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Abstract New wave excitations are revealed for a
(3 + 1)-dimensional nonlinear evolution equation to
enrich nonlinear wave patterns in nonlinear systems.
Based on a new variable separation solution with
two arbitrary variable separated functions obtained by
means of the multilinear variable separation approach,
localized excitations of N dromions, N × M lump lat-
tice and ring soliton lattice are constructed. In addition,
it is observed that soliton molecules can be composed
of diverse “atoms” such as the dromions, lumps and
ring solitons, respectively. Elastic interactions between
solitons and soliton molecules are graphically demon-
strated.
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1 Introduction

Nonlinear waves are universal in many fields such
as fluids, plasma, optics, finance. A number of non-
linear partial differential equations have been estab-
lished to model various nonlinear waves. Many effec-
tive methods have been established to explore exact
solutions to describe different waves, for instance,
the inverse scattering transform [1], the symmetry
approaches [2], the Hirota bilinear method [3] and var-
ious feasible transformations [4,5] including the Bäck-
lund transformation and the Darboux transformation.
It is noticed that localized excitations in (1 + 1)- and
(2 + 1)-dimensions have been discussed a lot, ranging
from a line-soliton, solitoff, kink and anti-kink to an
exponentially decaying dromion, algebraically decay-
ing lump, time-periodic breather, spatially periodic
breather, rogue wave and even a multi-valued folded
solitary wave. By contrast, nonlinear localized waves
in (3 + 1)-dimensions are relatively less considered.

The method of variable separation is known as one
of the fundamental and effective methods for solving
linear partial differential equations. Many efforts have
been made to develop nonlinear versions of the linear
variable separation method to find variable separation
solutions for nonlinear partial differential equations.
For instance, from the viewpoint of geometry, it was
proposed that a solution of an evolution equation is
separable if and only if it is a curve in the (k + 1)-
parameter space of characteristic fields [6]. The gen-
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eralized conditional symmetry approach was used to
study the separation of variables of quasilinear diffu-
sion equations with nonlinear source, and a complete
list of canonical forms was obtained for such equa-
tions admitting the functionally separable solutions [7].
By means of the symmetry constraints, a systematic
variable separation approach has been established [8],
although the independent variables of a reduced field
have not been totally separated. As it was applicable
only for integrable models with Lax pairs, the method
was later extended to any models no matter whether
they possess Lax pairs or not [9]. In order to totally
separate the independent variables, themultilinear vari-
able separation approach (MLVSA) and two types of
generalizations were first proposed to deal with (2 +
1)-dimensional integrable systems [10,11]. It is shown
effective to obtain variable separation solutions of non-
linear systems both integrable and not. However, no
arbitrary function with fewer variables exists for non-
integrable systems, and thus it is impossible to describe
abundant localized waves. Therefore, it is more mean-
ingful to apply theMLVSA to integrable systems in the
sense that they have Lax pairs, infinitely many sym-
metries and conservation laws and so on. The most
essential starting point for the MLVSA is that it must
have an auto-Bäcklund transformationwith an arbitrary
nonconstant seed solution. Lately, we have applied
the MLVSA to a (3 + 1)-dimensional Boiti–Leon–
Manna–Pempinelli equation, yielding a new kind of
variable separation solutionwith an arbitrary seed solu-
tion evolved in the potential fields, and thus, different
from the previous results, the seed solution also plays a
role in the wave interactions with different background
waves for the potential filed [12].

Recently, soliton molecules have attracted much
attention for their continuous discoveries in nonlin-
ear optical experiments [13–16]. As a special type
of nonlinear excitations, soliton molecules have also
been demonstrated in other physical systems, such as
in dipolar Bose–Einstein condensates and so on [17].
Soliton molecules come along from some fundamental
solitons acting as “atoms” [18]. It has been mathemat-
ically revealed that a soliton molecule can be gener-
ated from an exact two-soliton solution [19]. A new
mechanism, the velocity resonant, has been proposed
to find soliton molecules [20], and then many nonlin-
ear systems have been found to be able to excite soliton
molecules [21–27]. Hinted by this scheme, we found
interesting dromion molecules from a dromion lattice

based on the multilinear variable separation solution
[12].

In this paper, we focus on finding new variable sep-
aration solutions and novel nonlinear localized excita-
tions, particularly soliton molecules, for the following
(3 + 1)-dimensional nonlinear evolution equation

3uxz − 2uyt − uxxxy + 2(uuy)x

+ 2(ux∂
−1
x uy)x = 0, (1)

with ∂−1
x denoting the integration with respect to the

variable x , which was first introduced to illustrate that
it can be decomposed into three (1 + 1)-dimensional
AKNS equations with the help of a direct way and the
nonlinearization of a Lax pair [28]. Simultaneously,
algebraic-geometrical solutions expressed explicitly in
terms of the Riemann theta functions were obtained.
Later on, many solutions of Eq. (1) have been obtained
including the N -soliton solutions, complexions, posi-
tons, negatons, rogue waves, breathers and so on [29–
38]. Particularly, based on the decomposition approach,
the antidark soliton solution on a finite backgroundwas
constructed for Eq. (1) via the Darboux transformation
together with the limit technique; then, under the veloc-
ity resonant mechanism, the antidark solitonmolecules
were found [23].

The paper is organized as follows. In Sect. 2, a new
variable separation solution with two arbitrary vari-
able separated functions is obtained for Eq. (1), from
which various nonlinear excitations and wave interac-
tions on differentwave backgrounds can be explored. In
Sect. 3, three different restrictions are imposed on the
arbitrary variable separated functions, and thus three
types of nonlinear excitations, namely, the dromions,
lumps and ring solitons, are obtained. In particular,
when a pair of dromions, lumps or ring solitons have
the same velocity, then they can be resonant to soli-
ton molecules. Elastic interactions between a dromion
and a dromion molecule, between a lump and a lump
molecule, between two lumpmolecules, between a ring
soliton and a ring solitonmolecule are graphically illus-
trated, respectively. The last section is devoted to dis-
cussion and summary.

2 Variable separation solutions

In order to apply the multilinear variable separa-
tion approach, we first introduce the following auto-
Bäcklund transformation
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u = −3(ln f )xx + u0 + u1, (2)

where u0 ≡ u0(z, t), u1 ≡ u1(x, t) are arbitrary func-
tions of the indicated arguments. It is straightforward
to verify that u = u0 +u1 satisfies Eq. (1), and u deter-
mined by Eq. (2) is also a solution of (1) if f satisfies
the bilinear equation

(6DyDt − 9DzDx + 3D3
x Dy − 6(u0 + u1)Dx Dy

+2h1x + 2h0) f · f = 0, (3)

obtained by substituting (2) into (1), where h0 and h1
are two arbitrary functions of (y, z, t), and Di (i =
x, y, z, t) is the well-known Hirota’s bilinear operator
defined as [4]

Dm
x Dn

y D
r
z D

s
t f · f

= (∂x − ∂x ′)m(∂y − ∂y′)n(∂z − ∂z′)
r (∂t − ∂t ′)

s

f (x, y, z, t) · f (x ′, y′, z′, t ′)|x ′=x,y′=y,z′=z,t ′=t .

It is noted that some results from Eq. (3) with
u0 = u1 = h0 = h1 = 0 have been obtained in recent
years. For instance, a bilinear Bäcklund transformation
was derived, fromwhich soliton and stationary rational
solutions for Eq. (1) were obtained [34]. The classi-
cal Hirota’s bilinear method requiring f be the linear
composition of some exponential functions of the trav-
eling wave variables ξi = ki1x + ki2y + ki3t + ki4
with constants ki j ( j = 1, 2, 3, 4) was used to get N -
soliton solutions [33]. Taking some proper constraints
on these constants ki j , breathers and rogue waves were
produced accordingly [35]. Besides, more assumptions
can be made on f to produce different wave excita-
tions and interactions, for example, taking f as some
polynomials of the variables x, y, z, t leads to ratio-
nal and rogue wave solutions [36], and if some expo-
nential functions were simultaneously introduced, then
different interactions between lumps and other solitons
were obtained [37]. Combined with the KP hierarchy
reductionmethod, semi-rational solutionswere derived
to describe fission and fusion collision of high-order
lumps and line solitons [38] .

Here, we aim to find new nonlinear variable separa-
tion solutions of nonlinear system (1) by assuming the
expansion function f is fixed as

f = a0 + a1r + a2s + a3rs, (4)

where a0, a1, a2 and a3 are constants, and r ≡ r(x, t)
and s ≡ s(y, z) are functions of the indicated variables.
The substitution of (4) into (3) leads to

(a0a3 − a1a2)(syrxxx

+2syrt + 3szrx − 2(u0 + u1)sy) = 0, (5)

with h0 and h1 fixed as zero. It is not difficult to find that
if requiring a0a3−a1a2 �= 0 and u0 = h(t)−3g′(z)/2
with two arbitrary functions g and h of the indicated
arguments, Eq. (5) can be separated into two variable
separated equations

2rt + rxxx − 2(u1 + h(t))rx = C, (6)

sz − g′(z)sy = C, (7)

where the separation constantC can be set zerowithout
the loss of generality. Solving Eqs. (6) and (7) gives

u1 = 2rt + rxxx
2rx

− h(t), s = s(y + g(z)). (8)

Consequently, we obtain a new multilinear variable
separation solution (MLVSS) of (1) as

u = 2rt + rxxx
2rx

− 3

2
g′(z) − 3(a1 + a3s)rxx

a0 + a1r + a2s + a3rs

+ 3(a1 + a3s)2r2x
(a0 + a1r + a2s + a3rs)2

, (9)

where g is an arbitrary function of z, r is an arbitrary
function of (x, t), and s is an arbitrary function of (y+
g).

It is remarkable that the arbitrary functions in
MLVSS (9) can be utilized to construct abundant non-
linear excitations. It is worthy of stressing that the first
two terms in (9) are responsible for different back-
groundwaves, and thus onemight be able to observe the
interplay between the background waves and various
excited waves determined by the last two terms in (9).
Furthermore, it is emphasized that for this particular
model, the potential of the field U ,

U ≡ uy = 6(a0a3 − a1a2)(a3s + a1)syr2x
(a3rs + a1r + a2s + a0)3

− 3(a0a3 − a1a2)syrxx
(a3rs + a1r + a2s + a0)2

, (10)

cannot be expressed in the universal form applicable
for a number of integrable systems [10–12].

3 Nonlinear excitations and their interactions

It is well known that dromions, lumps, compactons,
foldons and many other localized excitations can be
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explained by a MLVSS [10,11]. In fact, more vari-
ous wave interactions can be explored for the sake of
the arbitrary functions in MLVSS (9) (or Eq. 10). In
this section, we are fully concentrated on constructing
soliton molecules made of different “atoms” including
dromions, lumps and ring solitons, and then investigat-
ing their interactions.

3.1 Dromions, dromion molecules and their
interactions

To look for dromion excitations for the potential field
U (≡ uy) given by (10), the variable separated func-
tions r and s are restricted as

r = c +
N∑

i=1

exp[ωi − (ki x + vi t + bi )
2],

s = C + exp[� − (K1y + sech(L1z))
2], (11)

where ki , vi , bi , ωi , K1, L1, c, C and � are arbi-
trary constants. In order to make it easier to graphically
display diverse wave interactions, we take z = 5. In
this reduced space-time {x, y, t}, the potential quan-
tity U determined by (10) with (11) can describe
diverse dromion behaviors, and the arbitrary constants
vi and ωi determine the velocities and shapes of the
dromions, respectively. Below gives three representa-
tive cases about the basic dromion–dromion interac-
tion, new dromion molecules and a dromion–dromion
molecule interaction.

Case 1. Dromion–dromion interaction. Two dro-
mions can be obtained by taking a0 = N = ω2 =
2, c = ω1 = v1 = −v2 = 3, a1 = a2 = K1 = L1 =
k1 = k2 = 1, a3 = C = � = 0 and b1 = −b2 = 5.
They travel in the opposite directions along the x-axis,
and fully collide at time t = −5/3, determined from
the general formula for the interaction time

t = b1k1 − b2k2
k1v2 − v1k2

. (12)

Case 2. Dromion molecules. It is known that two
dromions can be resonant to form a dromion molecule
when their velocities are of the same, inherited from the
velocity resonant mechanism. If the velocities of two
dromions in the above case are replaced by v1 = v2 =
3, then they are bounded to be a dromion molecule,
moving steadily along the x-axis, as displayed in Fig. 1.
It is clearly observed that the dromion molecule is

asymmetric, due to different three-dimensional struc-
tures of two dromion “atoms.” Actually, the shapes of
dromions are determined by the parametersωi and their
center distances are calculated by |b1 − b2| along the
x-axis. Consequently, taking ω1 = ω2 results in the
generation of a symmetric dromion molecule.

Case 3. Dromion–dromion molecule interactions. It
is noted that various soliton molecules consisting of
different numbers of either symmetric or asymmet-
ric dromions can be produced by utilizing Eq. (11)
for that it acts as a building block of N dromions
with different bi and vi . Therefore, it is feasible to
investigate nonlinear interactions between dromions
and dromion molecules. Here, we consider the sim-
plest example with N = 3 for a dromion and a sym-
metric dromion molecule. The related parameters are
taken as c = ω3 = v1 = −v2 = −v3 = b3 = 3
K1 = L1 = k1 = k2 = k3 = 1, ω1 = ω2 = 2,
C = � = 0 and b1 = −b2 = 5. In this particu-
lar setting, an independent dromion interacts with the
dromion “atoms” of a symmetric dromion molecule
one by one at time t1 = −5/3 and t2 = −1/3, which
is calculated from general interaction time (12) and

t2 = b1k1 − b3k3
k1v3 − v1k3

, (13)

respectively. It is also graphically demonstrated in
Fig. 2 that after the collision, the dromion and the
dromion molecule remain their shapes and velocities;
consequently, they have experienced a completely elas-
tic interaction.

3.2 Lumps, lump molecules and their interactions

Now we suppose r and s in the form of

r = c +
N∑

i=1

hi
ωi − (ki x + vi t + bi )2

,

s = C +
M∑

i=1

Hi

�i − (Ki y + Vi z + Bi )2
, (14)

where c, C, ki , vi , bi , hi , ωi , Ki , Vi , Bi , Hi and�i

are arbitrary constants to observe nonlinear wave pat-
terns of lumps and lumpmolecules. Under this assump-
tion, the potential field U given by Eq. (10) with (14)
describes an N ×M lump lattice, and then by adjusting
the velocities and shapes of its lumps, lump molecules
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Fig. 1 An asymmetrical dromion molecule: a 3D plot at time t = 0; b density plot at time t = 0; and c time evolution from t = −1 to
t = 1

Fig. 2 An elastic interaction between a dromion and a symmetrical dromion molecule at times a t = −4, b t = −1 and c t = 2,
respectively

with different numbers of symmetric and asymmetric
lumps could be generated. Hereafter, z = a3 = 2 and
a0 = a1 = a2 = 1 are fixed to display lump molecule–
lump molecule and lump–lump molecule interactions.

Case 1. Lumpmolecules. In the case of N = M = 2,
a lump lattice is constructed by 2 × 2 lumps, namely,
four lumps are situated in two rows and two columns.
Take the parameters as c = −v1 = k1 = k2 = h1 =
K1 = K2 = V1 = V2 = 1, h2 = v2 = 3, b1 =
−b2 = ω1 = ω2 = C = H1 = H2 = 5, −B1 = B2 =
8 and �1 = �2 = 1/5. Hence, two lumps in each
column are identical and bounded to form a symmetric
lump molecule. The center distance between two lump
“atoms” is 16 given by |B1−B2| along the y axis. These
two symmetric lump molecules move along the x axis,
fully interact each other at time t = 2.5 determined
by Eq. (12), and the interaction is shown completely
elastic. If the values of h1 and�1 are replaced by h1 =
3 and �1 = 1, then two asymmetric lump molecules
come in being, move in the opposite directions along
the x-axis and also interact fully elastically at t = 2.5,
as exhibited in Fig. 3.

Case 2. Lump–lump molecule interactions. Here a
simplest interaction is considered between a lump and a
symmetric lump molecule by setting N = 3 and M =
1. More complicated interactions can be explored by
introducing more lumps and lump molecules. Figure 4
displays an elastic interaction between a lump and a
symmetric lump molecule under the parameters c =
h1 = ω3 = v2 = v3 = b3 = 3, K1 = V1 = k1 =
k2 = k3 = h2 = h3 = −v1 = 1, C = ω1 = ω2 =
ω3 = H1 = b1 = −b2 = 5, B1 = −8 and � = 1/5. It
is seen that the lump interacts with two lump “atoms”
one by one at time t = 2.5 and t = 0.5 decided by Eqs.
(12) and (13), respectively.

3.3 Ring solitons, ring soliton molecules and their
interactions

In some special situations, one can have a typical
wave solution with its value nonzero only on a closed
curve and decaying exponentially away from it, which
is named a ring soliton and exists in many (2 + 1)-
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Fig. 3 An elastic interaction between two asymmetrical lump molecules at time a t = −2, b t = 2.5 and c t = 7, respectively

Fig. 4 An elastic interaction between a lump and a symmetrical lump molecule at time a t = −3, b t = 2 and c t = 7, respectively

dimensional integrable systems [10]. Here it is discov-
ered that similar ring solitons exist in the reduced (3 +
1)-dimensional setting and ring soliton molecules can
also be excited. The variable separated functions r and
s in the following form

r = c +
N∑

i=1

exp[ωi − (ki x + vi t + bi )
2],

s = C +
M∑

i=1

cosh[�i + (Ki y + Vi z + Bi )
2], (15)

with arbitrary constants c, C , ki , vi , bi , hi , ωi , Ki , Vi ,
Bi , Hi and �i can be used to build up ring solitons for
the potential field U with a0 = 2, a3 = 0, a1 = a2 =
1 in the reduced space-time {x, y, t} by setting z =
0. The values of vi/ki and Vi/Ki give the velocities,
vi , Vi , bi and Bi decide the center,ωi and�i determine
the radius (and thus the amplitudes) of the ring solitons,
respectively. Below demonstrates a ring soliton, and
the interaction between a ring soliton and a ring soliton
molecule.

Case 1. Ring solitons. Let us take N = M = 1 to
show a ring soliton in detail with the parameters fixed
as c = C = −K1 = k1 = V1 = −v1 = �1 = 1,
ω1 = 10 and B1 = b1 = 5. In this case, a novel
crossed saddle-type ring soliton is constructed as shown
in Fig. 5a. It is not difficult to verify that the potential

fieldU decays exponentially away from the circle (x+
5)2+(y+5)2 = 9, namely, the ring solitonhas its center
at (−5,−5) and a radius 3 at time t = 0, as displayed in
Fig. 5b. Thewave pattern for the corresponding original
field u is exhibited in Fig. 5c, which illustrates that
u captures a salient feature of a ring soliton situated
on a parabolic like wave background, as a result of
the interplay between the excited wave and the wave
background.

Case 2. Ring soliton–ring soliton molecule inter-
actions. Under the parameters N = 3, M = c =
C = k1 = k2 = k3 = K1 = V1 = −v1 = −v2 =
v3 = �1 = 1, ω1 = ω2 = 10, ω3 = 15 and
b1 = −b2 = −b3 = B1 = 5, the potential field U
describes an interaction between a ring soliton and a
symmetric ring soliton molecule, as shown in Fig. 6.
The symmetric ring soliton molecule is constituted by
two small ring solitons in the same shape and velocity.
The two “atoms” have the same radius 3 and their cen-
ters are located at (t − 5,−5) and (t + 5,−5), respec-
tively, while the big ring soliton has the radius

√
14

and its center at (−t + 5,−5). It is observed that the
interaction is elastic as they all restore their structures
and velocities after the big ring soliton interacts with
two “atom” ring solitons one by one at time t = 0 and
5, respectively.
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Fig. 5 A novel ring-type soliton at time t = 0, a the potential field U , b density plot of U and c the original field u

Fig. 6 An elastic interaction between a symmetrical ring soliton molecule and a ring soliton at time a t = −6, b t = 3 and c t = 12,
respectively

If ω2 is set as 15 instead of 10, then one obtains
an asymmetric ring soliton molecule for the potential
fieldU , which interacts elastically with the ring soliton
in Fig. 7a–c. The related nonlinear excitations for the
original field u are plotted in Fig. 7d–f accordingly.

4 Summary and discussion

In summary, with the help of the multi-linear variable
separation approach, we have obtained a new variable
separation solution for a (3 + 1)-dimensional nonlin-
ear evolution equation. Three types of selections have
been made for the arbitrary variable separated func-
tions to describe different excitations including the N -
dromion solution, N ×M lump lattice and N ×M ring
soliton lattice. Following the velocity resonant mecha-
nism, soliton molecules can be produced by adjusting
the velocities of some dromions, lumps and ring soli-
tons.

In detail, soliton molecules with two “atoms” are
discussed, which are the dromion molecule, lump

molecule and ring soliton molecule. It is graphically
demonstrated that these soliton molecules can be sym-
metric or asymmetric, depending on their “atom” soli-
tons are of the same or not. It is also revealed that
interactions between the dromion molecule and the
dromion, between the lump molecule and the lump,
between two lump molecules, between the ring soliton
molecule and the ring soliton are all completely elastic.
In addition, it is shown that in a special situation, the
original field u can share a similar nonlinear excitation
for the potential field U except for an extra parabolic-
like wave background.

As is known, soliton molecules have been observed
in different physical experiments. Due to various
wave structures of solitons, the structures of soliton
molecules can also be very diverse. It is hoped that the
findings in this work really enrich the types of soliton
molecules. In addition, soliton molecules possessing
other structures can also be explored in this mathemat-
ical setting. However, the physical background of these
soliton molecules is still unclear and also the mecha-
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Fig. 7 An elastic interaction between an asymmetric ring soliton molecule and a ring soliton at time a, d t = −8, b, e t = 2 and c, f
t = 12 for the potential field U (upper) and the original field u (lower), respectively

nism of their appearance, which deserve further inves-
tigations.
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