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Abstract In this Comment, several enhancements on
the results in the paper “Bilinear Bäcklund transforma-
tion, soliton and periodic wave solutions for a (3+1)-
dimensional variable-coefficient generalized shallow
water wave equation” (Nonlinear Dyn. 87, 2529, 2017)
are described. With respect to the stream under a pres-
sure surface in the water, for the same equation, using
the Hirota method and symbolic computation, we are
able to build a set of the bilinear forms, two sets of
the bilinear auto-Bäcklund transformations along with
some analytic solutions, as well as a set of the similar-
ity reductions. Beyond those in the paper (Nonlinear
Dyn. 87, 2529, 2017), our results are dependent on the
variable coefficients in the equation, while those coeffi-
cients respectively represent the perturbed effects, dis-
persion and nonlinearity.
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1 Introduction

Fluids have been actively studied [1–42], e.g., recent
investigations on the nonlinear dynamics of certain
marine inertial particles [1], triadic-interaction energy
transfer in the fluid flow [2], nonlinear vibrations of
a fluid-filled circular shell [3], shallow water waves
[6,9], incompressible fluids [10,30], motion of a rigid
plate in a Newtonian fluid [11], heat-conducting flu-
ids [12], capillary fluids [13], fluids confined in the
cylindrical and slit pores [14], shallow water in an
open sea [15], oceans in the Solar System [16–18]
and liquids with the gas bubbles [26]. Nowadays, such
models have been proposed to describe the fluids [8–
42], as different Navier–Stokes systems [10,12,13],
a fractional Bagley–Torvik system [11], an extended
Peng-Robinson system [14], a generalized (2+1)-
dimensional dispersive long-wave system [15,38], a
variable-coefficient nonlinear dispersive-wave system
[16,17], a higher-order Boussinesq-Burgers system
[18,19], different extended (2+1)-dimensional coupled
Burgers systems [20,34], an Ablowitz–Kaup–Newell–
Segur system [21–24], a generalized Konopelchenko–
Dubrovsky–Kaup–Kupershmidt system [25], a (3+1)-
dimensional nonlinear wave equation [26], different
(3+1)-dimensional generalized Kadomtsev-Petviash-
vili-type systems [9,27,36,39,41], a (2+1)-dimensional
generalized Caudrey–Dodd–Gibbon–Kotera–Sawada
equation [8], amodifiedKorteweg–deVries–Calogero–
Bogoyavlenskii-Schiff equation [28,29], a (2+1)-
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dimensional generalized Boiti–Leon–Manna–Pem-
pinelli equation [30], a (2+1)-dimensional reducedYu–
Toda–Sasa–Fukuyama equation [31], a (2+1)-
dimensional generalized Bogoyavlensky-Konopel-
chenko equation [32], a (2+1)-dimensional generalized
Hirota-Satsuma-Ito equation [33], a Sharma-Tasso-
Olver-Burgers equation [35], a (3+1)-dimensional gen-
eralized Yu-Toda-Sasa-Fukuyama equation [37], and a
(3+1)-dimensional generalized Konopelchenko–
Dubrovsky–Kaup–Kupershmid equation [40,42].

Currently interesting, Ref. [43], i.e., the paper (Non-
linear Dyn. 87, 2529, 2017), has studied the follow-
ing (3+1)-dimensional variable-coefficient generalized
shallow water wave equation for the stream under a
pressure surface in the water:

ϒ1(t)uyt + ϒ2(t)uxxxy + ϒ3(t)uxuxy

+ϒ3(t)uyuxx + ϒ4(t)uxz = 0, (1)

with u(x, y, z, t) being the real differentiable function
of the variables x , y, z and t , the real functions ϒ1(t)
and ϒ4(t) denoting the perturbed effects, ϒ2(t) imply-
ing the dispersion, ϒ3(t) representing the nonlinear-
ity, while the subscripts meaning the partial derivatives
[43,44]. For Eq. (1), Ref. [43] has obtained certain
bilinear form, bilinear Bäcklund transformation, Lax
pair, soliton and periodic wave solutions.

Also for Eq. (1), Ref. [45] has worked out certain
lump-solution characteristics, Ref. [44] has got cer-
tain breathers, Ref. [47] has investigated a Kadomtsev–
Petviashvili hierarchy reduction, some soliton and
semi-rational solutions, while Ref. [50] has found
some nonautonomous lump solutions and an interac-
tion between a lump wave and a kink soliton. Special
cases of Eq. (1) have been a (3+1)-dimensional gener-
alized shallow water equation [forϒ1(t) = ϒ2(t) = 1,
ϒ3(t) = −3 and ϒ4(t) = −1] applied in the weather
simulations, tidal waves, irrigation and tsunami pre-
diction [45–47] (and references therein), and a (3+1)-
dimensional Jimbo-Miwa equation [for ϒ1(t) = 2,
ϒ2(t) = 1, ϒ3(t) = 3 and ϒ4(t) = −3] mod-
elling some wave phenomena [27,47] (and references
therein).

This Comment will be to enhance the issues pub-
lished in Ref. [43], in order to make them more com-
plete. Results in this Comment, to be seen below, will
also be different from those in Refs. [44,45,47,50].

In Sect. 2 of this Comment, making use of sym-
bolic computation [48,49], we will construct a set of
the bilinear forms for Eq. (1), which is different from

and beyond that inRef. [43],while in Sect. 3, two sets of
the bilinear auto-Bäcklund transformations for Eq. (1),
different from and beyond that in Ref. [43]. In addition,
using symbolic computation, we will find a set of the
similarity reductions for Eq. (1) in Sect. 4. Section 5
will be our conclusions.

2 Bilinear forms for Eq. (1)

Making use of the Hirota method [51] and symbolic
computation, we assume that

u(x, y, z, t) = γ [ln f (x, y, z, t)]x
−φ(y) − ψ(z) − α(y)β(z), (2)

with f (x, y, z, t) being a real differentiable function of
x , y, z and t , φ(y), ψ(z), α(y) and β(z) denoting the
real differentiable functions, while γ meaning a real
non-zero constant.

Substituting Assumption (2) into Eq. (1) and inte-
grating the outcome once as for x with the integration
function vanishing bring about

ϒ1(t) (ln f )yt + ϒ2(t) (ln f )xxxy
+γϒ3(t) (ln f )xx (ln f )xy
−ϒ3(t)

[
φ′(y) + α′(y)β(z)

]
(ln f )xx

+ϒ4(t) (ln f )xz = 0, (3)

in which φ′(y) = d
dy φ(y) and α′(y) = d

dy α(y).
On account of the formulae [51]

2 (ln f )yt = DyDt f · f

f 2
,

2 (ln f )xxxy = D3
x Dy f · f

f 2

−3
D2
x f · f

f 2
Dx Dy f · f

f 2
,

2 (ln f )xx = D2
x f · f

f 2
,

2 (ln f )xy = Dx Dy f · f

f 2
,

2 (ln f )xz = Dx Dz f · f

f 2
,

for the sake of transforming Eq. (1) into certain bilinear
forms, we choose

γ = 6
ϒ2(t)

ϒ3(t)
,
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to obtain

{
ϒ1(t)DyDt + ϒ2(t)D

3
x Dy

−ϒ3(t)
[
φ′(y) + α′(y)β(z)

]
D2
x

+ϒ4(t)Dx Dz

}
f · f = 0, (4)

with Dx , Dy , Dz and Dt given by [51]

Dm1
x Dm2

y Dm3
z Dm4

t H(x, y, z, t) · G(x, y, z, t)

≡
(

∂

∂x
− ∂

∂x0

)m1
(

∂

∂y
− ∂

∂y0

)m2

(
∂

∂z
− ∂

∂z0

)m3
(

∂

∂t
− ∂

∂t0

)m4

H(x, y, z, t)G(x0, y0, z0, t0)

∣∣∣∣
x0=x, y0=y, z0=z, t0=t

,

x0, y0, z0 and t0 meaning the formal variables,
H(x, y, z, t) representing a C∞ function of x , y, z and
t , G(x0, y0, z0, t0) representing a C∞ function of x0,
y0, z0 and t0, while m1, m2, m3 and m4 being the non-
negative integers [51].

In short, under the variable-coefficient constraint

ϒ3(t) = ϒ0ϒ2(t), (5)

choosing γ = 6
ϒ0

, we find a set of the bilinear forms
for Eq. (1), i.e.,

{
ϒ1(t)DyDt + ϒ2(t)D

3
x Dy

−ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]
D2
x

+ϒ4(t)Dx Dz

}
f · f = 0, (6)

with ϒ0 implying a real non-zero constant.
With respect to the stream under a pressure surface

in the water, under Variable-Coefficient Constraint (5)
and Assumption (2), Bilinear Forms (6) for Eq. (1) are
dependent on the dispersion coefficientϒ2(t) aswell as
perturbed-effect coefficientsϒ1(t) andϒ4(t) in Eq. (1).
Bilinear Forms (6) are different from the one presented
in Ref. [43].

Bilinear Forms (6) are useful, e.g., for us to build
some bilinear auto-Bäcklund transformations, to be
seen below.

3 Bilinear auto-Bäcklund transformations
with analytic solutions for Eq. (1)

Based on Bilinear Forms (6), with the Hirota method,
motivated by Ref. [27], assuming that g (x, y, z, t) be
another solution of Bilinear Forms (6), we take into
account the expression

f 2
{{

ϒ1(t)DyDt + ϒ2(t)D
3
x Dy

−ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]
D2
x

+ϒ4(t)Dx Dz

}
g · g

}

−g2
{{

ϒ1(t)DyDt + ϒ2(t)D
3
x Dy

−ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]
D2
x

+ϒ4(t)Dx Dz

}
f · f

}
, (7)

and make use of the exchange formulae [51]

G2 (
DyDt H · H) − H2 (

DyDt G · G)

= 2 Dy (Dt H · G) · (GH) , (8a)

G2
(
D2
x H · H

)
− H2

(
D2
x G · G

)

= 2 Dx (Dx H · G) · (GH) , (8b)

G2 (Dx Dz H · H) − H2 (Dx Dz G · G)

= 2 Dx (Dz H · G) · (GH) , (8c)

G2
(
D3
x Dy H · H

)
− H2

(
D3
x Dy G · G

)

= 3

2
Dx

(
D2
x Dy H · G

)
· (GH)

+ 1

2
Dy

(
D3
x H · G

)
· (GH)

− 3 Dx
(
Dx Dy H · G) · (Dx H · G)

− 3

2
Dx

(
D2
x H · G

)
· (
Dy H · G)

− 3

2
Dy

(
D2
x H · G

)
· (Dx H · G) , (8d)

to get

f 2
{ {

ϒ1(t)DyDt + ϒ2(t)D
3
x Dy

−ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]
D2
x

+ϒ4(t)Dx Dz

}
g · g

}

− g2
{ {

ϒ1(t)DyDt + ϒ2(t)D
3
x Dy

−ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]
D2
x
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+ϒ4(t)Dx Dz

}
f · f

}

= ϒ1(t)
[
f 2

(
DyDt g · g) − g2

(
DyDt f · f

) ]

+ ϒ2(t)
[
f 2

(
D3
x Dyg · g

)

−g2
(
D3
x Dy f · f

) ]

− ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]

[
f 2

(
D2
x g · g

)
− g2

(
D2
x f · f

) ]

+ ϒ4(t)
[
f 2 (Dx Dzg · g)

−g2 (Dx Dz f · f )
]

= 2ϒ1(t) Dy (Dt g · f ) · ( f g)

− 2ϒ0ϒ2(t)
[
φ′(y) + α′(y)β(z)

]

Dx (Dx g · f ) · ( f g)

+ ϒ2(t)

[
3

2
Dx

(
D2
x Dy g · f

)
· ( f g)

+1

2
Dy

(
D3
x g · f

)
· ( f g)

−3

2
Dy

(
D2
x g · f

)
· (Dx g · f )

−3 Dx
(
Dx Dy g · f

) · (Dx g · f )

−3

2
Dx

(
D2
x g · f

)
· (
Dy g · f

)]

+ 2ϒ4(t) Dx (Dz g · f ) · ( f g)

= 1

2
Dx

{ {
3ϒ2(t)D

2
x Dy − 4ϒ0ϒ2(t)

[
φ′(y)+α′(y)β(z)

]
Dx+4ϒ4(t)Dz

}
g · f

}
· ( f g)

+ 1

2
Dy

{[
4ϒ1(t)Dt + ϒ2(t)D

3
x

]
g · f

}
· ( f g)

− 3ϒ2(t)Dx
(
Dx Dy g · f

) · (Dx g · f )

− 3

2
ϒ2(t)Dx

(
D2
x g · f

)
· (
Dy g · f

)

− 3

2
ϒ2(t)Dy

(
D2
x g · f

)
· (Dx g · f ) . (9)

Making the assumptions that

Dx

{ {
3ϒ2(t)D

2
x Dy − 4ϒ0ϒ2(t)

[
φ′(y) + α′(y)β(z)

]
Dx

+4ϒ4(t)Dz

}
g · f

}
· ( f g) = 0, (10a)

Dy

{[
4ϒ1(t)Dt + ϒ2(t)D

3
x

]
g · f

}
· ( f g) = 0,

(10b)

Dx
(
Dx Dy g · f

) · (Dx g · f ) = 0, (10c)

Dx

(
D2
x g · f

)
· (
Dy g · f

) = 0, (10d)

Dy

(
D2
x g · f

)
· (Dx g · f ) = 0, (10e)

we can obtain two sets of the bilinear auto-Bäcklund
transformations for Eq. (1) in the following:

Set 1: D2
x g · f �= 0 and Dx Dy g · f �= 0

We work out the following set of the bilinear auto-
Bäcklund transformations for Eq. (1):

u(x, y, z, t) = 6

ϒ0
[ln f (x, y, z, t)]x

− φ(y) − ψ(z) − α(y)β(z), (11a)

v(x, y, z, t) = 6

ϒ0
[ln g(x, y, z, t)]x

− φ(y) − ψ(z) − α(y)β(z), (11b)
{
3ϒ2(t)D

2
x Dy − 4ϒ0ϒ2(t)

[
φ′(y) + α′(y)β(z)

]
Dx

+4ϒ4(t)Dz

}
g · f = 0, (11c)

[
4ϒ1(t)Dt + ϒ2(t)D

3
x

]
g · f = 0, (11d)

Dx Dy g · f = λ1(t) Dx g · f, (11e)

D2
x g · f = λ2(t) Dy g · f, (11f)

D2
x g · f = λ3(t) Dx g · f, (11g)

in which λ1(t), λ2(t) and λ3(t) denote the real non-
zero differentiable functions of t , while v (x, y, z, t)
represents another solution of Eq. (1).

With respect to the stream under a pressure sur-
face in the water, under Variable-Coefficient Con-
straint (5), mutually consistent (as seen right below),
Bilinear Auto-Bäcklund Transformations (11) for
Eq. (1) are dependent on the dispersion coefficient
ϒ2(t) as well as perturbed-effect coefficientsϒ1(t) and
ϒ4(t) in Eq. (1). Bilinear Auto-Bäcklund Transforma-
tions (11) are different from the one given in Ref. [43].

Bilinear Auto-Bäcklund Transformations (11)
denote a system of the equations which connects a set
of the solutions of Eq. (1) to another set of the solu-
tions of Eq. (1) itself. Hence, we might, in principle
at least, be capable of progressively finding more and
more complicated solutions of Eq. (1).
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Next, for themutual consistency, or explicit solvabil-
ity in relation to f and g, we will construct some ana-
lytic solutions for Eq. (1) via Bilinear Auto-Bäcklund
Transformations (11).

Under the variable-coefficient constraint

ϒ4(t) = μ0 ϒ2(t), (12)

with the choices of

λ1(t) = σ2 ϒ2(t),

λ2(t) = σ 2
1

σ2
ϒ2(t),

λ3(t) = σ1 ϒ2(t),

φ(y) = ζ1 y + ζ2,

α(y) = ζ3 y + ζ4,

β(z) = β only, (13)

we construct out the following analytic solutions
for Eq. (1) via Bilinear Auto-Bäcklund Transforma-
tions (11):

u(x, y, z, t) = 6

ϒ0
[ln f (x, y, z, t)]x − (ζ1 y + ζ2)

− ψ(z) − β (ζ3 y + ζ4) , (14a)

v(x, y, z, t) = 6

ϒ0
[ln g(x, y, z, t)]x

− (ζ1 y + ζ2) − ψ(z) − β (ζ3 y + ζ4) , (14b)

f (x, y, z, t) = 1, (14c)

g(x, y, z, t) = 1 + ε1 exp

{
σ1 x + σ2 y

− σ1 [3 σ1 σ2 + 4ϒ0 (ζ1 + βζ3)]

4μ0
z

− σ 3
1

4

∫
ϒ2(t)

ϒ1(t)
dt

}
, (14d)

with μ0, σ1, σ2 and ε1 as the real non-zero constants,
while ζ1, ζ2, ζ3 and ζ4 as the real constants.

With respect to the stream under a pressure surface
in the water, under Variable-Coefficient Constraints (5)
and (12), Analytic Solutions (14) are dependent on the
dispersion coefficientϒ2(t) as well as perturbed-effect
coefficient ϒ1(t) in Eq. (1).

Set 2: D2
x g · f = 0 and Dx Dy g · f = 0

Similarly, we find the second set of the bilinear auto-
Bäcklund transformations for Eq. (1):

u(x, y, z, t) = 6

ϒ0
[ln f (x, y, z, t)]x

− φ(y) − ψ(z) − α(y)β(z), (15a)

v(x, y, z, t) = 6

ϒ0
[ln g(x, y, z, t)]x

− φ(y) − ψ(z) − α(y)β(z), (15b)
{
3ϒ2(t)D

2
x Dy − 4ϒ0ϒ2(t)

[
φ′(y) + α′(y)β(z)

]
Dx

+ 4ϒ4(t)Dz

}
g · f = 0, (15c)

[
4ϒ1(t)Dt + ϒ2(t)D

3
x

]
g · f = 0, (15d)

Dx Dy g · f = 0, (15e)

D2
x g · f = 0 . (15f)

With respect to the stream under a pressure surface
in the water, under Variable-Coefficient Constraint (5),
Bilinear Auto-Bäcklund Transformations (15) rely on
the dispersion coefficient ϒ2(t) as well as perturbed-
effect coefficients ϒ1(t) and ϒ4(t) in Eq. (1). Bilin-
ear Auto-Bäcklund Transformations (15) are different
from the one reported in Ref. [43].

Bilinear Auto-Bäcklund Transformations (15)
denote a system of the equations which connects a set
of the solutions of Eq. (1) to another set of the solu-
tions of Eq. (1) itself. Hence, we might, in principle
at least, be capable of progressively finding more and
more complicated solutions of Eq. (1).

Next, for themutual consistency, or explicit solvabil-
ity in relation to f and g, we will construct some ana-
lytic solutions for Eq. (1) via Bilinear Auto-Bäcklund
Transformations (15).

Via Bilinear Auto-Bäcklund Transformations (15),
under Variable-Coefficient Constraints (5) and (12),
with the choices of

φ(y) = ζ1 y + ζ2,

α(y) = ζ3 y + ζ4,

β(z) = β only, (16)

we also construct out the following analytic solutions
for Eq. (1):

u(x, y, z, t) = 6

ϒ0
[ln f (x, y, z, t)]x
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− (ζ1 y + ζ2) − ψ(z) − β (ζ3 y + ζ4) , (17a)

v(x, y, z, t) = 6

ϒ0
[ln g(x, y, z, t)]x

− (ζ1 y + ζ2) − ψ(z) − β (ζ3 y + ζ4) , (17b)

f (x, y, z, t) = 1 − ε2 exp

{
σ1 x + σ2 y

− σ1 [3 σ1 σ2 + 4ϒ0 (ζ1 + βζ3)]

4μ0
z

− σ 3
1

4

∫
ϒ2(t)

ϒ1(t)
dt

}
, (17c)

g(x, y, z, t) = 1 + ε2 exp

{
σ1 x + σ2 y

− σ1 [3 σ1 σ2 + 4ϒ0 (ζ1 + βζ3)]

4μ0
z

− σ 3
1

4

∫
ϒ2(t)

ϒ1(t)
dt

}
, (17d)

with ε2 as the real non-zero constant.
With respect to the stream under a pressure surface

in the water, under Variable-Coefficient Constraints (5)
and (12), Analytic Solutions (17) are dependent on the
dispersion coefficientϒ2(t) as well as perturbed-effect
coefficient ϒ1(t) in Eq. (1).

4 Similarity reductions for Eq. (1)

To start with, similar to those in Refs. [52–55], the form
we assume, i.e.,

u(x, y, z, t) = θ(x, y, z, t)

+κ(x, y, z, t)p[r(x, y, z, t)], (18)

could help us seek certain similarity reductions for
Eq. (1), in which θ(x, y, z, t), κ(x, y, z, t) �= 0 and
r(x, y, z, t) �= 0 represent the real to-be-determined
differentiable functions of x , y, z and t , while p(r)
implies a real differentiable function as for r .

Taking into account r(x, y, z, t) = r(t) only, using
symbolic computation1 and substitutingAssumption (18)
into Eq. (1), we obtain

ϒ1(t)κyr
′(t)p′ + ϒ3(t)

(
κxκxy + κyκxx

)
p2

+ [
ϒ1(t)κyt + ϒ2(t)κxxxy + ϒ4(t)κxz

+ϒ3(t)
(
κxθxy + κxyθx + κyθxx + κxxθy

)]
p

1 More on the symbolic computation can be seen, e.g., in Refs.
[56–62].

+ [
ϒ1(t)θyt + ϒ2(t)θxxxy + ϒ4(t)θxz

+ϒ3(t)
(
θxθxy + θyθxx

)] = 0, (19)

where r ′(t) = d
dt r(t) and p′ = d

dr p(r).
To represent a real ordinary differential equation

(ODE), Eq. (19), for which we require that the ratios
of the coefficients of different derivatives and powers
of p(r) denote some functions with respect to r only,
turns into

ϒ1(t)κyr
′(t)�1(r) = ϒ3(t)

(
κxκxy + κyκxx

)
, (20a)

ϒ1(t)κyr
′(t)�2(r) =

ϒ1(t)κyt + ϒ2(t)κxxxy + ϒ4(t)κxz

+ ϒ3(t)
(
κxθxy + κxyθx + κyθxx + κxxθy

)
,

(20b)

ϒ1(t)κyr
′(t)�3(r) = ϒ1(t)θyt + ϒ2(t)θxxxy

+ ϒ4(t)θxz + ϒ3(t)
(
θxθxy + θyθxx

)
, (20c)

with �1(r), �2(r) and �3(r) as three real to-be-
determined differentiable functions of r .

Seeing that the second freedom in Remark 2 in Ref.
[52] helps us simplify Eq. (20a) into

κ(x, y, z, t)=1

2
φ2
1x

2+φ2x+φ3(y) + φ4(z)+φ5(t),

(21a)

r(t) = φ1

∫
ϒ3(t)

ϒ1(t)
dt, �1(r) = 0, (21b)

and that based on the first freedom in Remark 2 in Ref.
[52], Eq. (20c) leads to

θ(x, y, z, t) = θ1x + θ2(z) + θ3(t),

�3(r) = 0, (22)

we can transform Eq. (20b) into

�2(r) = 0, (23)

in which φ1 �= 0, φ2 and θ1 denote the real constants,
while φ3(y), φ4(z), φ5(t), θ2(z) and θ3(t) imply the
real differentiable functions.

In short, making use of symbolic computation, we
end upwith a set of the similarity reductions for Eq. (1),
i.e.,

u(x, y, z, t) = θ1x + θ2(z) + θ3(t)

+
[
1

2
φ2
1x

2+φ2x+φ3(y)+φ4(z)+φ5(t)

]
p[r(t)],

(24a)
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r(t) = φ1

∫
ϒ3(t)

ϒ1(t)
dt, (24b)

p′ + p2 = 0, (24c)

inwhichODE (24c) represents a knownODE, the prop-
erties ofwhich can be found, e.g., inRef. [63], and some
non-trivial solutions of which can be written as

p(r) = 1

r + η
, (25)

with η as a real constant.
With respect to the stream under a pressure surface

in the water, Similarity Reductions (24) are dependent
on the perturbed-effect coefficientϒ1(t) aswell as non-
linearity coefficient ϒ3(t) in Eq. (1).

What we can see is that Similarity Reductions (24)
transform Eq. (1) into a known ODE, i.e. ODE (24c).

5 Conclusions

Currently interesting, Ref. [43], i.e., the paper (Non-
linear Dyn. 87, 2529, 2017), has investigated Eq. (1),
a (3+1)-dimensional variable-coefficient generalized
shallow water wave equation.

In this Comment, with respect to the stream under
a pressure surface in the water, several enhancements
on Ref. [43] for Eq. (1) have been described, with the
aid of the Hirota method and symbolic computation, as
follows:

• Bilinear Forms (6), under Variable-Coefficient
Constraint (5), via Assumption (2);

• Bilinear Auto-Bäcklund Transformations (11),
under Variable-Coefficient Constraint (5), with
Analytic Solutions (14), underVariable-Coefficient
Constraints (5) and (12);

• Bilinear Auto-Bäcklund Transformations (15),
under Variable-Coefficient Constraint (5), with
Analytic Solutions (17), underVariable-Coefficient
Constraints (5) and (12);

• Similarity Reductions (24), to a known ODE, i.e.,
ODE (24c).

We have known that (A) Bilinear Forms (6) are use-
ful for us to build some bilinear auto-Bäcklund trans-
formations, (B) each of Bilinear Auto-Bäcklund Trans-
formations (11) and Bilinear Auto-Bäcklund Transfor-
mations (15), denoting a system of the equations which
connects a set of the solutions of Eq. (1) to another set
of the solutions of Eq. (1) itself, might lead to more and

more complicated solutions of Eq. (1), and (C) Simi-
larity Reductions (24) transform Eq. (1) into a known
ODE, i.e. ODE (24c).

Beyond those in Ref. [43], our results have been
shown to be dependent on the variable coefficients in
Eq. (1), while those coefficients have respectively rep-
resented the perturbed effects, dispersion and nonlin-
earity.
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