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Abstract The identification of time-varying physi-

cal parameters of nonlinear systems is still a challeng-

ing task. Limited studies based on the wavelet

multiresolution analysis (WMA) have been attempted,

which requires full measurements of structural dis-

placement, velocity and acceleration responses of all

degrees of freedom and exact information of external

excitations. This limits the engineering application of

these methods. This paper proposes approaches to

identify the time-varying physical parameters of

nonlinear structures in three cases using only partially

measured structural responses. Firstly, the identifica-

tion of time-varying nonlinear structures with a small

number of elements under known excitations is

discussed. The fading-factor unscented Kalman filter

(FUKF) method is applied to locate the time-varying

parameters, and the WMA integrated with UKF

method is employed using partially measured accel-

eration responses. Secondly, it is further extended to

the identification of time-varying nonlinear structures

with a small number of elements but under unknown

excitations. An improved fading-factor unscented

Kalman filter under unknown input (FUKF-UI)

method is proposed to locate the time-varying param-

eters, and WMA integrated with UKF-UI method is

utilized with partially observed acceleration and

displacement responses. Thirdly, for practical engi-

neering applications, the identification of time-varying

nonlinear structure with more elements under

unknown excitations is conducted. The proposed

FUKF-UI method is employed to locate the time-

varying parameters of the whole structure. Then, the

whole structure is divided into several substructures

and the unknown interaction forces are regarded as the

fictitious unknown inputs to the substructure. Thus,

physical parameters of each substructure can be

identified in parallel by the combination of WMA

and UKF-UI. Three numerical studies corresponding

to these three cases are conducted, respectively, to

demonstrate the effectiveness and accuracy of the

proposed methods.
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1 Introduction

Time-varying properties are common for structures in

service due to severe natural and manmade hazards,

resulting in that the identification of time-varying

structural systems is a very important research topic

[1, 2]. Bao et al. [3] conducted a comprehensive state-

of-the-art review of data science and engineering in

structural health monitoring, accessed the conditions

and identified the occurrence of damages using

machine learning algorithms. The quasi-static moni-

toring data are rarely analyzed and utilized in damage

detection, Bao and Li [4] performed pattern recogni-

tion on quasi-static monitoring data, and proposed

approach through the variation of pattern parameters.

The results are so promising that this study made the

static monitoring data be useful and open a new field

for structural health monitoring. Effective methods

have been investigated to identify the time-varying

physical parameters, such as the state space model-

based methods [5–7] in the time domain, or the

wavelet multiresolution analysis (WMA)-based meth-

ods [8–12] in the time–frequency domain. In partic-

ular, WMA has an excellent function on arbitrarily

adjustable time–frequency resolution. Most existing

WMA-based methods expand the time-varying struc-

tural physical parameters into scale coefficients and

then identify these coefficients by the linear least-

squares estimation [8–10]. However, it is required that

the displacement, velocity, acceleration responses at

all degrees of freedom (DOFs) and external load

information are known in these methods, which is a

tough condition in actual applications. To overcome

the limitation on full observations, novel methods

have been proposed [11, 12] recently by the authors to

identify the time-varying linear structures under

known or unknown excitations using partial measure-

ments based on the synthesis of WMA and Kalman

filter (KF), transforming the solution of scale coeffi-

cients into a nonlinear least-squares optimization

problem. However, it is required to expand all physical

parameters, including time-varying parameters and

time-invariant parameters, into scale coefficients

based on WMA. With the growing number of scale

coefficients, the difficulty of least-squares optimiza-

tion is heavily increased.

Moreover, these above-mentioned methods are

proposed based on the assumption of the linear model.

However, under strong external loads such as

earthquake, strong wind, impact and explosion, engi-

neering structural components may present nonlinear

behavior intrinsically [13–15]. Xu et al. [14] success-

fully analyzed the nonlinear failure mechanism of

reinforced concrete columns under earthquake based

on a region-based deep convolutional neural network.

In recent years, many scholars have carried out in-

depth researches on the identification of nonlinear

structural characteristics and presented a variety of

identification methods, including time-domain

[16–19], frequency-domain [20] or time–frequency

analysis methods [21–27]. However, the parameters of

nonlinear models are assumed to be steady in most of

these methods, only a few efforts have been attempted

on the identification of time-varying nonlinear sys-

tems. Adaptive identification techniques based on KF

have the potential to track time-varying parameters of

hysterically degrading structures [5–7], which

exploited the track factor, adaptive correction factor

or adaptive factor matrix to deal with the evolution of

system variation. The challenging issue is that either

these adaptive algorithms have strong subjectivity on

empirical factors [7], or it is time-consuming in

calculating the optimal matrix at each time step [6].

The WMA-based method mentioned above can also

be used to identify the time-varying nonlinear systems.

For instance, Chang and Shi [27] proposed amethod to

identify the time-varying physical parameters and

model parameters in the Bouc–Wen hysteresis model

based on WMA. However, this method needs full

information on the structural displacement, velocity,

acceleration responses and excitation. Furthermore, in

addition to the stiffness and damping parameters, the

parameters in the nonlinear model are also needed to

be expanded by WMA, which increases the complex-

ity than the identification of linear systems.

With partial measurements, the extended Kalman

filter (EKF) and unscented Kalman filter (UKF) [28]

have been commonly used in the identification of

nonlinear time-invariant systems. Compared with

EKF, UKF is more superior as it does not need the

calculation of the Jacobian matrix and a linearization-

based approximation of the nonlinear system, realizing

an on-line identification with a better recognition

accuracy [29]. Furthermore, the UKF method for the

case of unknown excitations has been derived and

successfully applied to the physical parameter identi-

fication of nonlinear systems under unknown loads

[30]. However, these methods are only suitable for the
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time-invariant systems. Adaptive UKF methods have

been proposed for the identification of time-varying

structures, combining with the adjustment of error

covariance [31–33] or the adjustment of noise covari-

ance matrix [34, 35]. This may depend on the fading

factors in most of the developed methods. However, if

the fading factors are not selected properly, one may

only roughly judge which parameter has the most

possibility of varying property, but the change degree

is difficult to be accurately determined. Moreover, all

these adaptive methods are derived on the premise of

known excitation. To the best knowledge of the

authors, there is a lack in the identification of time-

varying nonlinear systems under unknown excitations.

In addition, it should be pointed out that the existing

WMA-based methods are only applicable to structures

with a small number of elements [8–12, 27]. The reason

is that the number of scale coefficients in the least-

squares process will increase with the number of

elements, which makes it difficult to obtain the global

optimal solution especially when the quality of obser-

vation data is poor. The ‘‘divide and conquer’’ idea of

the substructural-based methods provides a feasible

strategy for the identification of structures with more

elements [36–40]. Many scholars have also introduced

the concept of substructure into the identification of

nonlinear structures [41–44]. However, these methods

are mostly used to identify the parameters of time-

invariant systems, and they still have some shortcom-

ings such as the difficulties in determining the interface

forces, the incapability of parallel identification and the

existence of propagation errors [45]. Shi and Chang

[46, 47] presented an offline substructural method to

identify the time-varying nonlinear shear-type build-

ings based on WMA. Nevertheless, the method

requires all the displacement, velocity and acceleration

responses inside and at the interfaces of the substruc-

ture. Further development and studies on identification

techniques for time-varying nonlinear structures with

more elements are still needed.

Based on the above-mentioned detailed literature,

most WMA-based methods are used to identify the

physical parameters of time-varying linear systems,

while only a few studies are conducted for the time-

varying nonlinear systems. In addition, these methods

require full measurements of displacement, velocity,

acceleration and external loads. Furthermore, all

physical parameters including time-varying and time-

invariant parameters are expanded by WMA, which

leads to a significant increase in the number of scale

coefficients. Therefore, two-step identification pro-

cesses are proposed in this paper to identify the

physical parameters of time-varying nonlinear systems

by using partial measurements. Three cases are

discussed, respectively. The first case is the identifica-

tion of time-varying nonlinear structures with a small

number of elements under known excitations. The

time-varying physical parameters are located by the

fading-factor unscented Kalman filter (FUKF) in the

first step, and the method integrating WMA with UKF

is proposed to identify the time-varying physical

parameters in the second step, which uses partially

measured acceleration responses. A numerical exam-

ple of a six-story time-varying nonlinear shear frame

under known seismic acceleration is provided, with

abruptly changed or gradually varying parameters, to

verify the effectiveness of the first proposed identifi-

cation process. Considering that the external loads are

always hard to measure in practical situations, the

study is extended to the second case, that is, the

identification of time-varying nonlinear structureswith

a small number of elements but under unknown

excitations. Herein, the improved unscented Kalman

filter under unknown input (UKF-UI)method proposed

by the authors [30] is adopted. The time-varying

physical parameters are located by the proposed

fading-factor UKF-UI (FUKF-UI) in the first step,

and the method integrating WMA with UKF-UI is

proposed to identify the physical parameters using

partially measured acceleration and displacement

responses in the second step. The numerical study on

a truss structure is conducted to identify the time-

varying parameters and unknown excitations simulta-

neously. The last case is the identification of time-

varying nonlinear structures with more number of

elements under unknown excitations, which is inves-

tigated based on the substructural method. The time-

varying physical parameters of the whole structure are

located by the proposed FUKF-UI method in the first

step. In the second step, the whole structure is divided

into several substructures and the unknown interaction

force is considered as the fictitious ‘‘unknown input’’.

Therefore, each substructure can be identified in

parallel using the proposed WMA integrated with

UKF-UI method. The numerical study on a ten-story

shear frame demonstrates that the third proposed

identification process is effective for the identification
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of structures with more number of elements under

unknown excitations.

The remaining part of this paper is organized as:

Sect. 2 presents the identification process and numer-

ical validation of time-varying nonlinear structures

with a small number of elements under known

excitations. Section 3 is extended to the case of

time-varying nonlinear structures with a small number

of elements but under unknown excitations. Section 4

further extends the study to the case of time-varying

nonlinear structures with more number of elements

under unknown excitations by using the substructural

method. Finally, some conclusions with recommen-

dations on the further research are presented in Sect. 5.

2 Identification of time-varying nonlinear

structures with a small number of elements

under known excitations

2.1 The proposed two-step identification process

The expansion of all physical parameters, including

stiffness parameters, damping parameters and nonlinear

model parameters, leads to a large number of scale

coefficients. This increases the possibility of not

obtaining local optimization solutions, especially for

the case with poor-quality measurement data. Thus, it is

difficult or even impossible to obtain global optimal

scale coefficients when the number of unknown

parameters is large. In fact, the time-varying physical

parameters are always sparse in the systems [38]. The

time-invariant parameter can be identified directly as a

time-invariant coefficient. It is not necessary to expand

all parameters into scale coefficients by WMA, which

increases the number of coefficients to be identified for

the time-invariant parameters instead. This paper pro-

poses a two-step identification process for the time-

varying nonlinear physical parameters. The time-vary-

ing parameters are localized using the FUKFmethod in

the first step. Then an objective function is constructed

basedonWMAandUKF in the second step,which is the

implicit function of the time-invariant physical param-

eters and scale coefficients of time-varying parameters.

Finally, these unknown variables are solved by the

nonlinear least-squares optimization. The detailed pro-

cedure is introduced as follows.

2.1.1 Locate the time-varying physical parameters

by the FUKF method

The equation of motion of a time-varying nonlinear

system is described as:

M€xðtÞ þ R hðtÞ; xðtÞ; _xðtÞð Þ ¼ gfðtÞ ð1Þ

in which M is the time-invariant and known mass

matrix, f is the known excitation with the influence

matrix g, x, _x and €x are displacement, velocity and

acceleration vector, respectively, h is the vector of

physical parameters including stiffness, damping and

nonlinear model parameters, R is the total restoring

force of the structural system.

Supposing an augmented state vector

Z ¼ xT ; _xT ;hT
� �T

, Eq. (1) can be converted into the

following state space equation as

_Z ¼
_x
€x

_h

8
<

:

9
=

;
¼

_x
M�1 gf � R h; x; _xð Þ½ �

0

8
<

:

9
=

;
þw

¼ g Z; fð Þþw ð2Þ

in which w is the process noise that is assumed to be a

Gaussian white noise process with zero mean and a

covariance matrix E wwT½ � ¼ Q.

Given partially measured acceleration responses,

the discrete observation equations is expressed as

ykþ1 ¼ €xm;kþ1 ¼ La€xkþ1þvkþ1 ¼ LaM
�1

gfkþ1 � R hkþ1; xkþ1; _xkþ1ð Þ½ �þvkþ1

¼ h Zkþ1; fkþ1ð Þþvkþ1

ð3Þ

where ykþ1 and €xm;kþ1 represent the observation and

the measured acceleration at the time instant

t ¼ k þ 1ð ÞDt, respectively, Dt is the sampling inter-

val, La is the accelerometer position matrix and vkþ1 is

the measurement noise assumed as a Gaussian white

noise process, with mean value of zero and covariance

matrix of E vkþ1v
T
kþ1

� �
¼ Rkþ1.

Similar as conventional UKF [28], the FUKF

method is implemented based on the following

procedure, including sigma point calculation, time

predication and measurement updating [31].

Sigma point calculation

A set of 2N þ 1 sigma points vk kj are generated by

using the unscented transform
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vi;k kj ¼

Ẑk kj ; i¼ 0

Ẑk kj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ #ð ÞP̂Z;k kj

q� �

i

; i¼ 1;. . .N

Ẑk kj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ #ð ÞP̂Z;k kj

q� �

i

; i ¼ N þ 1; . . .2N

8
>>>><

>>>>:

ð4Þ

where N is the dimension of z, Ẑk kj is the estimated

state at t ¼ kDt, P̂Z;k kj is the error covariance matrix

that is expressed as

P̂Z;k kj ¼ E Zk � Ẑk kj
	 
�

Zk � Ẑk kj
	 
To

,

# ¼ j21ðN þ j2Þ � N, j1 and j2 are scaling parame-

ters determining the spread of the sigma points.

Time predication

The propagation of the sigma points is predicted

based on the state space equation

vi;kþ1 kj ¼ vi;k kj þ
Z ðkþ1ÞDt

kDt
g Zt kj ; f
	 


dt ð5Þ

The predicted state vector ~Zkþ1 kj and error covari-

ance matrix ~PZ;kþ1 kj are given as

~Zkþ1 kj ¼
X2N

i¼0

Wm
i vi;kþ1 kj ð6Þ

~PZ;kþ1 kj ¼ k
X2N

i¼0

Wc
i ðvi;kþ1 kj � ~Zkþ1 kj Þðvi;kþ1 kj

� ~Zkþ1 kj ÞT þQkþ1 ð7Þ

where Wm
i and Wc

i are the weight coefficients of the

predicted mean and covariance, respectively. Herein a

fading factor k k� 1ð Þ is introduced into the conven-

tional UKF. In the first step, k ¼ 22=Nu is adopted

based on an existing study [38], which implies that the

half-life of the contribution of a data point is Nu time

steps.

Similarly, the estimated measurement vector

ŷkþ1 kþ1j at t ¼ k þ 1ð ÞDt and its error covariance

matrix P̂y;kþ1 are computed as

ŷi;kþ1 kj þ1 ¼ h vi;kþ1 kj ; fkþ1

� �
; ŷkþ1 kþ1j

¼
X2N

i¼0

Wm
i ŷi;kþ1 kþ1j ð8Þ

P̂y;kþ1 ¼ k
X2N

i¼0

Wc
i ðŷi;kþ1 kþ1j � ŷkþ1 kþ1j Þðŷi;kþ1 kþ1j

� ŷkþ1 kþ1j ÞT þ Rkþ1

ð9Þ

Besides, the cross-covariance matrix P̂Zy;kþ1 is

estimated as

P̂Zy;kþ1 ¼ k
X2N

i¼0

Wc
i vi;kþ1 kj � ~Zkþ1 kj

n o
ŷi;kþ1 kþ1j � ŷkþ1 kþ1j

n oT

ð10Þ

Measurement updating

The structural state vector Ẑkþ1 kþ1j and error

covariance matrix P̂Z;kþ1 kþ1j are updated as

Ẑkþ1 kþ1j ¼ ~Zkþ1 kj þKG;kþ1ðykþ1 � ŷkþ1 kþ1j Þ ð11Þ

P̂Z;kþ1 kþ1j ¼ ~PZ;kþ1 kj �KG;kþ1P̂y;kþ1K
T
G;kþ1 ð12Þ

in which KG;kþ1 is the Kalman gain matrix expressed

as

KG;kþ1 ¼ P̂Zy;kþ1ðP̂y;kþ1Þ
�1 ð13Þ

Based on the identification results of FUKF, the

physical parameter vector h is divided into a time-

varying parameter vector h1 and a time-invariant

parameter vector h2 qualitatively. Thus, the time-

varying physical parameters can be successfully

localized.

2.1.2 Identify the time-varying physical parameters

by the proposed WMA integrated with UKF

method

In the second step, a novel method based onWMA and

UKF is proposed to identify h2 and scale coefficients

corresponding to h1 quantitatively.
Wavelet multiresolution analysis

WMApossesses a strong capability in decomposing

any signal into approximate and detailed parts in

different scale levels, corresponding to the low-

frequency and high-frequency components of the

signal, respectively [8–12]. Considering that the signal

energies in civil engineering aremostly concentrated in

the low-frequency component, the time-varying phys-

ical parameter h1;i i ¼ 1; 2; . . .;m1ð Þ is expanded in the
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wavelet domain by only reserving the low-frequency

part as

h1;iðtnÞ �
X

li

wJi;li
/Ji;li

ð2Jin� liÞ; n ¼ 1; 2; . . .;Nt

ð14Þ

where h1;i denotes the ith time-varying parameter, m1

is the number of time-varying parameters, wJi;li
is the

scale coefficient at the scale level Ji, li is the number of

corresponding scale coefficients, /Ji;li
is the scale

function in WMA and Nt is the number of sampling

points.

Identify structural state by UKFwith given scale

coefficients and time-invariant physical

parameters

By Eq. (14), the time-varying physical parameters

can be reconstructed based on the given time-invariant

scale coefficient vector wJ;l accordingly. Thus, it is

transformed into the identification of scale coefficients

and time-invariant physical parameters. UKF is

utilized to estimate the state under the condition of

partial acceleration observations. Owning to page

limitation, only main formulas are listed in Eqs. (15)–

(22).

The equation of motion, state equation and mea-

surement equation of a nonlinear system are rewritten

as

M€xðtÞ þ R h1 wJ;l

	 

; h2; xðtÞ; _xðtÞ

	 

¼ gfðtÞ ð15Þ

_X ¼ _x
€x


 �

¼ _x
M�1 gf � R h1 wJ;l

	 

; h2; x; _x

	 
� �

 �

þw

¼ g X; h1 wJ;l

	 

; h2; f

	 

þw ð16Þ

ykþ1 ¼ €xm;kþ1 ¼ La€xkþ1þvkþ1

¼ LaM
�1 gfkþ1 � R h1 wJ;l

	 

; h2; xkþ1; _xkþ1

	 
� �
þvkþ1

¼ h Xkþ1; h1 wJ;l

	 

; h2; fkþ1

	 

þvkþ1

ð17Þ

The predicted state vector ~Xkþ1 kj and error covari-

ance matrix ~PX;kþ1 kj are given as

vi;kþ1 kj ¼ vi;k kj

þ
Z ðkþ1ÞDt

kDt
g Xt kj ; h1 wJ;l

	 

; h2; f

	 

dt; ~Xkþ1 kj

¼
X2N

i¼0

Wm
i vi;kþ1 kj

ð18Þ

~PX;kþ1 kj ¼
X2N

i¼0

Wc
i ðvi;kþ1 kj � ~Xkþ1 kj Þðvi;kþ1 kj

� ~Xkþ1 kj ÞT þQkþ1 ð19Þ

The estimated measurement vector ŷkþ1 kþ1j , its

error covariance matrix P̂y;kþ1 and the cross-covari-

ance matrix P̂Xy;kþ1 are rewritten as

ŷi;kþ1 kj þ1 ¼ h vi;kþ1 kj ;h1 wJ;l

	 

; h2; fkþ1

� �
; ŷkþ1 kþ1j

¼
X2N

i¼0

Wm
i ŷi;kþ1 kþ1j

ð20Þ

P̂y;kþ1 ¼
X2N

i¼0

Wc
i ðŷi;kþ1 kþ1j � ŷkþ1 kþ1j Þðŷi;kþ1 kþ1j

� ŷkþ1 kþ1j ÞT þ Rkþ1

ð21Þ

P̂Xy;kþ1 ¼
X2N

i¼0

Wc
i vi;kþ1 kj � ~Xkþ1 kj

n o
ŷi;kþ1 kþ1j � ŷkþ1 kþ1j

n oT

ð22Þ

Finally, the structural state vector and error covari-

ance matrix in Eqs. (11) and (12) are updated,

respectively.

Estimate scale coefficients and time-invariant

physical parameters by nonlinear optimization

As can be seen from the above sections, the

estimated state is an implicit function of the scale

coefficient vector wJ;l and time-invariant physical

parameter vector h2,

X̂ ¼ X̂ wJ;l; h2
	 


ð23Þ

Then, the estimated acceleration is obtained by

using the equation of motion in Eq. (15)

€̂x wJ;l; h2
	 


¼ M�1 gf � R h1 wJ;l

	 

; h2; X̂ wJ;l; h2

	 

; _̂x wJ;l; h2
	 
� �� �

ð24Þ
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An objective error function is established by

integrating the observed acceleration €xm and the

estimated acceleration €̂x as

D wJ;l; h2
	 


¼ €xm � La €̂x wJ;l; h2
	 
���

���
2

2
ð25Þ

The optimal scale coefficient vector w
_

J;l and

optimal time-invariant physical parameter vector h
_

2

are calculated by minimizing the objective error

function

w
_

J;l; h
_

2

h i
¼ arg min

wJ;l;h2
€xm � La €̂x wJ;l; h2

	 
���
���
2

2

� �

ð26Þ

Finally, the optimal time-varying physical param-

eter vector h
_

1 is reconstructed by using the inverse

WMA in Eq. (14).

The procedure of the proposed method is listed in

Fig. 1.

2.2 Numerical verification: identification

of a time-varying nonlinear six-story shear

frame subjected to a known seismic

acceleration

The first numerical example is a six-story shear frame

with a Bouc–Wen model subjected to the 1940 El

Centro N-S earthquake with the peak value scaled to

0.4 g. The equation of motion of the structure is given

as

M€xðtÞ þ CðtÞ _xðtÞ þKðtÞzðtÞ ¼ �M If g€xgðtÞ ð27Þ

where C and K are global damping and stiffness

matrices which are composed of the unknown time-

varying damping and stiffness parameters, If g is a unit
vector and €xgðtÞ is the base acceleration. zðtÞ is the

Fig. 1 Procedure of the proposed method to identify the time-varying nonlinear structures with a small number of elements under

known excitation
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hysteretic displacement vector with the specific

expression as follows

_zi ¼ _xi � _xi�1 � bi _xi � _xi�1j j _zij jni�1 _zi
� ci _xi � _xi�1ð Þ _zij jni ; i ¼ 1; 2; . . .; 6ð Þ ð28Þ

where ni, bi and ci i ¼ 1; 2; � � � ; 6ð Þ are parameters for

the Bouc–Wen hysteretic model. It is assumed that the

nonlinear damage occurs with the restoring force

between the first floor and the ground following the

Bouc–Wen model. It should be noted that the Bouc–

Wen model is adopted here only as an example to

illustrate the proposed method. The proposed

approach can be applied to identify structural physical

parameters with different nonlinear response

characteristics.

Structural parameters are selected as follows: the

mass of each story and the Bouc–Wen hysteretic

model parameter n1 are assumed to be known as mi ¼
200 kg i ¼ 1; 2. . .; 6ð Þ and n1 ¼ 1:8. The correspond-

ing dynamic responses are computed with a sampling

frequency of 50 Hz, and the complete sampling period

is 10 s. The acceleration measurements at the 1st, 3rd

and 5th floors are used. Each measured response is

polluted by white noise with 2% variance in root mean

square (RMS), namely:

€xi;noisy ¼ €xi;clean þ 2%� std €xi;clean
	 


� rand; i ¼ 1; 3; 5ð Þ ð29Þ

where €xi;noisy is the measured noisy acceleration

vector, €xi;clean is the noisy-free acceleration vector,

std €xi;clean
	 


means the standard deviation of €xi;clean and

rand is a random standard normal distribution vector.

The stiffness, viscous damping parameters of each

story ki; ci i ¼ 1; 2. . .; 6ð Þ, and the Bouc–Wen hys-

teretic model parameters b and c need to be identified.
Two cases are discussed here.

2.2.1 Case I: Identification of abruptly changing

physical parameters

The theoretical values of the physical parameters in

case I are given below:

k1 ¼
1:0� 105 N/m; 0s� t\5:2s

0:8� 105 N/m; 5:2s� t� 10s

(

ki¼ 1:5� 105 N/m; 0s� t� 10s i ¼ 2; . . .; 6ð Þ

c1 ¼
800 N � s/m; 0s� t\5:2s

1120 N � s/m; 5:2s� t� 10s




ci¼ 1000 N � s/m; 0s� t� 10s i ¼ 2; . . .; 6ð Þ

b1 ¼
600; 0s� t\5:2s

780; 5:2s� t� 10s




c1 ¼ 600; 0s� t� 10s

Referring to the flowchart in Fig. 1, the identifica-

tion process is accomplished by the following proce-

dure. Firstly, the time-varying physical parameters are

distinguished using the FUKFmethod, which is shown

in Fig. 2. k ¼ 22=30 ¼ 1:0473 is used, which indicates

the half-life is 30 time steps. It can be seen from Fig. 2

that stiffness parameter k1 changes gradually from a

stable converged value to another stable converged

value, implying that k1 may be a time-varying physical

parameter. Similarly, c1 has the tendency to increase,

which can also be selected as another time-varying

physical parameter. However, the FUKF method can

only roughly determine these physical parameters

with the time-varying properties, but it is unable to

detect the time-varying instant, time-varying trend and

time-varying degree.

Secondly, the proposed WMA integrated with the

UKF method is applied to conduct the identification of

time-varying physical parameters. Following the

experience in an existing study by Chang and Shi

[27], Db1 is adopted herein as the wavelet function to

expand the time-varying k1, c1, and nonlinear model

parameters b1 and c1. The scale level is J ¼ 7. The

number of scale coefficients is 16 in total. The

remaining five time-invariant stiffness parameters

and five time-invariant damping parameters are not

expanded by the WMA, and they are directly included

in the nonlinear optimization process.

Figures 3, 4 and 5 show the identified physical

parameters with comparisons to their exact values,

respectively. It can be seen from Figs. 3 and 4 that the

proposed WMA integrated with the UKF method can

cFig. 2 Identification results using the FUKF method in case I. a
k1; b k2; c k3; d k4; e k5; f k6; g c1; h c2; i c3; j c4; k c5; l c6;m b1;
n c1
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)
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precisely track the sudden change of stiffness and

damping parameters, and the identification of time-

invariant parameters also shows a high precision.

Figure 5 shows that the proposed method is also

effective in identifying the time-varying nonlinear

model parameters. It is noted that the desirable results

are achieved by using only three noisy acceleration

responses.

2.2.2 Case II: Identification of gradually varying

physical parameters

The theoretical values of the physical parameters in

case II are shown below, in which k1 is gradually

varying and expressed as

k1 ¼
1:0� 105 N/m; 0s� t\2s

�5360t þ 1:1� 105 N/mð Þ; 2s� t� 7:6s

0:7� 105N/m; 7:6s\t� 10s

8
><

>:

ki¼ 1:5� 105 N/m; 0s� t� 10s i ¼ 2; . . .; 6ð Þ
c1¼ 800 N � s/m; 0s� t� 10s

ci¼ 1000 N � s/m; 0s� t� 10s i ¼ 2; . . .; 6ð Þ

b1 ¼
600; 0s� t\5:2s

780; 5:2s� t� 10s




c1 ¼ 600; 0s� t� 10s

The time-varying physical parameters are roughly

located using the FUKF method. For brevity and

without losing generality, only the partial identifica-

tion results are shown in Fig. 6. It is observed that the

identified value of k1 tends to change gradually, while

other stiffness and damping parameters converge to

fixed values. However, it should be noted that a

relatively large error may be present at the start and

end time instants.

The gradually varying k1 is expanded using the

wavelet function Db3 with the scale level J ¼ 5

suggested by Chang and Shi [27]. The time-varying

(a) (b) (c)

(d) (e) (f)

Fig. 3 Comparison of the exact and identified stiffness parameters in case I. a k1; b k2; c k3; d k4; e k5; f k6
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nonlinear model parameters b1 and c1 are also

expanded using the wavelet function Db1 with the

scale level J ¼ 7. Thus, the variables involved in the

nonlinear optimization include 24 scale coefficients

and 11 time-invariant physical parameters. The iden-

tification results are shown in Figs. 7, 8 and 9,

demonstrating that the proposed method is also

suitable for the identification of gradually changing

parameters in the presence of measurement noise. It

not only effectively detects the start and end time of

the gradual change, but also accurately identifies the

degree of the varying parameters. Meanwhile, the

identified time-invariant physical parameters are in

good agreement with the exact values.

3 Identification of time-varying nonlinear

structures with a small number of elements

under unknown excitations

It shall be noted that the proposed method in Sect. 2 is

only applicable for the case of known excitations,

(a) (b) 

Fig. 5 Comparison of the

exact and identified

nonlinear model parameters

in case I. a b1; b c1

(a) (b) (c)

(d) (e) (f)

Fig. 4 Comparison of the exact and identified damping parameters in case I. a c1; b c2; c c3; d c4; e c5; f c6
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owning to the limitation of UKF itself. However,

external excitations could not be always measured

directly and easily in practical engineering applica-

tions. To further generalize the application to a more

common case, the identification of time-varying

nonlinear structures with a small number of elements

but under unknown excitations is discussed in this

section.

3.1 The proposed two-step identification process

3.1.1 Locate the time-varying physical parameters

by the proposed FUKF-UI method

In this section, the method introduced in Sect. 2.1.1 is

further extended to locate the time-varying physical

parameters under unknown excitations. A new

method, that is fading-factor unscented Kalman filter

under unknown input, is proposed. It is also an

improvement for the data fusion-based UKF-UI

proposed by the authors in 2019 [30], for the reason

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6 Partial identification results using the FUKF method in case II. a k1; b k3; c k6; d c1; e c5; f c6; g b1; h c1
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Comparison of the exact and identified stiffness parameters in case II. a k1; b k2; c k3; d k4; e k5; f k6

(a) (b) (c)

(d) (e) (f)

Fig. 8 Comparison of the exact and identified damping parameters in case II. a c1; b c2; c c3; d c4; e c5; f c6
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that the latter is only available for the identification of

time-invariant systems under the condition of

unknown excitations.

If partial external inputs to the time-varying

nonlinear structure are unknown, the equation of

motion in Eq. (1) can be rewritten as

M€xðtÞ þ R hðtÞ; xðtÞ; _xðtÞð Þ ¼ gfðtÞþgufuðtÞ ð30Þ

where fu denotes the unknown input vector with the

corresponding influence matrix gu. The state space

equation can be expressed as

_Z ¼
_x
€x

_h

8
<

:

9
=

;

¼
_x

M�1 gf � R h; x; _xð Þ½ �
0

8
<

:

9
=

;
þ

0
M�1gu

0

8
<

:

9
=

;
fuþw

¼ g Z; fð Þþuufuþw

ð31Þ

where uu is the influence matrix related to the

unknown input fu in the above equation.

It should be emphasized that the partially measured

acceleration and displacement responses are used in

the data fusion based UKF-UI as an on-line technique

to restrain the ‘‘drift’’ in the identification results [30].

Thus, the observation equation in the discrete form is

given as

ykþ1 ¼
€xm;kþ1

xm;kþ1

� �
¼

La 0

0 Ld

� �

M�1 gfkþ1 � R hkþ1; xkþ1; _xkþ1ð Þ½ �
_xkþ1

" #

þ LaM
�1gufukþ1

0

" #

þvkþ1

¼ h Zkþ1; fkþ1ð Þþkufukþ1þvkþ1

ð32Þ

where xm;kþ1 is the measured displacement at t ¼
k þ 1ð ÞDt with the position matrix Ld and ku is the

influence matrix.

The proposed FUKF-UI has a similar process with

FUKF. Only the main formulas are briefly presented

here.

Sigma point calculation

The same set of sigma points vk kj are generated as

shown in Eq. (4).

Time predication

Under the premise of zero-order hold (ZOH), the

propagation of the sigma points at t ¼ k þ 1ð ÞDt is
expressed as

vi;kþ1 kj ¼ vi;k kj þ
Z ðkþ1ÞDt

kDt
gðvi;t kj ; fÞdt þ uufuk kj Dt

ð33Þ

The predicted state vector ~Zkþ1 kj and its error

covariance matrix ~PZ;kþ1 kj are provided by the same

formulas in Eqs. (6) and (7), respectively.

The estimated measurement vector ŷkþ1 kþ1j at t ¼
k þ 1ð ÞDt is given as

(a) (b)

Fig. 9 Comparison of the

exact and identified

nonlinear model parameters

in case II. a b1; b c1
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ŷkþ1 kþ1j ¼
X2N

i¼0

Wm
i h vi;kþ1 kj ;fkþ1

� �h i
þku f̂

u

kþ1 kj þ1

ð34Þ

The error covariance matrix of measurement vector

P̂y;kþ1 and the cross-covariance matrix P̂Zy;kþ1 are

found in Eqs. (9) and (10), respectively.

Unknown input calculation

The state vector is updated by Eq. (11), which is

workable only when the unknown input f̂
u

kþ1 kj þ1 is

given for the reason that ŷkþ1 kþ1j is a function of

f̂
u

kþ1 kj þ1, as shown in Eq. (34). To solve the unknown

force f̂
u

kþ1 kj þ1, the estimated state vector Ẑkþ1 kþ1j in

Eq. (11) is substituted into the measurement equation

ŷkþ1 kþ1j ¼ h Ẑkþ1 kþ1j ;fkþ1

	 

þ ku f̂

u

kþ1 kj þ1 ð35Þ

Then, an estimation error function is established

between the real measurement and the estimated

measurement as

Dkþ1 ¼ ykþ1 � h Ẑkþ1 kþ1j ;fkþ1

	 

� kuf̂

u

kþ1 kj þ1 ð36Þ

Under the condition that the number of observed

measurements is larger than that of the unknown

excitations, f̂
u

kþ1 kj þ1 can be computed by minimizing

the error Dkþ1 in Eq. (36) by solving a nonlinear least-

squares problem.

Measurement updating

Once f̂
u

kþ1 kj þ1 is obtained, the estimated measure-

ment vector ŷkþ1 kþ1j can be calculated with Eq. (34).

Then, the estimated state vector Ẑkþ1 kþ1j is solved by

Eq. (11). Finally, the error covariance matrix

P̂Z;kþ1 kþ1j is updated using Eq. (12).

3.1.2 Identify the time-varying physical parameters

by the proposed WMA integrated with UKF-UI

method

After the qualitative analysis of time-varying physical

parameters under unknown excitations by FUKF-UI, a

new method is proposed for quantitative identification

of time-varying parameters, which combines the

advantage of WMA and UKF-UI under unknown

excitations.

The proposed WMA integrated with UKF-UI

method has a similar process as WMA integrated

with the UKF method presented in Sect. 2.1.2. Firstly,

the time-varying physical parameters distinguished in

the first step can be reconstructed based on the given

time-invariant scale coefficient vectorwJ;l in Eq. (14).

Then with the initial time-invariant physical parameter

vector h2, UKF-UI is applied to obtain the estimated

state and input following Eqs. (37)–(41).

The equation of motion, state equation and mea-

surement equation of a nonlinear system under

unknown excitations are rewritten as

M€xðtÞ þ R h1 wJ;l

	 

; h2; xðtÞ; _xðtÞ

	 

¼ gfðtÞþgufuðtÞ

ð37Þ

_X ¼
_x

€x


 �
¼

_x

M�1 gf � R h1 wJ;l

	 

; h2; x; _x

	 
� �

( )

þ
0

M�1gu


 �
fuþw ¼ g X; h1 wJ;l

	 

; h2; f

	 

þuufuþw

ð38Þ

ykþ1 ¼
€xm;kþ1

xm;kþ1

� �
¼

La 0

0 Ld

� �
M�1 gfkþ1 � R h1 wJ;l

	 

; h2; xkþ1; _xkþ1

	 
� �

_xkþ1

" #

þ LaM
�1gufukþ1

0

" #

þvkþ1

¼ h Xkþ1; h1 wJ;l

	 

; h2; fkþ1

	 

þkufukþ1þvkþ1

ð39Þ

The predicted state vector ~Xkþ1 kj is given as

vi;kþ1 kj ¼ vi;k kj þ
Z ðkþ1ÞDt

kDt
gðvi;t kj ; h1 wJ;l

	 

; h2; fÞdt

þ uuf̂
u

k kj Dt; ~Xkþ1 kj

¼
X2N

i¼0

Wm
i vi;kþ1 kj

ð40Þ

The estimated measurement vector ŷkþ1 kþ1j is

rewritten as

ŷkþ1 kþ1j ¼
X2N

i¼0

Wm
i h vi;kþ1 kj ;h1 wJ;l

	 

; h2; fkþ1

� �h i
þku f̂

u

kþ1 kj þ1

ð41Þ

The related error covariance matrices are shown in

Eqs. (19), (21) and (22), respectively.

Under the condition that the number of measure-

ments is larger than that of the unknown excitations,

f̂
u

kþ1 kj þ1 can be computed byminimizing the errorDkþ1
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Dkþ1 ¼ ykþ1 � h X̂kþ1 kþ1j ;h1 wJ;l

	 

; h2; fkþ1

	 


� kuf̂
u

kþ1 kj þ1 ð42Þ

Then, the estimated measurement vector ŷkþ1 kþ1j is

obtained by Eq. (34), and the structural state vector

X̂kþ1 kþ1j and error covariance matrix P̂X;kþ1 kþ1j are

updated by Eqs. (11) and (12), respectively.

In conclusion, the estimated state vector X̂ and

estimated excitation vector f̂
u
are implicit functions of

scale coefficient vector wJ;l and time-invariant phys-

ical parameter vector h2, namely:

X̂ ¼ X̂ wJ;l; h2
	 


; f̂
u ¼ f̂

u
wJ;l; h2
	 


ð43Þ

Similarly, the estimated acceleration is rewritten as

€̂x wJ;l; h2
	 


¼ M�1 gfþgu f̂
u
wJ;l; h2
	 
�

�R h1 wJ;l

	 

; h2; X̂ wJ;l; h2

	 
	 

 ð44Þ

Finally, the optimal scale coefficient vectorw
_

J;l and

optimal time-invariant physical parameter vector h
_

2

are obtained by minimizing the same objective error

function in Eq. (26), and the optimal time-varying

physical parameter vector h
_

1 is reconstructed by the

inverse WMA in Eq. (14).

3.2 Numerical verification: identification

of a time-varying nonlinear one-span truss

subjected to an unknown force excitation

As shown in Fig. 10, a one-span truss subjected to an

unknown white noise excitation is investigated as a

more complex numerical example. It is aimed at

identifying the stiffness parameter of each member

and the Bouc–Wen model parameters with partial

acceleration and displacement measurements.

The truss consists of 15 members and 14 DOFs in

total, as shown in Fig. 10. In this numerical example,

structural parameters are selected as: The length and

cross section of each bar is li¼ 1 m and

Ai ¼ 7:85� 10�5 m2 i ¼ 1; 2. . .; 15ð Þ, respectively.

The total mass of each bar is constant as

mi ¼ 54:95 kg i ¼ 1; 2. . .; 15ð Þ. The Rayleigh damp-

ing is adopted with the first two damping ratios

assumed as 0.02. The first five-order natural frequen-

cies of the time-invariant truss are 1.46 Hz, 2.99 Hz,

3.92 Hz, 6.32 Hz and 7.31 Hz, respectively. An

unknown white noise excitation f u is applied on the

4th DOF of the truss. The sampling frequency is 50 Hz

during the process of dynamic response calculation

and the sampling period is 10 s. Six accelerations of

the 2nd, 4th, 6th, 8th, 10th and 12th DOFs and two

displacements of the 6th and 14th DOFs are polluted

with 2% RMS noise and used as measured responses

for identification analysis.

Nonlinear damage is assumed in the 2nd bar

element with the Bouc–Wen model governed by

Eq. (28). The time-varying physical parameters are

defined as

k2 ¼
1:57� 105 N/m; 0s� t\5:2s

1:256� 105 N/m; 5:2s� t� 10s

(

ki¼ 1:57� 105 N/m; 0s� t� 10s i ¼ 1; 3; 4; . . .; 15ð Þ

b2 ¼
8000; 0s� t\5:2s

10; 400; 5:2s� t� 10s




c2 ¼
6000; 0s� t\5:2s

8400; 5:2s� t� 10s




The identified stiffness results using the FUKF-UI

method are shown in Fig. 11. k2 and nonlinear model

parameters are expanded by the Db1 wavelet function

and the scale level is J ¼ 7 based on the studies in Ref.

cFig. 11 Identification results of the truss model using the

FUKF-UI method. a k1; b k2; c k3; d k4; e k5; f k6; g k7; h k8; i k9;
j k10; k k11; l k12; m k13; n k14; o k15

f u

Fig. 10 A one-span truss subjected to an unknown white noise excitation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
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[27]. Figure 12 shows the identified time-varying

stiffness parameter and Bouc–Wen model parameters

using the proposed WMA integrated with UKF-UI

method, which manifests its effectiveness in identify-

ing physical parameters of time-varying nonlinear

truss structure with limited number of response

measurements and unknown excitations. Meanwhile,

the proposed method also gives accurate reconstruc-

tion of external force as demonstrated in Fig. 13.

Table 1 lists the calculated relative errors of time-

invariant stiffness parameters. Most of the relative

errors are around 1%, and the maximum value is only

5.29% for the eighth element stiffness parameter.

4 Identification of time-varying nonlinear

structures with more number of elements

under unknown excitations

It should be noted that the cases discussed above are all

about the identification of time-varying nonlinear

structures with a small number of elements. With the

increasing number of elements, the number of

expanded scale coefficients is also significantly

increased. Since the basis of the proposed methods

in Sect. 2.1.2 and Sect. 3.1.2 is a nonlinear least-

squares optimization, a large number of scale coeffi-

cients may result in convergence to the local opti-

mization results, especially when the quality of the

collected data is poor. Herein, combining the sub-

structural method, a two-step identification process is

proposed for the identification of time-varying non-

linear structures with more number of elements under

unknown excitations.

4.1 The proposed two-step identification process

4.1.1 Locate the time-varying physical parameters

of the whole structure by the proposed FUKF-

UI method

The FUKF-UI method proposed in Sect. 3.1.1 is used

here to locate the time-varying physical parameters of

the whole structure.

(a) (b) (c)

Fig. 12 Comparison of the exact and identified time-varying physical parameters of the truss. a k2; b b2; c c2

Fig. 13 Comparison of the exact and identified external

excitation (6–10 s)
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4.1.2 Divide into substructures and identify

the substructural time-varying physical

parameters by the proposed WMA integrated

with UKF-UI method

As demonstrated above the proposedWMA integrated

with UKF-UI method can accurately identify the

actual unknown external loads. Therefore, it can be

used to determine the unknown interaction forces

acting on the divided substructures in the following

substructural-based method.

When aiming at the identification of time-varying

nonlinear structures with more elements, the whole

structure is divided into several substructures to limit

the number of parameters in each optimization

analysis. For each substructure, the initial time-

varying physical parameter vector hs1 can be recon-

structed by the given time-invariant scale coefficient

vector wJs;ls by Eq. (14). Thus, it is converted into the

identification of a time-invariant nonlinear system.

The equation of motion of the substructure is written

as

Ms€xs þ Rs hs1 wJs;ls

	 

;hs2; xs; _xs

	 

¼ gsfs þ gus f

u
s

gus ¼ guse g	sb½ �
fus ¼ fuse f	sb½ �T

(

ð45Þ

in which the subscript ‘‘s’’ indicates that these

properties are possessed by the substructure. Ms is

the mass matrix of the substructure. xs, _xs and €xs are

displacement, velocity and acceleration response

vector of substructure, respectively. hs2 is the time-

invariant physical parameter vector of the substruc-

ture, fs is the known excitation (if have) of the

substructure with the influence matrix gs and fus is the

unknown input of the substructure with the influence

matrix gus . fus is composed of the actual unknown

external excitation fuse and the unknown substructural

interaction force f	sb, g
u
se and g	sb are their influence

matrix, respectively.

The state space equation andmeasurement equation

are given as

_Xs ¼
_xs

€xs


 �
¼

_xs

M�1
s gsfs � Rs hs1 wJs;ls

	 

; hs2; xs; _xs

	 
� �

( )

þ
0

M�1
s gus


 �
fusþws

¼ gs Xs; hs1 wJs;ls

	 

; hs2; fs

	 

þuu

s f
u
sþws

ð46Þ

ys;kþ1 ¼
€xsm;kþ1

xsm;kþ1

� �
¼

Lsa 0

0 Lsd

� �

M�1
s gsfs;kþ1 � Rs hs1 wJs;ls

	 

;hs2; xs;kþ1; _xs;kþ1

	 
� �

_xs;kþ1

" #

þ LsaM
�1
s gus f

u
s;kþ1

0

" #

þvs;kþ1

¼ hs Xs;kþ1; hs1 wJs;ls

	 

;hs2; fs;kþ1

	 

þkus f

u
s;kþ1þvs;kþ1

ð47Þ

Table 1 Identified stiffness

of time-invariant members

in the truss

Member No. Actual stiffness (N/m) Identified stiffness (N/m) Relative error (%)

1 157,000 159,139.70 1.36

3 157,000 158,973.71 1.26

4 157,000 155,389.34 - 1.03

5 157,000 159,695.78 1.72

6 157,000 162,307.30 3.38

7 157,000 155,094.62 - 1.21

8 157,000 165,298.77 5.29

9 157,000 157,728.76 0.46

10 157,000 156,832.25 - 0.11

11 157,000 156,068.42 - 0.59

12 157,000 159,077.60 1.32

13 157,000 164,468.80 4.76

14 157,000 157,312.26 0.20

15 157,000 159,619.98 1.67
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where ws is the process noise, ys;kþ1 is the substruc-

tural measurements at the time instant t ¼ k þ 1ð ÞDt
including the partially measured acceleration response

€xsm;kþ1 and displacement response xsm;kþ1. Lsa and Lsd

are position matrices of accelerometer and displace-

ment responses in the substructure, respectively. vs is

the measurement noise.

Following the procedure of UKF-UI, the estimated

state vector of substructure X̂s and unknown excitation

vector f̂
u

s can be obtained, which are implicit functions

of scale coefficient vector wJs;ls and time-invariant

physical parameter vector hs2, that is

X̂s ¼ X̂s wJs;ls ; hs2
	 


; f̂
u

s ¼ f̂
u

s wJs;ls ; hs2
	 


ð48Þ

Similarly, the estimated acceleration is rewritten as

€̂xs wJs;ls ; hs2
	 


¼ M�1
s gsfsþgu

s
f̂
u

s
wJs;ls ; hs2
	 
�

�Rs hs1 wJs;ls

	 

; hs2; X̂s wJs;ls ; hs2

	 
	 

 ð49Þ

Finally, the optimal scale coefficient vector w
_

Js;ls

and optimal time-invariant physical parameter vector

h
_

s2 for the substructure are obtained by minimizing the

objective error function in Eq. (50). Then, the optimal

time-varying physical parameter vector h
_

s1 is recon-

structed by the inverse WMA.

w
_

Js;ls ; h
_

s2

h i
¼ arg min

wJs ;ls ;hs2
€xsm � Lsa €̂xs wJs;ls ; hs2

	 
���
���
2

2

� �

ð50Þ

Considering that every substructure is independent

of each other, the time-varying physical parameters

can be identified by using the proposed WMA

integrated with UKF-UI method in parallel, which

greatly improves the computational efficiency.

4.2 Numerical verification: identification

of a time-varying nonlinear ten-story shear

frame with an unknown excitation using

the substructural method

In this section, a ten-story shear frame under unknown

excitation is used to demonstrate the feasibility of the

substructural method for the identification of a time-

varying nonlinear structure with more number of

elements. The mass of each story is

mi ¼ 2000 kg i ¼ 1; 2. . .; 10ð Þ. The first five-order

natural frequencies of the time-invariant system are

0.31 Hz, 0.92 Hz, 1.52 Hz, 2.08 Hz and 2.60 Hz,

respectively. It is assumed that the nonlinear damage

occurs in the first floor and the Bouc–Wen model

governed by Eq. (28) is assumed. n1 ¼ 1:8. A white

noise excitation is imposed on the top floor to excite

the structure, which is assumed unknown in the

identification analysis. The corresponding dynamic

responses are computed with a sampling frequency of

50 Hz, and the complete sampling period is 10 s. The

specific expressions of other physical parameters are

given as

k1 ¼
3:0� 105 N/m; 0s� t\5:2s

2:4� 105 N/m; 5:2s� t� 10s

(

k7 ¼
3:5� 105 N/m; 0s� t\5:2s

2:73� 105 N/m; 5:2s� t� 10s

(

k10 ¼
3:5� 105 N/m; 0s� t\5:2s

2:975� 105 N/m; 5:2s� t� 10s

(

ki¼ 3:5� 105 N/m; 0s� t� 10s i ¼ 2; � � � ; 6; 8; 9ð Þ
ci¼ 1000 N � s/m; 0s� t� 10s i ¼ 1; � � � ; 10ð Þ

b1 ¼
600; 0s� t\5:2s

780; 5:2s� t� 10s




c1 ¼ 600; 0s� t� 10s

The FUKF-UI method is implemented to roughly

locate the changing physical parameters. Six acceler-

ation measurements at the 1st, 3rd, 5th, 7th, 8th and

10th floors and two interlayer displacements of the

1st–2nd and 9th–10th floors are used. Each response is

contaminated with a 2% RMS white noise. The

stiffness identification results are shown in Fig. 14.

The stiffness of the 1st, 7th and 10th stories is more

likely to change, as they transit from one stable con-

vergence value to the other stable value, while other

stiffness values are more likely to remain unchanged,

since only one convergence value appears despite

occasional fluctuations.

The whole structure is divided into two substruc-

tures as illustrated in Fig. 15, and the physical

parameters in each substructure are identified using

the proposed WMA integrated with UKF-UI method

in parallel.

Lower substructure

In this numerical example, the 1st–5th DOFs are in

the scope of the lower substructure. The accelerations
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(a) (b) (c)

(d) (e) (f)

(j)

(g) (h) (i)

Fig. 14 Identification results using the FUKF-UI method in the shear frame. a k1; b k2; c k3; d k4; e k5; f k6; g k7; h k8; i k9; j k10
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of the 1st, 3rd and 5th floors and interlayer displace-

ment of the 1st–2nd floors are measured with a 2%

RMS noise and used as recorded responses for the

identification analysis. k1, b1 and c1 are expanded by

the Db1 wavelet function and the scale level is J ¼ 7

[27]. Figure 16 exhibits the identified stiffness and

nonlinear model parameters inside the lower substruc-

ture employing the WMA integrated with UKF-UI

method. The results demonstrate that the identification

accuracy is good, even the step changes in time-

varying physical parameters can be identified

accurately.

Upper substructure

The upper substructure is composed of 6–10 DOFs.

The accelerations of the 6th, 8th and 10th floors and

interlayer displacement of the 9th–10th floors are used

as measurements with a 2% RMS noise for the

identification analysis. k7 and k10 are expanded by the

Db1 wavelet function and the scale level is J ¼ 7.

Figure 17 displays the identified stiffness parameters

inside the upper substructure, which demonstrates that

the proposedWMA integrated with UKF-UImethod is

capable of the parametric identification of structures

with more number of elements when combining with

the substructural method. The external load applied on

the top floor can also be identified as shown in Fig. 18,

which shows that the identified force matches well

with the exact one.

5 Conclusions

The identification of time-varying nonlinear structural

physical parameters is an important research topic

with practical applications. Methods based on WMA

can not only identify the time-varying physical

parameters such as stiffness and damping coefficients

but also the time-varying parameters in the nonlinear

model. However, they require displacement, velocity

and acceleration responses of all DOFs, and known

excitations to be used in the analysis. Moreover, all

physical parameters are expanded into scale coeffi-

cients by WMA, which leads to a large number of

scale coefficients and increases the difficulties in

nonlinear system identification. This paper presents

two-step identification processes using partial mea-

surements to identify the time-varying physical

parameters of nonlinear systems.

Firstly, the identification of time-varying nonlinear

structures with a small number of elements under

known excitations is conducted. The time-varying

physical parameters are distinguished using the FUKF

method. Then, a method integratingWMA and UKF is

proposed to identify the physical parameters in the

case of known excitations. The proposed identification

process contributes to reduce the number of scale

coefficients, since not all physical parameters are

required to be expanded after the locations of time-

varying physical parameters are detected. Most

importantly, only partial response measurements are

needed in the identification process, a clear improve-

ment in the previous WMA-based methods which

require response measurements at all DOFs.

Secondly, it is extended to the identification of

time-varying nonlinear structures with a small number

of elements but under unknown excitations. The time-

varying physical parameters are localized using the

proposed FUKF-UI method, and then, all the physical

parameters, as well as the excitations, are identified by

the proposed WMA integrated with UKF-UI method.

The proposed identification process meets the needs of

practical engineering applications, since the physical

Lower 
Substructure

c1k1
m1

c2k2
m2

c3k3
m3

c5k5 m5

c4k4 m4

c6k6
m6

c7k7 m7
Upper 

Substructure

c8k8 m8

c9k9 m9

c10k10 m10
f u

fsb,u
*

fsb,l
*

Fig. 15 Substructures of a ten-story shear frame
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parameters of time-varying nonlinear system can be

identified by using partial response measurements

under unknown excitations.

Thirdly, combining with the substructural method,

it is further extended to identify the time-varying

nonlinear structures with more number of elements

under unknown excitations. The time-varying physi-

cal parameters of the whole structure are located by

the proposed FUKF-UI method. Then, the whole

structure is divided into several substructures. Based

on the proposed WMA integrated with UKF-UI

method, each substructure is identified by considering

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 16 Comparison of the exact and identified physical parameters of the lower substructure. a k1; b k2; c k3; d k4; e k5; f b1; g c1
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the unknown interaction forces as the fictitious

unknown inputs. With partial response measurements,

each substructure can be identified in parallel without

measuring the interaction forces.

Three numerical examples with noisy measurement

data are conducted to verify the effectiveness and

accuracy of the proposed identification methods.

Experimental verification is still required in future to

further demonstrate the efficiency of the proposed

methods.
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