ORIGINAL PAPER

Comment on "Bilinear Bäcklund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation" (Nonlinear Dyn. 87, 2529, 2017)

Xin-Yi Ga[o](http://orcid.org/0000-0003-3997-6134) · Yong-Jiang Guo · Wen-Rui Shan

Received: 5 May 2021 / Accepted: 25 June 2021 / Published online: 23 August 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract In this Comment, several enhancements on the results in the paper "Bilinear Bäcklund transformation, soliton and periodic wave solutions for a $(3+1)$ dimensional variable-coefficient generalized shallow water wave equation" (Nonlinear Dyn. 87, 2529, 2017) are described. With respect to the stream under a pressure surface in the water, for the same equation, using the Hirota method and symbolic computation, we are able to build a set of the bilinear forms, two sets of the bilinear auto-Bäcklund transformations along with some analytic solutions, as well as a set of the similarity reductions. Beyond those in the paper (Nonlinear Dyn. 87, 2529, 2017), our results are dependent on the variable coefficients in the equation, while those coefficients respectively represent the perturbed effects, dispersion and nonlinearity.

Keywords Fluids \cdot (3+1)-dimensional variablecoefficient generalized shallow water wave equation · Bilinear forms · Bilinear auto-Bäcklund transformations with analytic solutions · Similarity reductions · Hirota method · Symbolic computation

1 Introduction

Fluids have been actively studied $[1-42]$ $[1-42]$, e.g., recent investigations on the nonlinear dynamics of certain marine inertial particles [\[1\]](#page-6-0), triadic-interaction energy transfer in the fluid flow [\[2](#page-6-1)], nonlinear vibrations of a fluid-filled circular shell [\[3\]](#page-6-2), shallow water waves $[6,9]$ $[6,9]$ $[6,9]$, incompressible fluids $[10,30]$ $[10,30]$, motion of a rigid plate in a Newtonian fluid [\[11](#page-7-3)], heat-conducting fluids [\[12\]](#page-7-4), capillary fluids [\[13\]](#page-7-5), fluids confined in the cylindrical and slit pores [\[14](#page-7-6)], shallow water in an open sea [\[15\]](#page-7-7), oceans in the Solar System [\[16](#page-7-8)[–18\]](#page-7-9) and liquids with the gas bubbles [\[26](#page-7-10)]. Nowadays, such models have been proposed to describe the fluids [\[8](#page-6-4)– [42\]](#page-8-0), as different Navier–Stokes systems [\[10](#page-7-1)[,12](#page-7-4)[,13](#page-7-5)], a fractional Bagley–Torvik system [\[11\]](#page-7-3), an extended Peng-Robinson system [\[14\]](#page-7-6), a generalized (2+1) dimensional dispersive long-wave system [\[15](#page-7-7),[38\]](#page-8-1), a variable-coefficient nonlinear dispersive-wave system [\[16](#page-7-8)[,17](#page-7-11)], a higher-order Boussinesq-Burgers system [\[18](#page-7-9)[,19](#page-7-12)], different extended (2+1)-dimensional coupled Burgers systems [\[20](#page-7-13),[34](#page-7-14)], an Ablowitz–Kaup–Newell– Segur system [\[21](#page-7-15)[–24\]](#page-7-16), a generalized Konopelchenko– Dubrovsky–Kaup–Kupershmidt system [\[25\]](#page-7-17), a (3+1) dimensional nonlinear wave equation [\[26\]](#page-7-10), different (3+1)-dimensional generalized Kadomtsev-Petviashvili-type systems $[9,27,36,39,41]$ $[9,27,36,39,41]$ $[9,27,36,39,41]$ $[9,27,36,39,41]$ $[9,27,36,39,41]$ $[9,27,36,39,41]$, a $(2+1)$ -dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation [\[8\]](#page-6-4), a modified Korteweg–de Vries–Calogero– Bogoyavlenskii-Schiff equation [\[28](#page-7-20),[29\]](#page-7-21), a (2+1)-

 $X.-Y.$ Gao $(\boxtimes) \cdot Y.-J.$ Guo $\cdot W.-R.$ Shan

State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China e-mail: xin_yi_gao@163.com

dimensional generalized Boiti–Leon–Manna–Pempinelli equation $[30]$, a $(2+1)$ -dimensional reduced Yu– Toda–Sasa–Fukuyama equation [\[31](#page-7-22)], a (2+1) dimensional generalized Bogoyavlensky-Konopelchenko equation [\[32](#page-7-23)], a (2+1)-dimensional generalized Hirota-Satsuma-Ito equation [\[33\]](#page-7-24), a Sharma-Tasso-Olver-Burgers equation $[35]$, a $(3+1)$ -dimensional generalized Yu-Toda-Sasa-Fukuyama equation [\[37](#page-8-4)], and a (3+1)-dimensional generalized Konopelchenko– Dubrovsky–Kaup–Kupershmid equation [\[40](#page-8-5)[,42](#page-8-0)].

Currently interesting, Ref. [\[43](#page-8-6)], i.e., the paper (Nonlinear Dyn. 87, 2529, 2017), has studied the following (3+1)-dimensional variable-coefficient generalized shallow water wave equation for the stream under a pressure surface in the water:

$$
\begin{aligned} \Upsilon_1(t)u_{yt} + \Upsilon_2(t)u_{xxxy} + \Upsilon_3(t)u_xu_{xy} \\ + \Upsilon_3(t)u_yu_{xx} + \Upsilon_4(t)u_{xz} &= 0, \end{aligned} \tag{1}
$$

with $u(x, y, z, t)$ being the real differentiable function of the variables *x*, *y*, *z* and *t*, the real functions $\Upsilon_1(t)$ and $\Upsilon_4(t)$ denoting the perturbed effects, $\Upsilon_2(t)$ implying the dispersion, $\Upsilon_3(t)$ representing the nonlinearity, while the subscripts meaning the partial derivatives [\[43](#page-8-6)[,44\]](#page-8-7). For Eq. (1) , Ref. [43] has obtained certain bilinear form, bilinear Bäcklund transformation, Lax pair, soliton and periodic wave solutions.

Also for Eq. (1) , Ref. $[45]$ has worked out certain lump-solution characteristics, Ref. [\[44\]](#page-8-7) has got certain breathers, Ref. [\[47](#page-8-9)] has investigated a Kadomtsev– Petviashvili hierarchy reduction, some soliton and semi-rational solutions, while Ref. [\[50](#page-8-10)] has found some nonautonomous lump solutions and an interaction between a lump wave and a kink soliton. Special cases of Eq. (1) have been a $(3+1)$ -dimensional generalized shallow water equation [for $\Upsilon_1(t) = \Upsilon_2(t) = 1$, $\Upsilon_3(t) = -3$ and $\Upsilon_4(t) = -1$] applied in the weather simulations, tidal waves, irrigation and tsunami prediction $[45-47]$ $[45-47]$ (and references therein), and a $(3+1)$ dimensional Jimbo-Miwa equation [for $\Upsilon_1(t) = 2$, $\Upsilon_2(t) = 1$, $\Upsilon_3(t) = 3$ and $\Upsilon_4(t) = -3$] modelling some wave phenomena [\[27](#page-7-18)[,47](#page-8-9)] (and references therein).

This Comment will be to enhance the issues published in Ref. [\[43\]](#page-8-6), in order to make them more complete. Results in this Comment, to be seen below, will also be different from those in Refs. [\[44,](#page-8-7)[45](#page-8-8)[,47](#page-8-9)[,50](#page-8-10)].

In Sect. [2](#page-1-1) of this Comment, making use of symbolic computation [\[48](#page-8-11)[,49](#page-8-12)], we will construct a set of the bilinear forms for Eq. (1) , which is different from

and beyond that in Ref. [\[43\]](#page-8-6), while in Sect. [3,](#page-2-0) two sets of the bilinear auto-Bäcklund transformations for Eq. [\(1\)](#page-1-0), different from and beyond that in Ref. [\[43](#page-8-6)]. In addition, using symbolic computation, we will find a set of the similarity reductions for Eq. [\(1\)](#page-1-0) in Sect. [4.](#page-5-0) Section [5](#page-6-5) will be our conclusions.

2 Bilinear forms for Eq. [\(1\)](#page-1-0)

Making use of the Hirota method [\[51\]](#page-8-13) and symbolic computation, we assume that

$$
u(x, y, z, t) = \gamma \left[\ln f(x, y, z, t) \right]_x
$$

- $\phi(y) - \psi(z) - \alpha(y)\beta(z),$ (2)

with $f(x, y, z, t)$ being a real differentiable function of *x*, *y*, *z* and *t*, $\phi(y)$, $\psi(z)$, $\alpha(y)$ and $\beta(z)$ denoting the real differentiable functions, while γ meaning a real non-zero constant.

Substituting Assumption (2) into Eq. (1) and integrating the outcome once as for *x* with the integration function vanishing bring about

$$
\begin{aligned}\n\Upsilon_1(t) \left(\ln f\right)_{yt} + \Upsilon_2(t) \left(\ln f\right)_{xxxx} \\
&+ \gamma \Upsilon_3(t) \left(\ln f\right)_{xx} \left(\ln f\right)_{xy} \\
&- \Upsilon_3(t) \left[\phi'(y) + \alpha'(y)\beta(z)\right] \left(\ln f\right)_{xx} \\
&+ \Upsilon_4(t) \left(\ln f\right)_{xz} = 0,\n\end{aligned}
$$
\n(3)

in which $\phi'(y) = \frac{d}{dy} \phi(y)$ and $\alpha'(y) = \frac{d}{dy} \alpha(y)$. On account of the formulae [\[51](#page-8-13)]

$$
2 (\ln f)_{yt} = \frac{D_y D_t f \cdot f}{f^2},
$$

\n
$$
2 (\ln f)_{xxxy} = \frac{D_x^3 D_y f \cdot f}{f^2}
$$

\n
$$
-3 \frac{D_x^2 f \cdot f}{f^2} \frac{D_x D_y f \cdot f}{f^2},
$$

\n
$$
2 (\ln f)_{xx} = \frac{D_x^2 f \cdot f}{f^2},
$$

\n
$$
2 (\ln f)_{xy} = \frac{D_x D_y f \cdot f}{f^2},
$$

\n
$$
2 (\ln f)_{xz} = \frac{D_x D_z f \cdot f}{f^2},
$$

for the sake of transforming Eq. (1) into certain bilinear forms, we choose

$$
\gamma = 6 \frac{\Upsilon_2(t)}{\Upsilon_3(t)},
$$

to obtain

$$
\left\{\Upsilon_1(t)D_yD_t + \Upsilon_2(t)D_x^3D_y
$$

- $\Upsilon_3(t)\left[\phi'(y) + \alpha'(y)\beta(z)\right]D_x^2$
+ $\Upsilon_4(t)D_xD_z\right\}f \cdot f = 0,$ (4)

with D_x , D_y , D_z and D_t given by [\[51](#page-8-13)]

$$
D_x^{m_1} D_y^{m_2} D_z^{m_3} D_t^{m_4} H(x, y, z, t) \cdot G(x, y, z, t)
$$

\n
$$
\equiv \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x_0}\right)^{m_1} \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial y_0}\right)^{m_2}
$$

\n
$$
\left(\frac{\partial}{\partial z} - \frac{\partial}{\partial z_0}\right)^{m_3} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t_0}\right)^{m_4}
$$

\n
$$
H(x, y, z, t) G(x_0, y_0, z_0, t_0)\Big|_{x_0 = x, y_0 = y, z_0 = z, t_0 = t},
$$

*x*0, *y*0, *z*⁰ and *t*⁰ meaning the formal variables, *H*(*x*, *y*, *z*, *t*) representing a C^{∞} function of *x*, *y*, *z* and *t*, $G(x_0, y_0, z_0, t_0)$ representing a C^{∞} function of x_0 , y_0 , z_0 and t_0 , while m_1 , m_2 , m_3 and m_4 being the nonnegative integers [\[51](#page-8-13)].

In short, under the variable-coefficient constraint

$$
\Upsilon_3(t) = \Upsilon_0 \Upsilon_2(t),\tag{5}
$$

choosing $\gamma = \frac{6}{\gamma_0}$, we find a set of the bilinear forms for Eq. [\(1\)](#page-1-0), i.e.,

$$
\left\{\Upsilon_1(t)D_yD_t + \Upsilon_2(t)D_x^3D_y
$$

-\Upsilon_0\Upsilon_2(t) [\phi'(y) + \alpha'(y)\beta(z)] D_x^2
+ \Upsilon_4(t)D_xD_z \right\} f \cdot f = 0, \t(6)

with Υ_0 implying a real non-zero constant.

With respect to the stream under a pressure surface in the water, under Variable-Coefficient Constraint [\(5\)](#page-2-1) and Assumption (2) , Bilinear Forms (6) for Eq. (1) are dependent on the dispersion coefficient $\Upsilon_2(t)$ as well as perturbed-effect coefficients $\Upsilon_1(t)$ and $\Upsilon_4(t)$ in Eq. [\(1\)](#page-1-0). Bilinear Forms [\(6\)](#page-2-2) are different from the one presented in Ref. [\[43](#page-8-6)].

Bilinear Forms [\(6\)](#page-2-2) are useful, e.g., for us to build some bilinear auto-Bäcklund transformations, to be seen below.

3 Bilinear auto-Bäcklund transformations with analytic solutions for Eq. [\(1\)](#page-1-0)

Based on Bilinear Forms [\(6\)](#page-2-2), with the Hirota method, motivated by Ref. [\[27\]](#page-7-18), assuming that $g(x, y, z, t)$ be another solution of Bilinear Forms (6) , we take into account the expression

$$
f^{2}\left\{\left\{\Upsilon_{1}(t)D_{y}D_{t}+\Upsilon_{2}(t)D_{x}^{3}D_{y}\right.\right.\left.\left.-\Upsilon_{0}\Upsilon_{2}(t)\left[\phi'(y)+\alpha'(y)\beta(z)\right]D_{x}^{2}\right.\left.\left.+ \Upsilon_{4}(t)D_{x}D_{z}\right\}g\cdot g\right\}\left.-g^{2}\left\{\left\{\Upsilon_{1}(t)D_{y}D_{t}+\Upsilon_{2}(t)D_{x}^{3}D_{y}\right.\right.\left.-\Upsilon_{0}\Upsilon_{2}(t)\left[\phi'(y)+\alpha'(y)\beta(z)\right]D_{x}^{2}\right.\left.\left.+ \Upsilon_{4}(t)D_{x}D_{z}\right\}f\cdot f\right\},\right\}
$$
\n(7)

and make use of the exchange formulae [\[51](#page-8-13)]

$$
G^{2} (D_{y} D_{t} H \cdot H) - H^{2} (D_{y} D_{t} G \cdot G)
$$

= 2 D_{y} (D_{t} H \cdot G) \cdot (GH), (8a)

$$
G^{2} \left(D_{x}^{2} H \cdot H \right) - H^{2} \left(D_{x}^{2} G \cdot G \right)
$$

= 2 D_{x} (D_{x} H \cdot G) \cdot (GH), (8b)

$$
G^{2} (D_x D_z H \cdot H) - H^{2} (D_x D_z G \cdot G)
$$

= 2 D_x (D_z H \cdot G) \cdot (GH), (8c)

$$
G^{2} \left(D_{x}^{3} D_{y} H \cdot H \right) - H^{2} \left(D_{x}^{3} D_{y} G \cdot G \right)
$$

\n
$$
= \frac{3}{2} D_{x} \left(D_{x}^{2} D_{y} H \cdot G \right) \cdot (GH)
$$

\n
$$
+ \frac{1}{2} D_{y} \left(D_{x}^{3} H \cdot G \right) \cdot (GH)
$$

\n
$$
- 3 D_{x} \left(D_{x} D_{y} H \cdot G \right) \cdot (D_{x} H \cdot G)
$$

\n
$$
- \frac{3}{2} D_{x} \left(D_{x}^{2} H \cdot G \right) \cdot (D_{y} H \cdot G)
$$

\n
$$
- \frac{3}{2} D_{y} \left(D_{x}^{2} H \cdot G \right) \cdot (D_{x} H \cdot G), \qquad (8d)
$$

to get

$$
f^{2}\left\{\left\{\Upsilon_{1}(t)D_{y}D_{t}+\Upsilon_{2}(t)D_{x}^{3}D_{y}\right.\right.\\ \left.\left.-\Upsilon_{0}\Upsilon_{2}(t)\left[\phi'(y)+\alpha'(y)\beta(z)\right]D_{x}^{2}\right.\\ \left.+\Upsilon_{4}(t)D_{x}D_{z}\right\}g\cdot g\right\}\\ \left.-g^{2}\left\{\left\{\Upsilon_{1}(t)D_{y}D_{t}+\Upsilon_{2}(t)D_{x}^{3}D_{y}\right.\right.\\ \left. -\Upsilon_{0}\Upsilon_{2}(t)\left[\phi'(y)+\alpha'(y)\beta(z)\right]D_{x}^{2}\right\}\right\}
$$

 \mathcal{D} Springer

$$
+ \Upsilon_4(t)D_xD_z \left\{ f \cdot f \right\}
$$

\n
$$
= \Upsilon_1(t) \left[f^2 (D_yD_t g \cdot g) - g^2 (D_yD_tf \cdot f) \right]
$$

\n
$$
+ \Upsilon_2(t) \left[f^2 (D_x^3D_y g \cdot g) \right]
$$

\n
$$
-g^2 (D_x^3D_y f \cdot f) \right]
$$

\n
$$
- \Upsilon_0 \Upsilon_2(t) [\phi'(y) + \alpha'(y)\beta(z)]
$$

\n
$$
\left[f^2 (D_x^2 g \cdot g) - g^2 (D_x^2 f \cdot f) \right]
$$

\n
$$
+ \Upsilon_4(t) \left[f^2 (D_xD_z g \cdot g) \right]
$$

\n
$$
-g^2 (D_xD_z f \cdot f) \right]
$$

\n
$$
= 2 \Upsilon_1(t) D_y (D_t g \cdot f) \cdot (fg)
$$

\n
$$
- 2 \Upsilon_0 \Upsilon_2(t) [\phi'(y) + \alpha'(y)\beta(z)]
$$

\n
$$
D_x (D_x g \cdot f) \cdot (fg)
$$

\n
$$
+ \Upsilon_2(t) \left[\frac{3}{2} D_x (D_x^2 D_y g \cdot f) \cdot (fg)
$$

\n
$$
+ \frac{1}{2} D_y (D_x^3 g \cdot f) \cdot (fg)
$$

\n
$$
- \frac{3}{2} D_y (D_x^2 g \cdot f) \cdot (D_x g \cdot f)
$$

\n
$$
- 3 D_x (D_x D_y g \cdot f) \cdot (D_y g \cdot f)
$$

\n
$$
- 3 D_x (D_x^2 g \cdot f) \cdot (D_y g \cdot f)
$$

\n
$$
+ 2 \Upsilon_4(t) D_x (D_z g \cdot f) \cdot (fg)
$$

\n
$$
= \frac{1}{2} D_x \left\{ \left\{ 3 \Upsilon_2(t) D_x^2 D_y - 4 \Upsilon_0 \Upsilon_2(t) \right\} g \cdot f \right\} \cdot (fg)
$$

\n
$$
+ \frac{1}{2} D_y \left[\left\{ 4 \Upsilon_1(t) D_t + \Upsilon_2(t) D_x^3 \right\
$$

Making the assumptions that

$$
D_x \left\{ \left\{ 3 \Upsilon_2(t) D_x^2 D_y - 4 \Upsilon_0 \Upsilon_2(t) \left[\phi'(y) + \alpha'(y)\beta(z) \right] D_x \right. \right. \left. + 4 \Upsilon_4(t) D_z \right\} g \cdot f \left\} \cdot (fg) = 0,
$$
 (10a)

$$
D_{y}\left\{\left[4\,\Upsilon_{1}(t)D_{t}+\Upsilon_{2}(t)D_{x}^{3}\right]g\cdot f\right\}\cdot\left(fg\right)=0,\tag{10b}
$$

$$
D_x(D_xD_y g \cdot f) \cdot (D_x g \cdot f) = 0, \qquad (10c)
$$

$$
D_x\left(D_x^2 g \cdot f\right) \cdot \left(D_y g \cdot f\right) = 0,\tag{10d}
$$

$$
D_{y}\left(D_{x}^{2}g\cdot f\right)\cdot(D_{x}g\cdot f)=0,
$$
\n(10e)

we can obtain two sets of the bilinear auto-Bäcklund transformations for Eq. (1) in the following:

Set 1: $D_x^2 g \cdot f \neq 0$ and $D_x D_y g \cdot f \neq 0$

We work out the following set of the bilinear auto-Bäcklund transformations for Eq. [\(1\)](#page-1-0):

$$
u(x, y, z, t) = \frac{6}{\Upsilon_0} [\ln f(x, y, z, t)]_x
$$

$$
-\phi(y) - \psi(z) - \alpha(y)\beta(z), \qquad (11a)
$$

$$
v(x, y, z, t) = \frac{6}{\gamma_0} [\ln g(x, y, z, t)]_x
$$

$$
-\phi(y) - \psi(z) - \alpha(y)\beta(z),
$$
(11b)

$$
\left\{\frac{\beta \Upsilon_2(t) D_x^2 D_y - 4 \Upsilon_0 \Upsilon_2(t) \left[\phi'(y) + \alpha'(y) \beta(z)\right] D_x}{\right\}
$$

$$
+4\Upsilon_4(t)D_z\Big\}\,g\cdot f=0,\tag{11c}
$$

$$
\[4\,\Upsilon_1(t)D_t + \Upsilon_2(t)D_x^3\]g \cdot f = 0,\tag{11d}
$$

$$
D_x D_y g \cdot f = \lambda_1(t) D_x g \cdot f,\tag{11e}
$$

$$
D_x^2 g \cdot f = \lambda_2(t) D_y g \cdot f,\tag{11f}
$$

$$
D_x^2 g \cdot f = \lambda_3(t) D_x g \cdot f,\tag{11g}
$$

in which $\lambda_1(t)$, $\lambda_2(t)$ and $\lambda_3(t)$ denote the real nonzero differentiable functions of *t*, while $v(x, y, z, t)$ represents another solution of Eq. [\(1\)](#page-1-0).

With respect to the stream under a pressure surface in the water, under Variable-Coefficient Con-straint [\(5\)](#page-2-1), mutually consistent (as seen right below), Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0) for Eq. [\(1\)](#page-1-0) are dependent on the dispersion coefficient $\Upsilon_2(t)$ as well as perturbed-effect coefficients $\Upsilon_1(t)$ and ϒ4(*t*) in Eq. [\(1\)](#page-1-0). Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0) are different from the one given in Ref. [\[43](#page-8-6)].

Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0) denote a system of the equations which connects a set of the solutions of Eq. (1) to another set of the solutions of Eq. [\(1\)](#page-1-0) itself. Hence, we might, in principle at least, be capable of progressively finding more and more complicated solutions of Eq. (1) .

 \mathbf{r}

 $\overline{1}$

Next, for the mutual consistency, or explicit solvability in relation to *f* and *g*, we will construct some analytic solutions for Eq. [\(1\)](#page-1-0) via Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0).

Under the variable-coefficient constraint

$$
\Upsilon_4(t) = \mu_0 \Upsilon_2(t),\tag{12}
$$

with the choices of

$$
\lambda_1(t) = \sigma_2 \Upsilon_2(t),
$$

\n
$$
\lambda_2(t) = \frac{\sigma_1^2}{\sigma_2} \Upsilon_2(t),
$$

\n
$$
\lambda_3(t) = \sigma_1 \Upsilon_2(t),
$$

\n
$$
\phi(y) = \zeta_1 y + \zeta_2,
$$

\n
$$
\alpha(y) = \zeta_3 y + \zeta_4,
$$

\n
$$
\beta(z) = \beta \text{ only},
$$
\n(13)

we construct out the following analytic solutions for Eq. [\(1\)](#page-1-0) via Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0):

$$
u(x, y, z, t) = \frac{6}{\gamma_0} [\ln f(x, y, z, t)]_x - (\zeta_1 y + \zeta_2)
$$

- $\psi(z) - \beta (\zeta_3 y + \zeta_4),$ (14a)

$$
v(x, y, z, t) = \frac{6}{\gamma_0} [\ln g(x, y, z, t)]_x
$$

– (\zeta_1 y + \zeta_2) – \psi(z) – \beta (\zeta_3 y + \zeta_4), (14b)

$$
f(x, y, z, t) = 1,\tag{14c}
$$

$$
g(x, y, z, t) = 1 + \epsilon_1 \exp\left\{\sigma_1 x + \sigma_2 y - \frac{\sigma_1 [3 \sigma_1 \sigma_2 + 4 \Upsilon_0 (\zeta_1 + \beta \zeta_3)]}{4 \mu_0} z - \frac{\sigma_1^3}{4} \int \frac{\Upsilon_2(t)}{\Upsilon_1(t)} dt \right\},
$$
(14d)

with μ_0 , σ_1 , σ_2 and ϵ_1 as the real non-zero constants, while ζ_1 , ζ_2 , ζ_3 and ζ_4 as the real constants.

With respect to the stream under a pressure surface in the water, under Variable-Coefficient Constraints [\(5\)](#page-2-1) and [\(12\)](#page-4-0), Analytic Solutions [\(14\)](#page-4-1) are dependent on the dispersion coefficient $\Upsilon_2(t)$ as well as perturbed-effect coefficient $\Upsilon_1(t)$ in Eq. [\(1\)](#page-1-0).

Set 2:
$$
D_x^2 g \cdot f = 0
$$
 and $D_x D_y g \cdot f = 0$

Similarly, we find the second set of the bilinear auto-Bäcklund transformations for Eq. [\(1\)](#page-1-0):

$$
u(x, y, z, t) = \frac{6}{\gamma_0} [\ln f(x, y, z, t)]_x
$$

- $\phi(y) - \psi(z) - \alpha(y)\beta(z),$ (15a)

$$
v(x, y, z, t) = \frac{6}{\gamma_0} \left[\ln g(x, y, z, t) \right]_x
$$

$$
-\phi(y) - \psi(z) - \alpha(y)\beta(z), \qquad (15b)
$$

$$
\left\{\frac{\partial \Upsilon_2(t) D_x^2 D_y - 4 \Upsilon_0 \Upsilon_2(t) \left[\phi'(y) + \alpha'(y) \beta(z)\right] D_x}{\right\}
$$

$$
+4\,\Upsilon_4(t)D_z\bigg\}g\cdot f=0,\qquad(15c)
$$

$$
\[4\,\Upsilon_1(t)D_t + \Upsilon_2(t)D_x^3\]g \cdot f = 0,\tag{15d}
$$

$$
D_x D_y g \cdot f = 0,\t\t(15e)
$$

$$
D_x^2 g \cdot f = 0 \tag{15f}
$$

With respect to the stream under a pressure surface in the water, under Variable-Coefficient Constraint [\(5\)](#page-2-1), Bilinear Auto-Bäcklund Transformations [\(15\)](#page-4-2) rely on the dispersion coefficient $\Upsilon_2(t)$ as well as perturbedeffect coefficients $\Upsilon_1(t)$ and $\Upsilon_4(t)$ in Eq. [\(1\)](#page-1-0). Bilinear Auto-Bäcklund Transformations [\(15\)](#page-4-2) are different from the one reported in Ref. [\[43\]](#page-8-6).

Bilinear Auto-Bäcklund Transformations [\(15\)](#page-4-2) denote a system of the equations which connects a set of the solutions of Eq. (1) to another set of the solutions of Eq. [\(1\)](#page-1-0) itself. Hence, we might, in principle at least, be capable of progressively finding more and more complicated solutions of Eq. [\(1\)](#page-1-0).

Next, for the mutual consistency, or explicit solvability in relation to *f* and *g*, we will construct some analytic solutions for Eq. [\(1\)](#page-1-0) via Bilinear Auto-Bäcklund Transformations [\(15\)](#page-4-2).

Via Bilinear Auto-Bäcklund Transformations [\(15\)](#page-4-2), under Variable-Coefficient Constraints [\(5\)](#page-2-1) and [\(12\)](#page-4-0), with the choices of

$$
\begin{aligned}\n\phi(y) &= \zeta_1 y + \zeta_2, \\
\alpha(y) &= \zeta_3 y + \zeta_4, \\
\beta(z) &= \beta \quad \text{only},\n\end{aligned}
$$
\n(16)

we also construct out the following analytic solutions for Eq. (1) :

$$
u(x, y, z, t) = \frac{6}{\Upsilon_0} [\ln f(x, y, z, t)]_x
$$

 \mathcal{D} Springer

$$
-(\zeta_1 y + \zeta_2) - \psi(z) - \beta (\zeta_3 y + \zeta_4),
$$
 (17a)

$$
v(x, y, z, t) = \frac{6}{\gamma_0} [\ln g(x, y, z, t)]_x
$$

$$
-(\zeta_1 y + \zeta_2) - \psi(z) - \beta (\zeta_3 y + \zeta_4), \qquad (17b)
$$

$$
f(x, y, z, t) = 1 - \epsilon_2 \exp\left\{\sigma_1 x + \sigma_2 y - \frac{\sigma_1 [3 \sigma_1 \sigma_2 + 4 \Upsilon_0 (\zeta_1 + \beta \zeta_3)]}{4 \mu_0} z - \frac{\sigma_1^3}{4} \int \frac{\Upsilon_2(t)}{\Upsilon_1(t)} dt \right\},
$$
(17c)

$$
g(x, y, z, t) = 1 + \epsilon_2 \exp\left\{\sigma_1 x + \sigma_2 y - \frac{\sigma_1 [3 \sigma_1 \sigma_2 + 4 \Upsilon_0 (\zeta_1 + \beta \zeta_3)]}{4 \mu_0} z - \frac{\sigma_1^3}{4} \int \frac{\Upsilon_2(t)}{\Upsilon_1(t)} dt \right\},
$$
(17d)

with ϵ_2 as the real non-zero constant.

With respect to the stream under a pressure surface in the water, under Variable-Coefficient Constraints [\(5\)](#page-2-1) and [\(12\)](#page-4-0), Analytic Solutions [\(17\)](#page-4-3) are dependent on the dispersion coefficient $\Upsilon_2(t)$ as well as perturbed-effect coefficient $\Upsilon_1(t)$ in Eq. [\(1\)](#page-1-0).

4 Similarity reductions for Eq. [\(1\)](#page-1-0)

To start with, similar to those in Refs. [\[52](#page-8-14)[–55](#page-8-15)], the form we assume, i.e.,

$$
u(x, y, z, t) = \theta(x, y, z, t) + \kappa(x, y, z, t) p[r(x, y, z, t)],
$$
\n(18)

could help us seek certain similarity reductions for Eq. [\(1\)](#page-1-0), in which $\theta(x, y, z, t)$, $\kappa(x, y, z, t) \neq 0$ and $r(x, y, z, t) \neq 0$ represent the real to-be-determined differentiable functions of *x*, *y*, *z* and *t*, while $p(r)$ implies a real differentiable function as for *r*.

Taking into account $r(x, y, z, t) = r(t)$ only, using symbolic computation¹ and substituting Assumption (18) into Eq. (1) , we obtain

$$
\begin{aligned} \Upsilon_1(t)\kappa_y r'(t) p' + \Upsilon_3(t) \left(\kappa_x \kappa_{xy} + \kappa_y \kappa_{xx} \right) p^2 \\ + \left[\Upsilon_1(t)\kappa_{yt} + \Upsilon_2(t)\kappa_{xxxy} + \Upsilon_4(t)\kappa_{xz} \\ + \Upsilon_3(t) \left(\kappa_x \theta_{xy} + \kappa_{xy} \theta_x + \kappa_y \theta_{xx} + \kappa_{xx} \theta_y \right) \right] p \end{aligned}
$$

+
$$
\begin{aligned}\n&+\left[\Upsilon_1(t)\theta_{yt}+\Upsilon_2(t)\theta_{xxxy}+\Upsilon_4(t)\theta_{xz}\right.\\
&+\Upsilon_3(t)\left(\theta_x\theta_{xy}+\theta_y\theta_{xx}\right)\right] = 0,\n\end{aligned} \tag{19}
$$

where $r'(t) = \frac{d}{dt} r(t)$ and $p' = \frac{d}{dr} p(r)$.

To represent a real ordinary differential equation (ODE), Eq. [\(19\)](#page-5-3), for which we require that the ratios of the coefficients of different derivatives and powers of $p(r)$ denote some functions with respect to r only, turns into

$$
\begin{aligned}\n\Upsilon_1(t)\kappa_y r'(t)\Omega_1(r) &= \Upsilon_3(t) \left(\kappa_x \kappa_{xy} + \kappa_y \kappa_{xx}\right), \\
\Upsilon_1(t)\kappa_y r'(t)\Omega_2(r) &= \\
\Upsilon_1(t)\kappa_{yt} + \Upsilon_2(t)\kappa_{xxxy} + \Upsilon_4(t)\kappa_{xz} \\
&+ \Upsilon_3(t) \left(\kappa_x \theta_{xy} + \kappa_{xy} \theta_x + \kappa_y \theta_{xx} + \kappa_{xx} \theta_y\right),\n\end{aligned}
$$
\n(20b)

$$
\begin{aligned} \Upsilon_1(t)\kappa_y r'(t)\Omega_3(r) &= \Upsilon_1(t)\theta_{yt} + \Upsilon_2(t)\theta_{xxxy} \\ &+ \Upsilon_4(t)\theta_{xz} + \Upsilon_3(t)\left(\theta_x\theta_{xy} + \theta_y\theta_{xx}\right), \end{aligned} \tag{20c}
$$

with $\Omega_1(r)$, $\Omega_2(r)$ and $\Omega_3(r)$ as three real to-bedetermined differentiable functions of *r*.

Seeing that the second freedom in Remark 2 in Ref. [\[52\]](#page-8-14) helps us simplify Eq. $(20a)$ into

$$
\kappa(x, y, z, t) = \frac{1}{2}\phi_1^2 x^2 + \phi_2 x + \phi_3(y) + \phi_4(z) + \phi_5(t),
$$
\n(21a)

$$
r(t) = \phi_1 \int \frac{\Upsilon_3(t)}{\Upsilon_1(t)} dt, \qquad \Omega_1(r) = 0,
$$
 (21b)

and that based on the first freedom in Remark 2 in Ref. $[52]$, Eq. $(20c)$ leads to

$$
\theta(x, y, z, t) = \theta_1 x + \theta_2(z) + \theta_3(t),
$$

\n
$$
\Omega_3(r) = 0,
$$
\n(22)

we can transform Eq. [\(20b\)](#page-5-6) into

$$
\Omega_2(r) = 0,\tag{23}
$$

in which $\phi_1 \neq 0$, ϕ_2 and θ_1 denote the real constants, while $\phi_3(y)$, $\phi_4(z)$, $\phi_5(t)$, $\theta_2(z)$ and $\theta_3(t)$ imply the real differentiable functions.

In short, making use of symbolic computation, we end up with a set of the similarity reductions for Eq. [\(1\)](#page-1-0), i.e.,

$$
u(x, y, z, t) = \theta_1 x + \theta_2(z) + \theta_3(t)
$$

+
$$
\left[\frac{1}{2}\phi_1^2 x^2 + \phi_2 x + \phi_3(y) + \phi_4(z) + \phi_5(t)\right] p[r(t)],
$$
(24a)

¹ More on the symbolic computation can be seen, e.g., in Refs. [\[56](#page-8-16)[–62](#page-8-17)].

$$
r(t) = \phi_1 \int \frac{\Upsilon_3(t)}{\Upsilon_1(t)} \mathrm{d}t,\tag{24b}
$$

$$
p' + p^2 = 0,\t(24c)
$$

in which ODE [\(24c\)](#page-6-6) represents a known ODE, the properties of which can be found, e.g., in Ref. [\[63\]](#page-9-0), and some non-trivial solutions of which can be written as

$$
p(r) = \frac{1}{r + \eta},\tag{25}
$$

with η as a real constant.

With respect to the stream under a pressure surface in the water, Similarity Reductions [\(24\)](#page-5-7) are dependent on the perturbed-effect coefficient $\Upsilon_1(t)$ as well as nonlinearity coefficient $\Upsilon_3(t)$ in Eq. [\(1\)](#page-1-0).

What we can see is that Similarity Reductions [\(24\)](#page-5-7) transform Eq. [\(1\)](#page-1-0) into a known ODE, i.e. ODE [\(24c\)](#page-6-6).

5 Conclusions

Currently interesting, Ref. [\[43\]](#page-8-6), i.e., the paper (Nonlinear Dyn. 87, 2529, 2017), has investigated Eq. [\(1\)](#page-1-0), a (3+1)-dimensional variable-coefficient generalized shallow water wave equation.

In this Comment, with respect to the stream under a pressure surface in the water, several enhancements on Ref. [\[43](#page-8-6)] for Eq. [\(1\)](#page-1-0) have been described, with the aid of the Hirota method and symbolic computation, as follows:

- Bilinear Forms [\(6\)](#page-2-2), under Variable-Coefficient Constraint (5) , via Assumption (2) ;
- Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0), under Variable-Coefficient Constraint [\(5\)](#page-2-1), with Analytic Solutions [\(14\)](#page-4-1), under Variable-Coefficient Constraints (5) and (12) ;
- Bilinear Auto-Bäcklund Transformations [\(15\)](#page-4-2), under Variable-Coefficient Constraint [\(5\)](#page-2-1), with Analytic Solutions [\(17\)](#page-4-3), under Variable-Coefficient Constraints (5) and (12) ;
- Similarity Reductions [\(24\)](#page-5-7), to a known ODE, i.e., ODE [\(24c\)](#page-6-6).

We have known that (A) Bilinear Forms (6) are useful for us to build some bilinear auto-Bäcklund transformations, (B) each of Bilinear Auto-Bäcklund Transformations [\(11\)](#page-3-0) and Bilinear Auto-Bäcklund Transformations (15) , denoting a system of the equations which connects a set of the solutions of Eq. (1) to another set of the solutions of Eq. (1) itself, might lead to more and more complicated solutions of Eq. (1) , and (C) Similarity Reductions [\(24\)](#page-5-7) transform Eq. [\(1\)](#page-1-0) into a known ODE, i.e. ODE [\(24c\)](#page-6-6).

Beyond those in Ref. [\[43\]](#page-8-6), our results have been shown to be dependent on the variable coefficients in Eq. [\(1\)](#page-1-0), while those coefficients have respectively represented the perturbed effects, dispersion and nonlinearity.

Acknowledgements We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Nature Science Foundation of China under Grant No. 11871116 and Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11. XYG also thanks the National Scholarship for Doctoral Students of China and BUPT Innovation and Entrepreneurship Support Program, Beijing University of Posts and Telecommunications.

Data availibility Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

- 1. Beron-Vera, F.J.: Nonlinear dynamics of inertial particles in the ocean: from drifters and floats to marine debris and Sargassum. Nonlinear Dyn. **103**, 1–26 (2021)
- 2. Schmidt, O.T.: Bispectral mode decomposition of nonlinear flows. Nonlinear Dyn. **102**, 2479–2501 (2020)
- 3. Balasubramanian, P., Ferrari, G., Amabili, M.: Nonlinear vibrations of a fluid-filled, soft circular shell: experiments and system identification. Nonlinear Dyn. **102**, 1409–1418 (2020)
- 4. Zhao, X., Tian, B., Tian, H.Y., Yang, D.Y.: Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2+1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics. Nonlinear Dyn. **103**, 1785–1794 (2021)
- 5. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. **100**, 2729–2738 (2020)
- 6. Wang, D., Gao, Y.T., Yu, X., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Nonlinear Dyn. **104,** 1519 (2021)
- 7. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic timedependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. **98**, 269–282 (2019)
- 8. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C., Jia, T.T.: Solitons and periodic waves for the (2+1)-dimensional generalized

Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn. **99**, 1039–1052 (2020)

- 9. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. **97**, 2023–2040 (2019)
- 10. Reddy, J.N., Kim, N., Martinez, M.: A dual mesh control domain method for the solution of nonlinear Poisson's equation and the Navier–Stokes equations for incompressible fluids. Phys. Fluids **32**, 093608 (2020)
- 11. Taha, M.H., Ramadan, M.A., Baleanu, D., Moatimid, G.M.: A novel analytical technique of the fractional Bagley– Torvik equations for motion of a rigid plate in Newtonian fluids. CMES-Comput. Model. Eng. **124**, 969–983 (2020)
- 12. Al-Homidan, S., Ansari, Q.H., Chadli, O.: Noncoercive stationary Navier–Stokes equations of heat-conducting fluids modeled by hemivariational inequalities: an equilibrium problem approach. Results Math. **74**, 132 (2019)
- 13. Antonelli, P., Spirito, S.: On the compactness of weak solutions to the Navier–Stokes–Korteweg equations for capillary fluids. Nonlinear Anal. Theor. **187**, 110–124 (2019)
- 14. Barbosa, G.D., Travalloni, L., Castier, M., Tavares, F.W.: Pore size distributions from extended Peng–Robinson equations of state for fluids confined in cylindrical and slit pores. Fluid Phase Equilib. **493**, 67–77 (2019)
- 15. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow water in an open sea or a wide channel: auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1) dimensional dispersive long-wave system. Chaos Solitons Fractals **138**, 109950 (2020)
- 16. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic studies via a variable-coefficient nonlinear dispersive-wave system in the Solar System. Chaos Solitons Fractals **142**, 110367 (2021)
- 17. Gao, X.Y., Guo, Y.J., Shan, W.R.: Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system. Acta Mech. **231**, 4415–4420 (2020)
- 18. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq–Burgers system, auto- and nonauto-Bäcklund transformations. Appl. Math. Lett. **104**, 106170 (2020)
- 19. Jaradat, A., Noorani, M.S., Alquran, M., Jaradat, H.M.: Construction and solitary wave solutions of two-mode higher-order Boussinesq–Burger system. Adv. Differ. Equ. **2017**, 376 (2017)
- 20. Gao, X.Y., Guo, Y.J., Shan, W.R.: Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Phys. Lett. A **384**, 126788 (2020)
- 21. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz–Kaup–Newell–Segur system, conservation laws and Bäcklund transformation of a variable-coefficient Korteweg–de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B **34**, 2050226 (2020)
- 22. Brugarino, T.: Painleve property, auto-Bäcklund transformation, Lax pairs, and reduction to the standard form for the Korteweg–De Vries equation with nonuniformities. J. Math. Phys. **30**, 1013 (1989)
- 23. Kapadia, D.A.: Nonintegrable reductions of the self-dual Yang–Mills equations in a metric of plane wave type. J. Math. Phys. **42**, 5753 (2001)
- 24. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Reduction and analytic solutions of a variable-coefficient Korteweg–de Vries equation in a fluid, crystal or plasma. Mod. Phys. Lett. B **34**, 2050287 (2020)
- 25. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J.: Solitons and breather waves for the generalized Konopelchenko– Dubrovsky–Kaup–Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fractals **140**, 110085 (2020)
- 26. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1) dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. **79**, 576 (2020)
- 27. Shen, Y., Tian, B., Liu, S.H., Yang, D.Y.: Bilinear Backlund transformation, soliton and breather solutions for a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics. Phys. Scr. **96**, 075212 (2021)
- 28. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Deng, G.F., Jia, T.T.: Painleve analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg–de Vries–Calogero–Bogoyavlenskii– Schiff equation in fluid mechanics. Chaos Solitons Fractals **144**, 110559 (2021)
- 29. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV– Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. **89**, 1727–1732 (2017)
- 30. Shen, Y., Tian, B., Zhang, C.R., Tian, H.Y., Liu, S.H.: Breather-wave, periodic-wave and travelling-wave solutions for a (2+1)-dimensional extended Boiti–Leon–Manna– Pempinelli equation for an incompressible fluid. Mod. Phys. Lett. B **35**, 2150261 (2021)
- 31. Wang, M., Tian, B., Qu, Q.X., Du, X.X., Zhang, C.R., Zhang, Z.: Lump, lumpoff and rogue waves for a (2+1) dimensional reduced Yu–Toda–Sasa–Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus **134**, 578 (2019)
- 32. Liu, F.Y., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C., Wang, D.: Lie group analysis and analytic solutions for a (2+1) dimensional generalized Bogoyavlensky-Konopelchenko equation in fluid mechanics and plasma physics. Eur. Phys. J. Plus **136,** 656 (2021)
- 33. Wang, M., Tian, B., Liu, S.H., Shan, W.R., Jiang, Y.: Soliton, multiple-lump and hybrid solutions of a $(2+1)$ -dimensional generalized Hirota-Satsuma-Ito equation for the water waves. Eur. Phys. J. Plus **136**, 635 (2021)
- 34. Gao, X.Y., Guo, Y.J., Shan, W.R.: In oceanography, acoustics and hydrodynamics: an extended coupled (2+1) dimensional Burgers system. Chin. J. Phys. **70**, 264–270 (2021)
- 35. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Backlund transformations, Lax pair and solutions of the Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves. Mod. Phys. Lett. B, Ms. No. MPLB-D-21-00122R1 (In press) (2021)
- 36. Wang, D., Gao, Y.T., Ding, C.C., Zhang, C.Y.: Solitons and periodic waves for a generalized (3+1)-dimensional

Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics, Commun. Theor. Phys. **72**, 115004 (2020)

- 37. Shen, Y., Tian, B., Zhao, X., Shan, W.R., Jiang, Y.: Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid or a lattice. Pramana-J. Phys. **95**, 137. (2021)
- 38. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Comment on "Shallow water in an open sea or a wide channel: Autoand non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system". Chaos Solitons Fract. **151**, 111222 (2021)
- 39. Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wavestripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. **60**, 440–449 (2019)
- 40. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a $(3+1)$ -dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus **135**, 272 (2020)
- 41. Wang, M., Tian, B., Qu, Q.X., Zhao, X.H., Zhang, Z., Tian, H.Y.: Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. **97**, 2474–2486 (2020)
- 42. Gao, X.Y., Guo, Y.J., Shan, W.R.: Comment on "Bilinear form, solitons, breathers and lumps of a (3+1) dimensional generalized Konopelchenko–Dubrovsky– Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics" [Eur. Phys. J. Plus (2020) 135:272]. Eur. Phys. J. Plus **135**, 631 (2020)
- 43. Huang, Q.M., Gao, Y.T., Jia, S.L., Wang, Y.L., Deng, G.F.: Bilinear Bäcklund transformation, soliton and periodic wave solutions for a $(3+1)$ -dimensional variable-coefficient generalized shallow water wave equation. Nonlinear Dyn. **87**, 2529–2540 (2017)
- 44. Liu, J.G., Zhu, W.H.: Breather wave solutions for the generalized shallow water wave equation with variable coefficients in the atmosphere, rivers, lakes and oceans. Comput. Math. Appl. **78**, 848–856 (2019)
- 45. Liu, J.G., Zhu, W.H., He, Y., Lei, Z.Q.: Characteristics of lump solutions to a (3+1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science. Eur. Phys. J. Plus **134**, 385 (2019)
- 46. Kumar, D., Raju, I., Paul, G.C., Ali, M.E., Haque, M.D.: Characteristics of lump-kink and their fission-fusion interactions, rogue, and breather wave solutions for a (3+1)-dimensional generalized shallow water equation. Int. J. Comput. Math. (2021). [https://doi.org/10.1080/](https://doi.org/10.1080/00207160.2021.1929940) [00207160.2021.1929940](https://doi.org/10.1080/00207160.2021.1929940)
- 47. Zhao, X., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Zhang, C.R., Chen, S.S.: Kadomtsev–Petviashvili hierarchy reduction, soliton and semi-rational solutions for the (3+1) dimensional generalized variable-coefficient shallow water wave equation in a fluid. Int. J. Comput. Math. (2021). <https://doi.org/10.1080/00207160.2021.1915999>
- 48. Yang, D.Y., Tian, B., Qu, Q.X., Zhang, C.R., Chen, S.S., Wei, C.C.: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient

coupled Hirota system in an inhomogeneous optical fiber. Chaos Solitons Fract. **150**, 110487 (2011)

- 49. Gao, X.Y., Guo, Y.J., Shan, W.R.: Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. Wave. Random Complex. (2021). [https://doi.org/10.1080/17455030.2021.](https://doi.org/10.1080/17455030.2021.1942308) [1942308](https://doi.org/10.1080/17455030.2021.1942308)
- 50. Chen, W.Q., Guan, Q.F., Jiang, C.F., Zhang, F.F., Wang, L.: Nonautonomous motion study on accelerated and decelerated Lump waves for a (3+1)-dimensional generalized shallow water wave equation with variable coefficients. Complexity **2019**, 6287461 (2019)
- 51. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, New York (2004)
- 52. Chen, Q.T., Shang, Y.D.: Direct similarity reductions and new exact solutions of the short pulse equation. AIMS Math. **4**, 231 (2019)
- 53. Zhang, B., Hu, H.C.: Similarity reduction and exact solutions of a Boussinesq-like equation. Z. Naturforsch. A **73**, 357 (2018)
- 54. An, H.L., Yang, J.J., Yuen, M.W.: Nonlinear exact solutions of the 2-dimensional rotational Euler equations for the incompressible fluid. Commun. Theor. Phys. **63**, 613 (2015)
- 55. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. **30**, 2201 (1989)
- 56. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. **122**, 107301 (2021)
- 57. Yang, D.Y., Tian, B., Tian, H.Y., Chen, Y.Q., Shan, W.R., Jiang, Y.: Interaction between the breather and breather-like soliton, and breather-to-soliton conversions of a variablecoefficient coupled Hirota system in an inhomogeneous optical fiber. Optik (2021). [https://doi.org/10.1016/j.ijleo.](https://doi.org/10.1016/j.ijleo.2021.166815) [2021.166815](https://doi.org/10.1016/j.ijleo.2021.166815)
- 58. Ma, Y.X., Tian, B., Qu, Q.X., Wei, C.C., Zhao, X.: Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Chin. J. Phys. (2021). <https://doi.org/10.1016/j.cjph.2021.07.001>
- 59. Ma, Y.X., Tian, B., Qu, Q.X., Yang, D.Y., Chen, Y.Q.: Painleve analysis, Bäcklund transformations and travelingwave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Int. J. Mod. Phys. B **35**, 2150108 (2021)
- 60. Ma, Y.X., Tian, B., Qu, Q.X., Tian, H.Y., Liu, S.H.: Bilinear Bäcklund transformation, breather- and travelling-wave solutions for a (2+1)-dimensional extended Kadomtsev-Petviashvili II equation in fluid mechanics. Mod. Phys. Lett. B **35**, 2150315 (2021)
- 61. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Chaos Solitons Fract., Ms. No. CHAOS-D-21- 02144R1 (In press) (2021)
- 62. Yang, D.Y., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Chen, S.S., Wei, C.C.: Darboux-dressing transformation, semirational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödiger system with variable

coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Phys. Scr. **96**, 045210 (2021)

63. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Acad., San Diego (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.