,318], showing how nonsmooth
modes of vibration can be defined.

6 Conclusion

In this contribution, a review of the nonlinear methods
for deriving accurate and efficient ROMs for geometri-
cally nonlinear structures is given. Nonlinear methods
differ from linearmethods by defining a nonlinearmap-
ping between the initial and reduced coordinates. In a
phase space perspective, this leads to projection onto
a curved manifold instead of using orthogonal vectors
to decompose the dynamics. Though proposing a more
involved calculation at first sight, reduction to nonlinear
manifolds is then expected to produce more accurate
results with fewer master coordinates since embedding
the geometric complexity into the nonlinear mapping.

A special emphasis has been put on methods based
on invariantmanifold theory, and the strong results pro-
vided by dynamical system theory in order to derive
efficient and accurate predictive ROMs. Indeed, invari-
ant manifold methods differ from others by the fact
that the related theorems ensure that the long-term
dynamics of the mechanical systems are enclosed in
the vicinity of these subsets. Consequently, full-order
solutions displaying low-order dynamics exactly rely
on these manifolds, such that computing their charac-
teristics is the key to derive the most accurate ROMs.
This point of view is different from ad hocmethods that
can be compared on their predictive accuracy. Here,
the problem is not to find the correct representative set
which is known theoretically, but to compute it effi-

ciently. As underlined, the point of view is geometrical
in nature. The curvatures of the invariant manifolds in
phase space have a strong meaning and relate to the
non-resonant couplings. Capturing them accurately is
computationally more involved as compared to linear
reduction method, but offers better performance and
stronger reduction.

The presentation followed historical developments,
and a focus has been set on the derivation of the
parametrisation method of invariant manifolds that
offers a unified and comprehensive point of view, used
for model-order reduction using ad hoc terminology
(LSM for conservative systems and SSM for damped
systems). Then for the importance of applications, the
special case of FE structures has been specially devel-
oped.

In the context of FE structures, new questions arise
due to the fact that existing powerful FE codesmight be
used non-intrusively for deriving ROM, an appealing
feature offering great versatility. Also, specific devel-
opments have been led in the field of computational
mechanics, with the development of the STEP, implicit
condensation andmodal derivatives. All these methods
are reviewed and systematically compared to invariant
manifolds, showing that they suffer from a lack of gen-
erality and need extra assumptions such as a slow/fast
separation to be used blindly. However, they all have
important benefits in the ease-of-use, rapidity and effi-
ciency of the computation, non-intrusiveness, and give
excellent resultwhen usedwith the correct assumptions
fulfilled.

The paper concludes with the latest developments in
the field showing how one can use invariant manifold-
based ROMs, directly from a FE mesh, and possibly in
a non-intrusive manner. The proposed methods are in
general simulation-free and can be used with a com-
putational cost that is of the same order of, e.g. modal
derivative-based techniques. As a conclusion, we advo-
cate for a more general use of nonlinear techniques
for efficient ROM computation for geometrically non-
linear structures. This point of view makes a direct
link between the large dimension of initial problems
meshed with FE and the generally small dimensional
subsets where the important dynamics is contained and
allows one to compute efficient ROMS that can be used
for a lot of different purposes including analysis and
design. Open problems and future directions are briefly
listed at the end of the paper, underlining that many
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interesting developments can be conducted to general-
ize the methods to a large number of cases.
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A Symmetry of the quadratic and cubic tensors

This appendix is devoted to the demonstration of the
symmetry properties of the nonlinear tensors of coef-
ficients G, H, g and h, that appear in the equations of
motion written in terms of FE coordinates, Eq. 6), or
with modal coordinates, Eq. (11).

The FE coordinates are first considered. Let us
denote by k(X) = KX + fnl(X) the internal force vec-
tor. Using indicial notations and Einstein summation
convention, it can be written explicitly, for i, j, l, s =
1, . . . N :

ks = Ksi Xi + Gs
i j Xi X j + Hs

i jl Xi X j Xl , (51)

where ks is the s-th component of the internal force
vector k, Ksi are the components of the stiffness matrix
K; while Gs

i j , H
s
i jl are the quadratic and cubic coeffi-

cients defined in Eq. (8). In a 3D finite element con-
text, the physical displacement vector u(y) is inter-
polated on a family of shape functions Ni , such that
uα(y) = Nαi (y)Xi (t), α = 1, 2, 3. Using Voigt nota-

tions, the Green–Lagrange strain tensor, Eq. (5), and
its variation can be written, for α = 1, . . . 6 (see [67]):

Eα = B(1)
αi Xi + 1

2
B(2)

αi j Xi X j ,

δEα = B(1)
αi (y)δXi + B(2)

αi j XiδX j , (52)

with Bα(1)
i of size 6× N and Bα(2)

i j of size 6× N × N
are two discretised gradients operators, defined by:

B(1)
αi =

⎡
⎢⎢⎢⎢⎢⎢⎣

N1i,1

N2i,2

N3i,3

N2i,3 + N3i,2

N1i,3 + N3i,1

N1i,2 + N2i,1

⎤
⎥⎥⎥⎥⎥⎥⎦

B(2)
αi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Nli,1Nl j,1

Nli,2Nl j,2

Nli,3Nl j,3

Nli,2Nl j,3 + Nli,3Nl j,2

Nli,3Nl j,1 + Nli,1Nl j,3

Nli,2Nl j,1 + Nli,1Nl j,2

⎤
⎥⎥⎥⎥⎥⎥⎦

(53)

where each row of the matrices corresponds to the cor-
responding value of index α = 1, . . . 6 and Nαi,β =
∂Nαi/∂yβ is a space derivative of the shape functions.

Then, the virtual work of the internal forces can be
written:

δWint =
∫

Ω

CαβEαδEβ dΩ = ksδXs (54)

=
[ ∫

Ω

Cαβ B
(1)
αi B

(1)
βs dΩ

︸ ︷︷ ︸
Ksi

Xi

+
∫

Ω

Cαβ

(
B(1)

αi B
(2)
β js + 1

2
B(1)

αs B
(2)
βi j

)
dΩ

︸ ︷︷ ︸
Gs
i j

Xi X j

+
∫

Ω

1

2
Cαβ B

(2)
αi j B

(2)
βls dΩ︸ ︷︷ ︸

Hs
i jl

Xi X j Xl

]
δXs

(55)

where Cαβ is the elasticity tensor in Voigt notations.
The above equation defines the tensor components Ksi ,
Gs

i j and Hs
i jl of the internal forces.

The elasticity tensor is symmetric (Cαβ = Cβα) and

Eq. (53) shows that B(2)
αi j = B(2)

α j i : on can invert the
two latin subscripts. This leads to a symmetric stiffness
matrix and allows any change of the order of the indices
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for the cubic coefficients (4! = 24 possibilities if i �=
j �= l �= s):

Hs
i jl = Hl

si j = H j
lsi = Hi

jls = Hs
jil = . . . (56)

For the quadratic coefficients, no symmetry appears.
However, the coefficientsGs

i j andG
s
ji refer to the same

monomial Xi X j in Eq. (51). Due to the commutativity
property of the usual product, one then understands that
only the summation of these two quadratic coefficient
Gs

i j and Gs
ji matters. This leads several authors (see,

e.g. [69,190,287]) to adopt a so-called upper triangular
form for those tensors for which Eq. (51) is rewritten
as

ks =
N∑
i=1

Ksi Xi +
N∑
i=1

N∑
j=i

Ĝs
i j Xi X j

+
N∑
i=1

N∑
j=i

N∑
l= j

Ĥ s
i jl Xi X j Xl . (57)

With this selection, an unequivocal representation
of the monomials is given, and the coefficients are
attributed such that only those with increasing indices
(l ≥ j ≥ i) are nonzero, while the other ones (l ≤
j ≤ i) are set to zero. For the quadratic coefficients,
this leads to, for all s:

Ĝs
ii = Gs

ii , ∀i, (58)

Ĝs
i j = Gs

i j + Gs
ji =

∫
Ω

Cαβ

(
B(1)

αi B
(2)
β js

+B(1)
α j B

(2)
βis + B(1)

αs B
(2)
βi j

)
dΩ, ∀ j > i, (59)

Ĝs
ji = 0, ∀ j > i. (60)

In the above Eq. (59), any change of the order of the
indices s, i, j is allowed, which leads to the following
properties:

Ĝi
i j = 2Ĝ j

ii , Ĝ j
i j = 2Ĝi

j j , Ĝl
i j = Ĝ j

il ,

Ĝl
i j = Ĝi

l j , ∀i < j < l (61)

Analog expressions are obtained for the cubic coeffi-
cients Ĥ s

i jl (see [69,190]).
In the present article, we found convenient to use

the standard form (51) instead of the upper triangular
form (57) for all our demonstrations and we enforced
the symmetry on the quadratic coefficients by redefin-
ing them as the symmetric part of their upper triangular
counterparts: Gs

i j = Gs
ji = Ĝs

i j/2, ∀ j �= i . This leads
to allows any change of the order of the indices also
for the quadratic coefficients:

Gs
i j = Gs

ji = Gi
js = Gi

s j = G j
is = G j

si . (62)

All the above reasoning equally applies to themodal
coefficients gsi j and hsi jl of Eq. (11), since, according
to Eq. (12a), (12b), rewritten in full indicial form with
Einstein notation, one has:

gp
mn = Gs

i jφspφimφ jn, h p
mnq = Hs

i jlφspφimφ jnφlq ,

∀p,m, n, q = 1, . . . N , (63)

where φ jn refers to the j-th component of the n-th
eigenvector. Consequently, the same symmetry as in
Eqs. (62) and (56) applies for the modal coefficients:

gsi j = gsji = gijs = gis j = g j
is = g j

si , (64)

hsi jl = hlsi j = h j
lsi = hijls = hsjil = . . . (65)

Again, any permutation of the indices s, i, j, l is pos-
sible.

All the above symmetries are also a consequence of
the existence of a potential energy [69,190]:

V = 1

2

∫
Ω

CαβEα(X)Eβ(X) dΩ, (66)

which is a quartic polynomial in X. Then, the i-th
component of the internal force vector can be directly
derived from the elastic energy as:

ki (X) = ∂V
∂Xi

. (67)

Using Schwarz’s theorem, one can write:

∂2V
∂xi∂x j

= ∂2V
∂x j∂xi

⇒ ∂ki
∂x j

= ∂k j
∂xi

. (68)

Then, identifying the coefficients of identical monomi-
als in the above last equations with the upper triangular
form for ki leads to prove all the symmetry properties
of Eq. (61) and their analogs for the cubic coefficients.

B Classification of nonlinear terms

This section is devoted to givemore details of the termi-
nology used throughout the text to classify the different
nonlinear coupling terms and monomials appearing in
the dynamics. It is based on previous developments
reported, e.g. in [280,287], and all the textbooks deal-
ing with normal form theory, where the reader can find
more details. Systems with geometric nonlinearity are
essentially driven by a large assembly of nonlinearly
coupled oscillators, thus generating a very large num-
ber of coupling terms (of the order of N 4 terms). How-
ever, all the terms does not play the same role and it is
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important to identify the contributions of eachmonomi-
als. For this discussion on the terminology, we use the
equations of motion written in modal space, Eq. (11),
and more specifically, ∀ p ∈ [1, . . . , N ]:

ẍ p + ω2
pxp +

N∑
i=1

N∑
j≥i

g p
i j xi x j

+
N∑
i=1

N∑
j≥i

N∑
k≥ j

h p
i jk xi x j xk = 0. (69)

For the discussion herein, assume that m is the master
mode such that most of the energy is contained within
xm . Invariant-breaking terms have already been com-
mented in themain text, they are themonomials on p-th
oscillator equation with the form gp

mmx2m and h p
mmmx3m .

As soon as xm �= 0, then all xp where this terms exist
will also be excited and will thus have a nonzero ampli-
tude. These terms break the invariance of the linear
eigensubspaces and can be directly tracked in the equa-
tions defining the geometry of the invariant manifolds,
as underlined in Sects. 3.2 and 3.3.

In order to go ahead in this classification, the link
with internal resonance must be properly understood.
Let us start by underlining that any nonlinear term can
be interpreted as a forcing term for the corresponding
oscillator equation. Continuing with the same exam-
ple, the term gp

mmx2m is a forcing term on oscillator
p. Interestingly, at the lowest order of approximation,
xm ∼ e±iωmt , such that x2m will create a forcing with
frequency components 2ωm and 0. From this, we can
conclude that for oscillator p, if ωp  2ωm then the
forcing term gp

mmx2m will be a resonant forcing term,
exciting component p in the vicinity of its eigenfre-
quency thus creating large amplitude response. One
then call the monomial gp

mmx2m a resonant monomial.
On the other hand, as long as ωp �= 2ωm , then the
forcing term is non-resonant, and the corresponding
monomial is non-resonant.

This simple example generalizes thanks to normal
form theory. The resonance relationship are then linked
with internal resonance between the eigenfrequencies
of the system, all of them being connected to a specific
order of nonlinearity, conducting to so-called second-
order internal resonance and third-order internal reso-
nance. Due to the fact that for linear conservative sys-
tem, the eigenspectrum is purely imaginary {±iωr },
some third-order relationships are always fulfilled, all
those of the form:

∀r, p = [1, . . . , N ] : +iωr = +iωp − iωp + iωr .

(70)

These resonances are called trivial resonance and
their associated monomials are called trivially reso-
nant monomials. The main consequence in terms of
normal form is that all these monomials cannot be can-
celled from the normal form of the system. The normal
form is not linear but stay nonlinear with only these
trivially resonant monomials in case of no other inter-
nal resonances between the eigenfrequencies, follow-
ing the general results from Poincaré and Poincaré-
Dulac’s theorems.

From these developments, we can derive the follow-
ing classification:

– trivially resonant monomials: for the m-th oscil-
lator, all the terms x3m , xmx

2
p, ∀p = 1, . . . N , are

trivially resonant monomials, corresponding to the
trivial resonance relationships (70). They cannot
be cancelled from the normal form and stay in
the resulting equations as ascertained in Eq. (29).
Note in particular than none of these are invariant-
breaking, recovering the fact that the dynamics is
well expressed in an invariant-based span of the
phase space for Eq. (29), which is not the case for
the equations of motion in modal space, Eq. (69).

– resonant monomial: a resonant monomial is the
nonlinear term connected to an internal resonance
between the eigenfrequencies of the system. For
any internal resonance, a few monomials exist
which can be tracked from the simple interpreta-
tion of nonlinear term as forcing.

– non-resonant monomial: a nonlinear term that is
not connected to an internal resonance.

When an internal resonance exist, the corresponding
resonant monomials create what is generally called a
strong, resonant coupling, and they convey the energy
exchange between the coupled oscillators, leading to
more complex form of the dynamics with bifurcation in
a larger phase space. Otherwise, the coupling is termed
weak or non-resonant.

C Parametrisation of invariant manifold

In this appendix, more details on the parametrisation
method for the computation of invariant manifold of
vector fields in the vicinity of a fixed point, are given.
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The presentation follows strictly the one given by Haro
et al., using their notations and developments, so that
all the credit of the presentation reported here is given
to [83]. Here, a simple summary (with slight simplifica-
tions in the presentation) is provided and the interested
reader is referred to [83] for more details.

The unknowns W and f are searched as polynomial
expansions of order k. They are computed order by
order, under the form

W(s) = z� + Ls +
∑
k≥2

Wk(s), (71a)

f(s) = ΛLs +
∑
k≥2

fk(s), (71b)

where L is the restriction of the matrix of eigenvec-
tors to the master modes of interest, and ΛL the lin-
ear diagonalized part of the dynamics restricted to the
master modes contained in L. Wk(s) represents an n-
dimensional vector of d-variate homogeneous polyno-
mials of degree k, starting at second order (quadratic
terms), while fk is n-dimensional.

By replacing (71) into the invariance Eq. (17) and
identifying termswith the same power k, on obtains the
so-called order-k homological equation as

DF(z�)Wk(s) − Lfk(s) − DWk(s)ΛLs = −Ek(s),

(72)

where the order-k error term Ek(s) has been introduced
as:

Ek(s) = [F(W<k(s))]k − [DW<k(s)f<k(s)]k , (73)

andwhere the shortcut notation [ . ]k refers to the selec-
tion of k-th order terms only, while W<k refers to all
orders strictly smaller than k.

More insight can be given by projecting onto the
modal coordinates, then allowing separating contribu-
tions due to master and slave coordinates. Denoting as
P the vector of eigenfunctions, one can introduce:

ξ k(s) = P−1Wk(s), (74)

the coefficients of the nonlinear mapping expressed in
the modal basis, as well as

ηk(s) = P−1Ek(s), (75)

the expression of the error-k vector in the modal basis.
The vector ξ k can be split as follows:

ξ k(s) =
[

ξ L
k (s)

ξ N
k (s)

]
, (76)

where the first d lines ξ L
k is the tangent part, related

to the original linear matrix L containing the master
mode coordinates, and the last n − d lines, ξ N

k , refers
to the normal part (slave coordinates). The normal part
of Eq. (72) is now called the normal co-homological
equation and reads

ΛN ξ N
k (s) − Dξ N

k (s)ΛLs = ηN
k (s), (77)

where the second member vector η has been split fol-
lowing the same notation. One must first solve this
equation as only depending on one unknown ξ N

k . The
remaining part is called the tangent co-homological
equation and reads

ΛLξ L
k (s) − Dξ L

k (s)ΛLs − fk(s) = ηL
k (s), (78)

In order to fully analyze the co-homological equa-
tions and express their solutions, let us first denote as
ξ k(s) = [ξ1k (s), . . . , ξnk (s)]t the n components of the
vector ξ k(s), which all are homogeneous polynomial
of degree k. The same notation is used for the sec-
ond vector of unknowns, fk(s) = [ f 1k (s), . . . , f dk (s)]t ,
which is d-dimensional and also composed of homo-
geneous polynomial of degree k. The known vector
ηk(s) = [η1k(s), . . . , ηnk (s)]t is developed as well fol-
lowing the same indicial notation. The normal part of
the cohomological Eq. (77) can now simply be rewrit-
ten component by component, for i = d + 1, . . . , n:

λiξ
i
k(s) − Dξ ik(s)ΛLs = ηik(s). (79)

Let us denote as ξ im the coefficient of themonomial term
associated with the i-th line, i = d + 1, . . . , n, and to
the vector of integers m such that m = [m1, . . . ,md ]t ,
where all m j are integers and |m| = m1 +m2 + · · · +
md = k is the order k of the polynomials considered.
Saying things differently, ξ im is the coefficient of the
monomial term sm1

1 sm2
2 . . . smd

d , of order k, and each
ξ ik(s) is composed of the summations of all possible
combinations of these order-k monomial terms. Since
Eq. (77) is diagonal with respect to ξ im, one can write,
for i = d + 1, . . . , n and for |m| = k:

(λi − mλL) ξ im = ηim, (80)

with the shortcut notation mλL = m1λ1 +· · ·+mdλd .
A cross-resonance occurs if there exist pairs (m, i)

such that λi = mλL . If the system has no cross-
resonance, then an explicit solution for the unknown
coefficient ξ im is found as

ξ im = ηim

λi − mλL
. (81)
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If a cross-resonance exist, then a strong coupling
exist between one slave coordinate and the set of mas-
ter coordinates, and there is an obstruction in solving
the normal cohomological equation. This means that
a strong nonlinear coupling exist between one master
and one slave coordinate such that the initial choice
is not good, and the remedy consists in enlarging the
number of master coordinates by considering the slave
resonant modes as masters.

Following the same notations, for the tangent co-
homological equation, one arrives at, for all i =
1, . . . , d:

λiξ
i
k(s) − Dξ ik(s)ΛLs − f ik (s) = η̃ik(s), (82)

with the shortcut notation η̃L
k (s) = ηL

k (s). Again, this
last equation can be explicited in terms of the unknowns
which are each of the coefficients of the monomial
terms. Using the same notation, one arrives at the fol-
lowing, for all i = 1, . . . , d

(λi − mλL) ξ im − f im = η̃im. (83)

The pairs (m, i) ∈ N
d × 1, . . . , d , with |m| ≥ 2 such

that λi = mλL create an internal resonance, refer-
ring to a nonlinear resonance relationship between the
eigenvalues of the master coordinates. When such an
internal resonance exist, then there is an obstruction to
the linearisation of the reduced dynamics.

Since in (83) two unknowns are present, namely
the coefficient of the monomials of both the nonlin-
ear change of coordinate ξ im and the reduced dynamics
f im, the solution to this equation is not unique and can
also be given even if there exist some resonances. This
explains why there exist many different ways of solv-
ing the problem, thus leading to the different styles of
parametrisation. The two main style of solutions are
given as the graph style and the normal form style.

The graph style is simply obtained by stating that
from order k = 2, all the corrections contained in the
master coordinates ξ L

k (s), are vanishing: ξ L
k (s) = 0.

This means that the master coordinates are only lin-
early related to the original ones. With this assump-
tion, one can then replace in Eq. (83) to arrive at the
terms allowing one to write the reduced dynamics as,
for i = 1, . . . d, |m| = k:

f im = −η̃im, ξ im = 0. (84)

With this choice, one recovers the classical technique
promoted from centre manifold theorem giving as ini-
tial guess a functional relationship (graph) between
slave and master coordinates.

In the normal form style, the idea is to simplify as
much as possible the reduced-order dynamics, by keep-
ing only the resonant monomials, and discarding all
other non-essential terms for the dynamical analysis.
This leads to a more complex calculation, and a full
nonlinear mapping between original coordinates and
reduced ones, and at the end one arrives at a normal
form for the reduced vector fields f . The drawback is
that calculations are a bit more involved (which is par-
ticularly true when there are numerous internal reso-
nances to handle). The advantage is that the parametri-
sation is able to go over the foldings of the manifold.

To this end, one solves Eq. (83) following the rules
(depending on the presence of internal resonance or
not):

If λi �= mλL , f im = 0, ξ im = η̃im

λi − mλL
, (85a)

If λi = mλL , f im = −η̃im, ξ im = 0. (85b)

The formulas given for this invariant manifold compu-
tation with normal form style can be extended to the
case d = n, and one then strictly recovers the usual
full normal form of the original system [83].

D Comparison of reduced dynamics

The aim of this appendix is to demonstrate the equiva-
lence between the reduced dynamics given by the graph
style as derived using the Shaw and Pierre approach,
Eq. (25), to the one obtained thanks to real normal form
approach, Eq. (32). In both case, reduction to a single
master mode is used. Theoretically speaking, the two
methods compute the same manifold and should thus
provide the same dynamics. However, their formula-
tions are differing since they are not expressed with the
same variables. Let us start from the dynamics obtained
using the graph style, rewritten here for the ease of read-
ing:

ẍm + ω2
mxm + gmmmx

2
m + xm

⎛
⎜⎜⎝

N∑
s=1
s �=m

2 gmmsg
s
mm

[
2ω2

m − ω2
s

ω2
s (ω

2
s − 4ω2

m)
x2m + 2

ω2
s (ω

2
s − 4ω2

m)
y2m

])

+hmmmmx
3
m = 0. (86)
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Using standard symmetry relationships on thequadratic
coefficients, namely gmsm = gmms = gsmm , the equation
can be rewritten as

ẍm + ω2
mxm + gmmmx

2
m + hmmmmx

3
m +

⎛
⎜⎜⎝

N∑
s=1
s �=m

(gsmm)2
2

ω2
s

[
2ω2

m − ω2
s

(ω2
s − 4ω2

m)
x3m + 2

(ω2
s − 4ω2

m)
xm y

2
m

])
= 0.

(87)

On the other hand, the reduced dynamics given by nor-
mal form writes:

R̈m + ω2
m Rm + hmmmm R3

m +
n∑

s=1

(gsmm)2
2

ω2
s(

2ω2
m − ω2

s

ω2
s − 4ω2

m
R3
m + 2

ω2
s − 4ω2

m
Ṙ2
m Rm

)
= 0.

(88)

Comparing term by term the two equations, one can
observe two main differences: the presence of the
quadratic term gmmmx

2
m , and the summation which

excludes the term s = m in the first equation. The
nonlinear relationship between the modal and the nor-
mal variables, in this case of a singlemaster coordinate,
reads:

xm = Rm − 1

3ω2
m
gmmm R2

m − 2

3ω2
m
gmmmS

2
m + O(R4

m , S4m),

(89)

where the shortcut notation Sm = Ṙm is used. This
equation is simply obtained from Eq. (28), assuming
a single-mode motion, and replacing ammm , b

m
mm and

γm
mm with their exact analytical values given in [287].

Note that this expansion is valid up to fourth-order,
since the cubic coefficients are vanishing: rmmmm =
ummmm = 0. Consequently, no cubic terms are present
in (89). Replacing (89) in (87), and denoting as T =
ẍm + ω2

mxm + gmmmx
2
m the term that will produce extra

quadratic and cubic terms, one arrives at:

T = R̈m + ω2
m Rm + 2gmmm

3
R2
m − 2gmmm

3ω2
m

S2m

− 2gmmm

3ω2
m

(
Ṙ2
m + Rm R̈m

)
− 4gmmm

3ω4
m

(
Ṡ2m + Sm S̈m

)

− 2(gmmm)2

3ω2
m

R3
m − 4(gmmm)2

3ω4
m

Rm Ṙ2
m, (90)

where the first line gathers linear and quadratic terms
and the second the cubic terms. One can first observe
that the linear terms will produce the same as those in
(88), a general property of identity-tangent nonlinear
mapping. In order to obtain the equivalence between the
two formulations, the goal is to show that the quadratic
terms are vanishing. This is easily achieved by assum-
ing that, at lower order, Ṙm = iωm Rm , R̈m = −ω2

m Rm

and so on. Replacing all the combinations, one obtains
that the quadratic terms exactly cancels. Also the cubic
terms appearing in (90) are exactly the one obtains from
the summation in Eq. (88) for s = m. Consequently,
the two equations are strictly equivalent up to the third
order.

E Implicit static condensation

This appendix aims at giving a few more details on the
static condensation method, underlining the link that
the ICE method shares with explicit condensation and
the role of invariant-breaking terms to produce the cur-
vatures of the stress manifold. This section use expla-
nations reported in [255], and the interested reader is
referred to this paper for more details.

Let us first underline the role of invariant-breaking
terms in the construction of the stress manifold. For
the sake of simplicity, let us assume modal expansion
for the equations of motion, Eq. (13), and that only
xm is selected as master mode. The method consists in
applying a static body force of the form fe = βmMφm
for several values of βm ∈ R, to compute with the
FE code the corresponding displacement X(βm) and
the modal coordinates xi (βm) by modal expansion. It
results in solving the following system:

ω2
mxm +

N∑
i=1

N∑
j=1

gmi j xi x j

+
N∑
i=1

N∑
j=1

N∑
k=1

hmi jk xi x j xk = βm, (91a)

∀s �= m, ω2
s xs +

N∑
i=1

N∑
j=1

gsi j xi x j

+
N∑
i=1

N∑
j=1

N∑
k=1

hsi jk xi x j xk = 0, (91b)
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in which the forcing is aligned with the m-th eigenvec-
tor, resulting in a zero forcing of the other oscillators,
for s �= m. Because of this last property and the implicit
function theorem, Eq. (91b) leads to the existence of a
static nonlinear relationship between the slave coordi-
nates xs and the master one xm , expressed formally as:

xs = cs(xm), ∀s �= m. (92)

Replacing in Eq. (91a), the reduced-order dynamics
simply reads:

ẍm + ω2
mxm +

N∑
i=1

N∑
j=1

gmi j ci (xm)c j (xm) +
N∑
i=1

N∑
j=1

N∑
k=1

hmi jkci (xm)c j (xm)ck(xm)

︸ ︷︷ ︸
βm (xm )

= 0, (93)

inwhichβm(xm) canbe identified as a polynomial in xm
to obtain the reduced order dynamics at any order. From
the above developments, it is clear that the dynamics of
Eq. (93) is equivalent to the one of the full model with
all the slave modal coordinates xs statically condensed
into the master dynamics.

The general explicit solution to Eq. (92) with closed
formulation is generally out of reach such that the cs
functions are known implicitly. Nevertheless, they can
be searched for as polynomial expansions and the first
terms can be found. In particular, the quadratic term
of the development is easy to find and is sufficient to
derive the third-order dynamics, it reads [255]:

cs(xm) = −gsmm

ω2
s
x2m + O(x3m), (94)

which, substituted into Eq. (93) with a subsequent trun-
cation up to third order leads to Eq. (37).

Moreover, Eq. (91b) shows that in the nonlinear
terms, the important invariant-breaking terms gsmmx

2
m

and hsmmmx
3
m have a large magnitude, and these terms

create a nonzero static response for xs . These couplings
make the manifold depart from the linear eigensub-
space to create the stress manifold.
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