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Abstract Soft active materials have the ability to

undergo large deformation in response to stimuli such

as light, heat, magnetic, and electric fields. Due to their

promising applications in the fields of soft robots,

flexible electronics, and biomedicine engineering,

they have attracted tremendous attention from differ-

ent disciplines and developed rapidly in the past

decades basing on mutual efforts. Recently, a new

class of soft active materials, known as hard-magnetic

soft (HMS) materials is successfully developed. By

applying magnetic fields, unprecedented mechanical

behaviors of HMS structures have been observed. To

further explore the potential applications of HMS

materials, this work will investigate the dynamical

behaviors of fluid-conveying pipes made of HMS

materials for the first time. By considering the exactly

geometric nonlinearities due to the bending deforma-

tion of the pipe, the governing equation of a

cantilevered HMS pipe conveying fluid is derived

based on Hamilton’s principle. The analyses of the

stability, static deformation, and nonlinear vibration of

the HMS pipe are conducted by solving the obtained

governing equation. It is found that there is a critical

flow velocity for the dynamic instability of the pipe.

When the flow velocity is below this value, the HMS

pipe may undergo a large static deformation in a

stable state. However, the pipe would periodically

oscillate with a large amplitude when the flow velocity

is beyond the critical flow velocity. Results also

indicate the mechanical responses including static

deformation, loss of stability, and vibration of the

HMS pipe conveying fluid can be effectively con-

trolled by applying an external magnetic field.
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Hard-magnetic soft pipe � Dynamical behaviors �
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1 Introduction

The phenomena of flow-induced vibrations (FIVs) are

very common in engineering structures or systems,

which may result in dramatic failure [1–3]. The FIVs

of various fluid–structure interaction (FSI) systems

including pipes conveying fluid have been intensively

investigated due to their important engineering appli-

cation and academic significance [4–6].

According to different classification standards, the

dynamical system of fluid-conveying pipes can be
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classified into different types. For example, the fluid-

conveying pipes can be differentiated by their bound-

ary constraints, such as cantilevered pipes [7], pipes

supported at both ends [8], pipes with additional spring

support [9], motion-limiting constraint [10], or tip-end

mass [11]. It is widely accepted that a supported pipe

conveying fluid becomes unstable due to static buck-

ling while a cantilevered pipe conveying fluid loses

stability due to flutter. Another classification principle

is based on the time-varying feature of the internal

fluid flow, i.e., pipes conveying steady flow [8–11] and

pipes conveying unsteady flow [12, 13]. When the

internal fluid flow is unsteady, the dynamic responses

of the pipe system become more complex. Specifi-

cally, a pipe conveying steady fluid is a simple self-

excited system, while a pipe conveying pulsating flow

could generate parametric resonance. Additionally,

the fluid-conveying pipe systems could be divided into

macroscopic and micro-/nanopipes. For micro-/nano-

pipes conveying fluid, their vibration characteristics

are size-dependent [14, 15]. Besides, the dynamical

system of a fluid-conveying pipe could be two-

dimensional or three-dimensional depending on

whether the movement of the pipe is planar or spatial.

The earliest works on the dynamical system of

fluid-conveying pipes mainly focused on the linear

stability. In 1939, Bourrières [16] derived the govern-

ing equation for the dynamical behaviors of the fluid-

conveying pipe and studied the stability of a

cantilevered pipe system, which was regarded as the

first scientific study in this field. The famous bench-

mark works about the dynamics of fluid-conveying

pipes supported at both ends were conducted by

Feodos’ev [17], Huosner [18] and Niodson [19]. Since

then, the cantilevered and supported systems gained

continuous attentions [20–22] and more complicated

pipe systems [23, 24] were also studied. Based on both

experimental [25, 26] and theoretical [27, 28] inves-

tigations, it was found that the dynamics of a

cantilevered pipe and a supported pipe are fundamen-

tally different. The cantilevered pipe is subjected to

flutter when the flow velocity of the transported fluid

becomes sufficiently high. However, the fluid-convey-

ing pipe with both ends supported would undergo

buckling instability once the flow velocity exceeds a

critical value.

In the past decades, the investigations on the

nonlinear dynamics of fluid-conveying pipes increase

rapidly [29–33]. Due to their interesting and

complicated nonlinear dynamical behaviors, the

fluid-conveying pipes were regarded as a class of

representative dynamical system and can be used to

develop or validate modern dynamics theory. In

several early works on nonlinear dynamics of fluid-

conveying pipes [31, 34–37], the governing equations

were derived independently with different forms. In

1994, Semler et al. [38] undertook a systematic

comparison of these nonlinear governing equations

and unify the different forms. As a result, Semler

et al.’s governing equation was commonly used in

later studies of the planar oscillations of fluid-

conveying pipes [39–41]. In 2007, Wadham-Gagnon

et al. [42] further derived the governing equations for

three-dimensional vibrations of fluid-conveying pipes.

Since then, Wadham-Gagnon et al.’s equations were

widely adopted in the investigations of nonplanar

dynamical behaviors of fluid-conveying pipes

[11, 43, 44]. It is noted that the nonlinear behaviors

of the fluid-conveying pipes with cantilevered or

supported boundaries are also fundamentally differ-

ent. For a cantilevered pipe, the nonlinearities of the

pipe mainly come from the curvature variation of the

pipe centerline, with the centerline being always

assumed to be inextensible. However, the nonlinear-

ities of a supported pipe are mainly induced by the

extension/compression of the centerline. Many inter-

esting dynamical behaviors of the fluid-conveying

pipe, e.g., limit-cycle oscillations [39], quasiperiodic

vibrations [45], and chaotic motions [10, 46], were

reported in existing works. Nevertheless, the vibration

amplitudes of the pipe were always assumed to be

relatively small in these works, and the geometric

nonlinearities of the pipe were approximated by using

Maclaurin series. When the pipe undergoes large-

amplitude oscillations, the theoretical models pro-

posed in these works are no longer applicable.

In order to satisfy the potential applications of soft

pipes conveying fluid, it is necessary to develop

efficient theoretical models for large-deformation

vibrations. Recently, Chen et al. [47] proposed a

novel geometrically exact model for cantilevered

pipes conveying fluid. The governing equation of this

new model has a very simple form and can be reduced

to the relatively small-amplitude models by using

Taylor expansion. The advantages of the geometri-

cally exact model were further demonstrated in the

studies of the pipe’s vibrations when the flow velocity

is sufficiently high or the vibration amplitude is large
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enough [48]. However, it is still a great challenge to

adjust/control the large-deformation vibrations of

cantilevered pipes conveying fluid.

The motion control of fluid-conveying pipes is very

important in practical applications including the

propulsion and swerve of underwater soft robots,

targeted transport of fluids, etc. For example, a soft

pipe at microscale can be used to clear diseased

regions and has potential applications for the treatment

of thrombus [49]. A soft pipe conveying fluid can also

be used as a component of soft robotics and can realize

propulsion and swerve [50]. Since soft pipes convey-

ing fluid are able to deform in a large range of space,

they may play an important role in the 3D printing and

matter transport in a narrow space. In these new

applications, the deformation and oscillation of soft

pipes need to be controlled.

It is noted that to control the dynamics of fluid-

conveying pipes, most control methods were designed

to suppress the deformations/vibrations of the pipe.

Conventionally, absorbers are utilized for control

purpose, which are composed of mass blocks,

dampers, and springs [41, 51, 52]. Since the mass

and flexural stiffness of the soft pipe are generally

small, additional absorbers attached to the pipe may

significantly change the natural frequency of the pipe.

Therefore, the control method using additional

absorbers is not an ideal choice. With this consider-

ation, developing other novel and effective control

methods for soft pipes conveying fluid is necessary

and the aim of the current study.

The rapidly developed soft active materials that are

responsive to external fields, such as magnetic,

electric, thermal, and light fields, could be adopted

to efficiently and precisely control the motion of

dynamical systems. In this work, the recently devel-

oped hard-magnetic soft (HMS) materials [53] that

have rapid responses under external magnetic actua-

tions are utilized to adjust the dynamical behaviors of

fluid-conveying pipes for the first time. When a HMS

pipe is used to convey fluid, it is expected that the

mechanical behaviors of the pipe system can be

efficiently controlled by changing the external mag-

netic field.

The HMS materials were manufactured by embed-

ding some hard-magnetic particles (e.g., the neody-

mium-iron-boron particles) into the soft materials

[53]. Due to the important applications of the HMS

materials in the areas of soft robots [54], biomedicine

[49], etc., the mechanical responses of HMS structures

have been investigated [55–59]. For example, the

static deformations of a HMS beam with uniform

magnetization have been analytically investigated

[55, 56]. Chen et al. [57] designed the residual

magnetic flux density of HMS beam to realize various

functional deformations. Moreover, the deformations

of a functionally graded HMS beam with the volume

fraction of the embedding particles continuously

varying were studied [58]. Very recently, the theoret-

ical modeling on the three-dimensional large defor-

mations of a HMS beam was realized by introducing

three Euler angles [59]. The above-mentioned works

provide a solid foundation for the theoretical studies of

HMS structures.

In this work, the dynamical behaviors of a can-

tilevered pipe conveying fluid are adjusted by using

HMS materials and external magnetic field. The

theoretical investigations on the dynamics of such a

pipe system are complicated due to magneto-mechan-

ical coupling, fluid–structure coupling, and strong

geometric nonlinearities. Based on Hamilton’s prin-

ciple, the governing equation of the large-deformation

vibrations of the HMS pipe conveying fluid will be

derived. The analyses of the pipe system consist of

three parts: statics, stability, and nonlinear vibration.

The controlled motion of the pipe system will be

studied. The underlying mechanisms of the dynamical

adjustments of the fluid-conveying pipe will be

explored.

2 Formulation

As shown in Fig. 1a, the hard-magnetic soft (HMS)

pipe under consideration is a tubular beam with length

L, cross-section area A, elastic modulus E, and mass

per unit length m, conveying the fluid with flow

velocity U and mass per unit length M, under the

actuation of an external magnetic field with magnetic

flux density Ba. The magnetic flux density of the

applied magnetic field is assumed to be uniform. The

magnitude of Ba is Ba, and the angle between the

directions of Ba and the axis x0 is a. We denote the

residual magnetic flux density of the considered HMS

pipe in the reference and the current configurations as

Br
0 and Br, respectively. A nonuniform magnetization

of the HMS pipe is considered in this work. Due to the

difficulties of manufacturing the nonuniformly
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magnetized HMS pipe with continuously varying Br
0,

we assume that the residual magnetic flux density of

the HMS pipe has a constant magnitude but may

change directions. The considered type of the HMS

pipe can be fabricated by 3D printing [53, 60].

For simplicity, wemake the following assumptions:

(i) the centerline of the cantilevered HMS pipe is

inextensible; (ii) the HMS pipe is slender, and hence

the Euler–Bernoulli beammodel is applicable; (iii) the

motion of the pipe is restricted to be planar; (iv) the

flow of the transported fluid is a plug one; (v) Br
0 has a

constant magnitude Br and is evenly divided into S

parts, where Br
0 is uniform in each part. From the

clamped end of the pipe to the free end, the direction of

Br
0 is either along the positive direction x0-axis or the

reverse direction, as shown in Fig. 1a.

2.1 Derivation of the governing equation

In this subsection, the governing equation for the

large-deformation vibrations of the HMS pipe con-

veying fluid under the actuation of an external

magnetic field will be derived by a Hamiltonian

approach. As Fig. 1a shows, the pipe will deform from

a straight line to a curved line due to the flow-induced

force and the magnetic force. The geometric relation-

ship between the undeformed pipe element and the

deformed one is given by [47, 48]

du ¼ cos hds� dx0; dv ¼ sin hds; ð1Þ

where u is the longitudinal displacement, v is the

transverse displacement, and h is the rotational angle

of the deformed pipe centerline; dx0 and ds are the

centerline lengths of the undeformed and deformed

pipe elements, respectively. According to the inex-

tensibility assumption, we have ds = dx0. Hence, the

centerline displacements can be expressed as

Fig. 1 A cantilevered HMS pipe conveying fluid under a uniform external magnetic field: a the schematic diagram; b the coordinate

system

123

1462 W. Chen et al.



u ¼
Z x0

0

cos hdx0 � x0; v ¼
Z x0

0

sin hdx0; ð2Þ

with the consideration of the displacement constraints

of the cantilevered pipe, i.e. u(x0 = 0) = 0 and v(x0
= 0) = 0. Besides, the coordinates (x, y) of the

deformed pipe centerline are

x ¼ uþ x0 ¼
Z x0

0

cos hdx0; y ¼ v ¼
Z x0

0

sin hdx0:

ð3Þ

The velocity of the HMS pipe is given by [38]

Vp ¼ _xiþ _yj; ð4Þ

where the overdot denotes the differential operator

with respect to time t. The velocity of the conveyed

fluid consists of two parts and can be written as [38]

Vf ¼ _xiþ _yjð Þ þ U x0iþ y0jð Þ; ð5Þ

where the prime represents the differential with

respective to x0. Combing Eq. (4) and Eq. (5), the

total kinetic energy of the fluid-conveying pipe system

is

T ¼ 1

2
m

Z L

0

_x2 þ _y2
� �

dx0

þ 1

2
M

Z L

0

_xþ Ux0ð Þ2þ _yþ Uy0ð Þ2
h i

dx0: ð6Þ

Taking the variation of Eq. (6), we obtain

d
Z t2

t1

Tdt ¼
Z t2

t1

Z L

0

Z L

x0

mþMð Þ€uþM _U u0 þ 1ð Þ þ 2MU _u0
� �

dx0

� �
sin hdhdx0dt

�
Z t2

t1

Z L

0

Z L

x0

mþMð Þ€vþM _Uv0 þ 2MU _v0
� �

dx0

� �
cos hdhdx0dt

þMU

Z t2

t1

_xLdxL þ _yLdyLð Þdt;

ð7Þ

by utilizing Eq. (2). The subscripts L in Eq. (7) denote

the values at x0 = L.

The variation of the strain energy of the can-

tilevered HMS pipe is given by [61]

d
Z t2

t1

Vsdt ¼ d
Z t2

t1

Z L

0

1

2
EIh02dx0dt

� 	

¼ EI

Z t2

t1

h0dhjL0dt � EI

Z t2

t1

Z L

0

h00dhdx0dt;

ð8Þ

where I ¼
R
A y

2dA is the moment of inertia. For such a

soft pipe, the gravity force plays an important role. The

variation of the gravitational potential of the system is

d
Z t2

t1

Gdt ¼ � mþMð Þg
Z t2

t1

Z L

0

dudx0dt

¼
Z t2

t1

Z L

0

mþMð Þg L� x0ð Þ sin hdhdx0

 �

dt;

ð9Þ

where g is the gravitational acceleration.

In this work, the nonuniform Br
0 of the considered

HMS pipe is assumed to be uniform in each part.

Figure 1a shows that the residual magnetic flux

density in the deformed configuration can be

expressed as [57]

Br ¼ vBrcos hi þ vBr sin hj; ð10Þ

where v = v(x0) is a sign function that is introduced to
describe the nonuniform magnetization. Based on the

assumption (v), the expression of the sign function v
is

v ¼ �1ð Þr�1
when r�1

S L� x0\ r
S L for r = 1, 2, …,

S. (11).

The magnetization of the pipe is uniform when

S = 1. Figure 1 shows that the magnetic flux density of

the applied magnetic field can be expressed as

Ba ¼ Bacos ai þ Ba sin aj: ð12Þ

Consequently, the magnetic potential energy per

volume at the current configuration of the HMS pipe is

[53, 62]

/m ¼ � 1

l0
Br � Ba ¼ � v

l0
BrBa cos h�að Þ; ð13Þ

where l0 is the air (or vacuum) permeability.

Integrating Eq. (13) in the whole deformed configu-

ration, then we can obtain the variation of the magnetic

potential energy of the HMS pipe as

d
Z t2

t1

Vmdt ¼
A

l0

Z t2

t1

Z L

0

vBrBa sin h� að Þdhdxdt:

ð14Þ

The considered system of the cantilevered HMS

pipe conveying fluid is non-conservative, and the

corresponding Hamilton’s principle is [27]
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d
Z t2

t1

Ldt ¼
Z t2

t1

MU o_rL þ UsLð Þ � drLð Þdt; ð15Þ

where L ¼ T � Vs � Vm � G is the Lagrangian of the

system, r = xi ? yj is the position vector, and s ¼
1ffiffiffiffiffiffiffiffiffiffi

x02þy02
p x0iþ y0jð Þ is the unit vector tangential to the

centerline of the pipe. Substituting the expressions of r

and s into Eq. (15), the right-hand side (rhs) of

Eq. (15) can be expressed as

rhs ¼ MU

Z t2

t1

_xLdxL þ _yLdyLð Þdt

þMU2

Z t2

t1

x0LdxL þ y0LdyL
� �

dt: ð16Þ

It is worth mentioning that the first term of Eq. (16)

cancels out the last term of Eq. (7). The substitution of

Eq. (3) into the second term in Eq. (16) leads to

MU2

Z t2

t1

x0LdxL þ y0LdyL
� �

dt

¼ MU2

Z t2

t1

Z L

0

sin hL � hð Þdhdx0dt: ð17Þ

Combining Eqs. (7), (8), (9), (14), and (17) into

Eq. (15) yields the governing equation of the large-

amplitude oscillations of the cantilevered HMS pipe

conveying fluid and the corresponding boundary

conditions as

�
Z L

x0

mþMð Þ
Z x0

0

€h sin hþ _h2 cos h

 �

dx0 �M _U cos hþ 2MU _h sin h


 �
dx0

� �
sin h

�
Z L

x0

mþMð Þ
Z x0

0

€h cos h� _h2 sin h

 �

dx0 þM _U sin hþ 2MU _h cos h


 �
dx0

� �
cos h

þ EIh00 þ aEI _h00 � A

l0
vBrBa sin h� að Þ � mþMð Þg L� x0ð Þ sin hþMU2 sin h� hLð Þ ¼ 0;

ð18Þ

and

h x0 ¼ 0ð Þ ¼ 0; h0 x0 ¼ Lð Þ ¼ 0; ð19Þ

where E is replaced by E[1 ? a(q/qt)] to account for

the viscoelasticity of the pipe based on the Kelvin–

Voigt model [61, 63].

2.2 Nondimensionalization

In order to reduce the number of system parameters

and rewrite the governing equation in a simpler form,

the following dimensionless quantities are introduced:

s ¼ EI

mþM

� 	1=2
t

L2
; l ¼ EI

mþM

� 	1=2
a

L2
;

t ¼ M

EI

� 	1=2

UL; c ¼ mþM

EI
L3g;

b ¼ M

mþM
; P ¼ AL2BrBa

EIl0
; n ¼ x0

L
; 1 ¼ u

L
;

g ¼ v

L
; X ¼ x

L
; Y ¼ y

L
;

ð20Þ

where l is the dimensionless viscoelastic coefficient, t
is the dimensionless velocity of fluid, c is the gravity
parameter, b is the mass ratio, P is the dimensionless

magnitude of the magnetic load, f and g are the

dimensionless displacements, n is the dimensionless

space variable, and s is the dimensionless time

variable. By using these dimensionless quantities, we

can rewrite the governing equation as

sin h
Z 1

n

Z n

0

o2h
os2

sin hþ oh
os

� 	2

cos h

" #
dndn

þ sin h
Z 1

n
� ot
os

ffiffiffi
b

p
cos hþ 2t

ffiffiffi
b

p oh
os

sin h

� 	
dn

þ cos h
Z 1

n

Z n

0

o2h
os2

cos h� oh
os

� 	2

sin h

" #
dndn

þ cos h
Z 1

n

ot
os

ffiffiffi
b

p
sin hþ 2t

ffiffiffi
b

p oh
os

cos h

� 	
dn

� o2h

on2
� l

o3h

on2os
þ vP sin h� að Þ þ c 1� nð Þ sin h

þ t2 sin h1 � hð Þ ¼ 0;

ð21Þ

where the subscript 1 denotes the value at n = 1.

Furthermore, the dimensionless boundary conditions

for this cantilevered pipe are given by

h0 ¼ 0;
oh1
on

¼ 0; ð22Þ

and the subscript 0 in Eq. (22) denotes the value at

n = 0.

2.3 Numerical solution procedure

Since the HMS pipe may undergo large static defor-

mations, the investigation of the nonlinear dynamics

of the fluid-conveying HMS pipe includes three parts:
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stability analysis, statics analysis, and nonlinear

vibration analysis. The stability analysis can deter-

mine whether the pipe will vibrate under the given

system parameters. If the pipe does not oscillate, the

statics analysis can give the real response of the pipe

centerline. However, if the pipe vibrates, the nonlinear

vibration analysis is required.

To carry out these three analyses, the infinite-

dimensional model is discretized into a finite one. The

Galerkin’s method will be employed to realize the

spatial discretization. Therefore, the field variable h
can be expressed as

h n; sð Þ ¼
XN
r¼1

/r nð Þqr sð Þ; ð23Þ

where /r nð Þ is a set of base functions, qr sð Þ is the

corresponding generalized coordinates, and N is the

number of employed base functions. The base func-

tions that satisfy the boundary conditions of Eq. (22)

can be given by [47, 48, 57, 58]

/r nð Þ ¼ sin
2r � 1

2
pn

� 	
r ¼ 1; 2; 3; . . .ð Þ:

ð24Þ

2.3.1 Static deformation

The static deformations can be predicted by the statics

governing equation, which can be obtained by drop-

ping the dynamical terms in Eq. (21), i.e.

� o2hs

on2
þ vP sin hs � að Þ þ c 1� nð Þ sin hs

þ t2 sin hs1 � hs
� �

¼ 0: ð25Þ

Substituting Eq. (23) into Eq. (25), then multiply-

ing /i, and finally integrating from 0 to 1, yield

�
Z 1

0

/i

XN
j¼1

/00
j q

s
jdnþ P

Z 1

0

v sin
XN
j¼1

/jq
s
j � a

 !
dn

þ c
Z 1

0

/i 1� nð Þ sin
XN
j¼1

/jq
s
j

 !
dn

" #

þ t2
Z 1

0

/i sin
XN
j¼1

/j 1ð Þqsj

 !
�

XN
j¼1

/jq
s
j

 !" #
dn

( )
¼ 0:

ð26Þ

The discretized equations can be solved by an

iterative algorithm. By solving Eq. (26), we can obtain

the expression of the rotational angle h. Then the

displacements and position of the deformed pipe can

be determined by Eqs. (2) and (3), respectively.

Numerical examples are provided in Sect. 3.2.

2.3.2 Stability

As mentioned above, it is important to know whether

the deformed configurations studied in Sect. 2.3.1 are

stable or not. To conduct the stability analysis, we

need to introduce a perturbation hd(n, s) in additional

to the static deformation hs(n), i.e.,

h n; sð Þ ¼ hs nð Þ þ hd n; sð Þ: ð27Þ

Substituting Eq. (27) into Eq. (21) and keeping the

linear terms of hd, we can obtain the static governing

Eq. (25) and the following stability governing

equation

sin hs
Z 1

n

Z n

0

sin hs
o2hd

os2

� 	
dndn

þ sin hs
Z 1

n
2t

ffiffiffi
b

p
sin hs

ohd

os

� 	
dn

þ cos hs
Z 1

n

Z n

0

cos hs
o2hd

os2

� 	
dndn

þ cos hs
Z 1

n
2t

ffiffiffi
b

p
cos hs

ohd

os

� 	
dn

� o2hd

on2
� l

o3hd

on2os
þ vP cos hs � að Þhd

þ c 1� nð Þ cos hs½ �hd

þ t2 hd1 � hd
� �

cos hs1 � hs
� �

¼ 0;

ð28Þ

where the constant plug flow is considered, i.e. qt/
qt = 0. Again, substituting Eq. (23) into Eq. (28),

multiplying /i, and integrating from 0 to 1, the

following discretized equations are obtained as

Md
� � d2qd

ds2

� �
þ Cd
� � dqd

ds

� �
þ Kd
� �

qd
� �

¼ 0; ð29Þ

where

123

A magnetic control method for large-deformation vibration 1465



Md
ij ¼

Z 1

0

/i sin h
s

Z 1

n

Z n

0

/j sin h
sdndn

� 	
dn

þ
Z 1

0

/i cos h
s

Z 1

n

Z n

0

/j cos h
sdndn

� 	
dn;

ð30aÞ

Cd
ij ¼ 2t

ffiffiffi
b

p Z 1

0

/i sin h
s

Z 1

n
/j sin h

sdn

� 	
dn

þ 2t
ffiffiffi
b

p Z 1

0

/i cos h
s

Z 1

n
/j cos h

sdn

� 	
dn

� l
Z 1

0

/i/
00
j dn

� 	
;

ð30bÞ

Kd
ij ¼ �

Z 1

0

/i/
00
j dn

� 	
þ P

Z 1

0

v cos hs � að Þ/i/jdn

þ c
Z 1

0

1� nð Þ cos hs/i/j

� �
dn

þ t2
Z 1

0

/i /j 1ð Þ � /j

� �
cos hs1 � hs
� �

dn:

ð30cÞ

Equation (29) is reduced to a first-order form by

introducing pd = dqd/ds, and then the stability can be

analyzed by solving the eigenvalue of the reduced

first-order equations. As seen from Eq. (28), before

carrying out stability analysis, the static deformation

of the pipe needs to be determined.

2.3.3 Nonlinear vibration

To quantitatively predict the mechanical responses of

the HMS pipe, it is necessary to carry out the nonlinear

vibration analysis, i.e., to solve Eq. (21). Similar to the

discretization process in Sects. 2.3.1 and 2.3.2,

substituting Eq. (23) into Eq. (21), multiplying /i,

and integrating from 0 to 1, we can obtain the

discretized form of Eq. (21) as

M
d2q

ds2

� �
þ N q;

dq

ds

� 	� �
¼ 0; ð31Þ

where

Mij ¼
Z 1

0

/i sin h
Z 1

n

Z n

0

/j sin hdndn

� 	
dn

þ
Z 1

0

/i cos h
Z 1

n

Z n

0

/j cos hdndn

� 	
dn;

ð32aÞ

N i ¼
Z 1

0

/i sin h
Z 1

n

Z n

0

oh
os

� 	2

cos hdndndn

�
Z 1

0

/i cos h
Z 1

n

Z n

0

oh
os

� 	2

sin hdndndn

þ 2t
ffiffiffi
b

p Z 1

0

/i sin h
Z 1

n

oh
os

sin hdnþ cos h
Z 1

n

oh
os

cos hdn

� 	
dn

�
Z 1

0

/i

o2h

on2
dn� l

Z 1

0

/i

o3h

on2os
dn

þ P

Z 1

0

/iv sin h� að Þdnþ c
Z 1

0

/i 1� nð Þ sin hdn

þ t2
Z 1

0

/i sin h1 � hð Þdn;

ð32bÞ

with

h ¼
XN
r¼1

/r nð Þqr sð Þ; oh
os

¼
XN
r¼1

/r nð Þpr sð Þ;

o2h

on2
¼
XN
r¼1

/00
r nð Þqr sð Þ; o3h

on2os
¼
XN
r¼1

/00
r nð Þpr sð Þ;

ð33Þ

and p = dq/ds. Now we can rewrite Eq. (31) in a first-

order form as

dq

ds
dp

ds

8><
>:

9>=
>; ¼ 0 I

0 0


 �
q
p

� �
þ 0

�M�1N

� �
: ð34Þ

By using a fourth-order Runge–Kutta integration

algorithm, Eq. (34) is solved and h(n, s) can be

determined. Once the expression of rotational angle is

given, the displacements and position of pipe center-

line can be obtained by Eqs. (2) and (3), respectively.

As can be seen from Eq. (31), the nonlinear dynamic

responses of the pipe can be directly determined based

on Eq. (31). Thus, the nonlinear vibration analysis is

independent of the analyses of static deformation and

stability.
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3 Results

Consistent with the numerical solution procedure

given in Sect. 2.3, the presented results include three

parts: stability, static deformations, and nonlinear

vibrations. In the following subsections, we discuss

the stability of the pipe system first, then the deformed

configurations based on the statics model will be

given, and the nonlinear dynamical results are pro-

vided at last.

The embedded hard-magnetic particles may affect

the material properties of the pipe, including the

density q and elastic modulus E. Both q and E of the

HMS pipe are dependent on the volume fraction w of

the embedded particles, and the expressions can be

given by [49, 64]

E ¼ E0 exp
2:5w

1� 1:35w

� 	
ð35Þ

q ¼ 1� wð Þqm þ wqp ð36Þ

where E0 denotes the elastic modulus of a pure rubber

without magnetic particles, qm is the density of the

rubber matrix, and qp is the density of the embedded

particles.

In order to verify the effectiveness of the theoretical

model and calculation procedure, the dimensionless

parameters of the HMS pipe system are chosen to be

the same as the parameters of a rubber pipe used in a

previous experiment [39], i.e., b = 0.142, c = 18.9.

Although the embedded particles can significantly

affect the material properties of the pipe, the same

dimensionless parameter value b (or c) can be

achieved by adjusting the geometric dimension of

the pipe. The viscoelastic damping coefficient

l = 5 9 10–3 is taken without specifically indicated

[10, 45].

In the following, the effects of t (dimensionless

flow velocity), P (dimensionless magnitude of mag-

netic load), S (number of the uniformly magnetized

segments), and a (magnetic declination angle) on the

mechanical responses of the pipe will be studied. The

correctness of the present model and calculations will

be validated by comparing with the Paı̈doussis and

Semler’s results [39].

3.1 Stability

3.1.1 Variation of the eigenvalues

After determining the static deformation of the pipe

via the method given in Sect. 2.3.1, the stability of the

pipe system can be determined by carrying out the

analysis procedure provided in Sect. 2.3.2. By solving

Eq. (29), the eigenvalues X of the pipe system for

various flow velocities are given in Figs. 2, 3 and 4.

The imaginary part of the eigenvalue Im(X) is the

frequency of the pipe system, while the real part of

eigenvalue Re(X) is related to the system damping.

The pipe system is stable provided that all Re(X) are
no more than zero. For the case of Re(X)[ 0, the pipe

flutters if Im(X)[ 0, while the pipe undergoes

buckling instability if Im(X) = 0.

In Fig. 2, the variations of the first-order and

second-order eigenvalues with the increase of t from 0

to 10 are given for different values of a when P = 10

and S = 1, i.e., the uniformly magnetized pipe is

considered. As can be seen, there is a critical flow

velocity tcr. When the flow velocity is below tcr, the
HMS pipe is stable. If the flow velocity exceeds tcr, the
HMS pipe will flutter in the second mode. Further-

more, Fig. 2 shows that the critical flow velocity tcr
decreases with the increase of magnetic declination

angle a.
To explore the influences of the strength of the

magnetic load and the nonuniform magnetization on

the system stability, the variations of the eigenvalue X
for different values of P and S are shown in Figs. 3 and

4, respectively. It can be seen that there is a critical

flow velocity tcr corresponding to the second-mode

flutter for all cases. The pipe is stable when t\ tcr and
will vibrate when t C tcr.

3.1.2 Variation of the critical flow velocity for flutter

As mentioned in Sect. 3.1.1, the critical flow velocity

tcr plays a significant role in the stability analysis. The
present subsection focuses on the values of tcr for
various values of P, S and a. As shown in Fig. 5, by

considering different types of magnetization and

diverse magnetic declination angles, the evolutions

of tcr with the strength of magnetic load P increasing

from 0 to 15 are given. As shown in Fig. 5a–d, the

critical velocity of the internal flow with the absence

of the external magnetic field is 6.37, for
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(a) (b)

(c) (d)

Fig. 2 The eigenvalue X of

the pipe system for a a = 0,

b a = p/3, c a = 2p/3 and

d a = p, when S = 1,

P = 10, b = 0.142, c = 18.9

and l = 5 9 10–3, with

various values of the flow

velocity

(a) (b)

(c) (d)

Fig. 3 The eigenvalue X of

the pipe system for a P = 5,

b P = 10, c P = 15 and

d P = 20, when S = 1,

a = p/3, b = 0.142, c = 18.9

and l = 5 9 10–3, with

various values of the flow

velocity

123

1468 W. Chen et al.



(a) (b)

(c) (d)

Fig. 4 The eigenvalue X of

the pipe system for a S = 1,

b S = 2, c S = 3 and d S = 4,

when P = 10, a = p/3,
b = 0.142, c = 18.9 and

l = 5 9 10–3, with various

values of the flow velocity

(a) (b)

(c) (d)

Fig. 5 The critical flow

velocity for flutter of the

pipe system for a S = 1,

b S = 2, c S = 3 and d S = 4,

when b = 0.142, c = 18.9

and l = 5 9 10–3, with

various values of P and a
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l = 5 9 10–3. By setting l = 0, the present work

gives tcr = 6.17, which agrees very well with the

experimental result tcr& 6.0 and the theoretical result

tcr = 6.15 in the previous work of [39]. It can be found

that when the value of P, a, or S increases, the critical

flow velocity may either increases or decreases. The

complicated evolution of critical flow velocity is

originated from the dependence of magnetic force

vector on the values of P, a and S.

The comparison of Fig. 5a–d shows that the

influence of magnetic adjustments on the system

stability decreases when the value of S increases. This

is not surprising since the directions of the magnetic

forces of the neighboring segments are opposite and

the corresponding adjustment partly cancels each

other. If the value of S approaches to infinity, the

magnitude of the residual magnetic flux density would

be zero macroscopically, and no adjustments can be

achieved.

Figure 5 also shows that the critical flow velocity

monotonously increases or decreases as the value of

P increases, i.e., qtcr(P, S, a)/qP C 0 or qtcr(P, S, a)/
qP B 0 when 0 B P B 15. When the value of a
increases from 0 to p, qtcr/qP C 0 will gradually

change to qtcr/qP B 0, (while qtcr/qP B 0 will grad-

ually change to qtcr/qP C 0). This is due to the

reversion of the magnetic force direction when a
changes from 0 to p.

3.2 Static deformation

The evolutions of the deformed configurations of the

pipe as the flow velocity increases from zero for

different values of a, P and S are shown in Figs. 6, 7

and 8. In these figures, the blue solid lines represent the

deformed configurations when t\ tcr, the red solid

lines are the current configurations when t = tcr, and
the black chain lines are the deformed shapes when

t[ tcr. In this subsection, all results are based on the

statics model, i.e., the formulation in Sect. 2.3.1.

According to the stability analysis given in Sect. 3.1,

the deformed shapes of the pipe for t\ tcr are stable,
while the deformed shapes of the pipe for t[ tcr are
unstable. The stable configurations are the real

mechanical responses of the HMS pipe. The unsta-

ble configurations are the unreal responses since the

HMS pipe will vibrate in these cases.

The evaluations of the deformed shapes of the pipe

as t increases from zero when a = 0, p/3, 2p/3 and p

are given in Fig. 6. As shown in this figure, the pipe

keeps its initial configuration, i.e., a straight line, for

arbitrary value of twhen a = 0. It is also found that the

maximum deformation of the pipe occurs when t = 0,

and the pipe’s deformation increases as a increases.

The underlying mechanism can be understood if we

recall the governing equation of the pipe system.

According to Eq. (21), the magnetic force of the pipe

behaves as a tip-end force when S = 1, and its

direction changes from the x0-axis direction to the

reverse-x0-axis direction when a increases from 0 to p.
As shown in Figs. 5a and 6, the increase in a leads to

the decrease in tcr since the compressive force reduces

the stiffness of the pipe system.

Figure 7 shows the deformed configurations of the

pipe for various values of P and a when S = 1 and

a = p/3. As expected, the increase of P leads to the

larger deformation of the pipe. The deformed shape of

the pipe tends to align with the direction of the applied

magnetic field as P increases from 5 to 20 for t = 0.

When the value of t increases from 0, the flow-induced

force influences the pipe’s deformation and the pipe

configuration will transform in a large space range.

The deformed shapes of the pipe for various types of

magnetization are given in Fig. 8. As can be seen, the

value of S also has significant effect on the deforma-

tion of the pipe.

In summary, the static deformations of the fluid-

conveying pipe have a strong dependence on the

values of P, a and S. Therefore, the proposed magnetic

adjustment method in this work is powerfully effec-

tive. It is interesting that the deformed configuration of

the HMS pipe for t = tcr is nearly the left-most one or

the right-most one among the static configurations for

various t, as can be seen in Figs. 6, 7 and 8.

3.3 Nonlinear vibration

After the flow velocity exceeds the critical value of

flutter, the deformed shapes of the pipe predicted by

the statics model are unreal since the inertia effects

cannot be ignored in the fluttering cases. To precisely

predict the mechanical responses of the HMS pipe, it is

necessary to carry out the nonlinear vibration analysis.

In the following subsections, n = 1 is chosen as the

observing point to show the bifurcation diagrams, time

traces, and phases trajectories of the dynamics of the

fluid-conveying HMS pipe.
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Firstly, a comparison between the present and

previous results of the dynamic responses of a

cantilevered pipe when the fluid velocity becomes

high is provided. It should be mentioned that the

derived governing equation for the HMS pipe accounts

for the exact geometric nonlinearities. However, in

Paı̈doussis and Semler’s work [39], the geometric

nonlinearities were approximated by using Taylor

expansion, with third-order nonlinear terms being

kept. As shown in Fig. 9, after using a Taylor

expansion approximation, the present result agrees

very well with Paı̈doussis and Semler’s result [39].

However, the geometrically exact model predicts a

slightly smaller vibration magnitude when the dimen-

sionless fluid velocity is less than 10. This difference

shows the new feature of the geometrically exact

model, especially when the large-amplitude oscilla-

tions of the pipe occur [47, 48].

3.3.1 Bifurcation diagrams

By considering different types of nonuniform magne-

tization, the motion amplitudes of h1 of the HMS pipe

versus various flow velocities t for P = 10 and a = p/
3, i.e. the bifurcation diagrams, are shown in Fig. 10. It

is seen that there is a critical value of flow velocity tcr.
The HMS pipe undergoes static deformation when

t\ tcr, while the periodic vibrations occur when

t C tcr. In the presented bifurcation diagrams, the red

dotted lines that represent the value of h1 based on the
statics model are included for comparison. The results

given in Fig. 10 agree well with the results of stability

(a) (b)

(c) (d)

Fig. 6 The static

configurations of the pipe

for a a = 0, b a = p/3,
c a = 2p/3 and d a = p,
when S = 1, P = 10,

b = 0.142 and c = 18.9,

with various values of t
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analysis in Sect. 3.1 and the static deformations in

Sect. 3.2.

To further show the nonlinear vibration behaviors

of the HMS pipe, the bifurcation diagrams of the tip-

end longitudinal displacement f1 and the tip-end

transverse displacement g1 are given in Figs. 11 and

12, respectively. Again, the dotted lines denote the

displacements obtained by the statics model. It can be

observed that the HMS pipe will experience extremely

large-amplitude vibration for a relatively large flow

velocity t. For examples, the vibration range of g1 for
t = 10 in Fig. 12a is [-0.54, 0.56], and the vibration

range of g1 for t = 10 in Fig. 12b is [-0.20, 0.72].

3.3.2 Time traces and phase trajectories

In this subsection, the time traces and the correspond-

ing phase trajectories will be presented for several

typical cases to show the details of the vibration

characteristics of the pipe. In Fig. 13, the time traces

of the displacements of the pipe centerline when

t = 10 are given for S = 1, 2, 3 and 4. Furthermore, the

corresponding phase trajectories for the tip-end lon-

gitudinal displacement f1 and the tip-end transverse

displacement g1 are shown in Figs. 14 and 15,

respectively. As we can see, the fluid-conveying

HMS pipe undergoes periodic large-deformation

oscillations in these cases.

3.3.3 Oscillating shapes

The oscillating shapes of the HMS pipe will be

presented in this subsection to clearly show the large-

deformation vibrations. As shown in Fig. 16, the

oscillating shapes of the pipe (see the blue lines) for

S = 1, 2, 3 and 4 are given when P = 10, a = p/3 and

t = 10. Besides, the red line that represents the

deformed configuration obtained by using the statics

model is included for comparison. It is unexpected that

the pipe does not rigorously vibrate around the statics

model-based deformed shape. Especially for the case

(a) (b)

(c) (d)

Fig. 7 The static

configurations of the pipe

for a P = 5, b P = 10,

c P = 15 and d P = 20,

when S = 1, a = p/3,
b = 0.142 and c = 18.9,

with various values of t
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of S = 2 in Fig. 16b, the pipe almost oscillates on the

right side of the red line.

The oscillating shapes for the cases t = 6, 7, 8 and 9

are given in Fig. 17. The other parameters in Fig. 17

are the same as those in Fig. 16b. As shown in

Figs. 16b and 17, when the flow velocity is slightly

above the critical value, the HMS pipe vibrates around

the static deformed configuration, e.g., t = 6 and 7.

However, the HMS pipe may no longer oscillate

around the static deformed configuration when the

value of t is relatively large, e.g. t = 9 and 10. As can

be seen from Eq. (21), the motion of the fluid-

conveying pipe is odd symmetry about its initial

shape, i.e., h(n) = 0, without the consideration of the

magnetic load. However, the term –vPsinacosh
induced by the magnetic load can break the odd

symmetry of pipe system. This effect is slight when t
is just above tcr, since (hd)2 induced by –vPsinacosh
can be neglected compared to hd induced by other

terms. However, when the value of t is sufficiently

(a) (b)

(c) (d)

Fig. 8 The static

configurations of the pipe

for a S = 1, b S = 2, c S = 3

and d S = 4, when P = 10,

a = p/3, b = 0.142 and

c = 18.9, with various

values of t

Fig. 9 Comparison between the results based on geometrically-

exact model and Taylor-expansion model [39], by plotting the

transverse displacement amplitude of the pipe at n = 1, with

b = 0.142, c = 18.9 and l = 0
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(a) (b)

(c) (d)

Fig. 10 Bifurcation

diagrams for the rotation

angle at the free end of the

pipe for a S = 1, b S = 2,

c S = 3 and d S = 4, when

P = 10, a = p/3, b = 0.142,

c = 18.9 and l = 5 9 10–3,

where the dotted lines

represent the value of h1
based on the statics

governing equation

(a) (b)

(c) (d)

Fig. 11 Bifurcation

diagrams for the

longitudinal displacement at

the free end of the pipe for

a S = 1, b S = 2, c S = 3 and

d S = 4, when P = 10,

a = p/3, b = 0.142, c = 18.9

and l = 5 9 10–3, where

the dotted lines represent the

value of f1 based on the

statics governing equation
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(a) (b)

(c) (d)

Fig. 12 Bifurcation

diagrams for the transverse

displacement at the free end

of the pipe for a S = 1,

b S = 2, c S = 3 and d S = 4,

when P = 10, a = p/3,
b = 0.142, c = 18.9 and

l = 5 9 10–3, where the

dotted lines represent the

value of g1 based on the

statics governing equation

(a) (b)

(c) (d)

Fig. 13 Time traces for the

tip-end displacements of the

pipe when P = 10, a = p/3,
b = 0.142, c = 18.9,

l = 5 9 10–3 and t = 10,

for a S = 1, b S = 2, c S = 3

and d S = 4
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(a) (b)

(c) (d)

Fig. 14 Phase trajectories

for the tip-end longitudinal

displacement of the pipe

when P = 10, a = p/3,
b = 0.142, c = 18.9,

l = 5 9 10–3 and t = 10,

for a S = 1, b S = 2, c S = 3

and d S = 4

(a) (b)

(c) (d)

Fig. 15 Phase trajectories

for the tip-end transverse

displacement of the pipe

when P = 10, a = p/3,
b = 0.142, c = 18.9,

l = 5 9 10–3 and t = 10,

for a S = 1, b S = 2, c S = 3

and d S = 4
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large, the effect of term –vPsinacosh is nontrivial, and
the odd symmetry of the HMS pipe system will be

broken.

4 Conclusions

In this work, a novel adjustment method for the

mechanical responses of fluid-conveying pipes by

using the HMS materials and an external magnetic

field is proposed. Based on Hamilton’s principle, the

governing equation for the large-deformation vibra-

tions of a cantilevered HMS pipe conveying pipe is

derived by considering the exact geometric nonlin-

earities due to curvature. The differential equation is

discretized by using the Galerkin method and then

solved via an iterative algorithm (for statics problem)

or the fourth-order Runge–Kutta integration algorithm

(for dynamical problem).

The analyses of the HMS pipe system consist of

three parts: stability analysis, statics analysis, and

nonlinear vibration analysis. Furthermore, the results

of the nonlinear vibration analysis are consistent with

the results of the stability and static analyses. Based on

extensive calculations, the following conclusions can

be drawn:

(i) The static and dynamical behaviors of the

fluid-conveying pipe can be well adjusted by

using the HMS materials and applying an

external magnetic field. By designing the

magnetization of the HMS pipe, the strength,

and the direction of the external magnetic

field, we can efficiently adjust the stability,

the deformed configuration and the vibrating

shape of the pipe.

(ii) There is a critical flow velocity tcr for the

stability of the HMS pipe system. When t\
tcr, the HMS pipe undergoes a static defor-

mation. However, when t[tcr, the HMS pipe

is subject to flutter in the second mode with a

large oscillation amplitude. Besides, it is

noted that the vibration of the pipe is periodic.

(iii) After the value of t exceeds the value of tcr,
the fluid-conveying HMS pipe vibrates

around the static deformed shape of the pipe

for relatively small flow velocity. However,

the pipe would no longer oscillate around the

static deformed shape for sufficiently large

flow velocity due to the even-symmetry term

induced by the magnetic load.

(a) (b)

(c) (d)

Fig. 16 Oscillating shapes

(the blue lines) of the HMS

pipe when P = 10, a = p/3,
b = 0.142, c = 18.9,

l = 5 9 10–3 and t = 10,

for a S = 1, b S = 2, c S = 3

and d S = 4, where the red

line represents the deformed

shape based on the statics

governing equation
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Thus, the utilization of the HMS pipe to transport

fluid provides a new efficient method to tune the

deformation and the vibration of a fluid-conveying

pipe by an external magnetic field. This magnetic

adjustment method can be extended to the dynamical

control of other flow-induced vibration systems. The

developed large-deformation oscillation model is

expected to be useful for further investigations on

the nonlinear dynamics of various fluidic devices

made of soft active materials.
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(a) (b)

(c) (d)

Fig. 17 Oscillating shapes

(the blue lines) of the HMS

pipe when P = 10, a = p/3,
S = 2, b = 0.142, c = 18.9

and l = 5 9 10–3 for

a t = 6, b t = 7, c t = 8 and

d t = 9, where the red line

represents the deformed

shape based on the statics

governing equation
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Appendix 1

The convergence of the Galerkin discretization will be

examined in this part. The evolution of the critical flow

velocity tcr for various values of a as P increases from

0 to 15 is given in Fig. 18a. Note that the results of

N = 3 and N = 4 are shown. It can be seen that the

values of tcr obtained by using N = 3 agree very well

with that obtained by using N = 4. Furthermore,

Fig. 18b shows the bifurcation diagrams of h1 for

N = 3 and 4 when S = 1, P = 10, a = p/3, b = 0.142,

c = 18.9 and l = 5 9 10–3. It can be found that there

is a good agreement between the bifurcation diagram

by using N = 3 and the counterpart by using N = 4.

Therefore, the Galerkin discretization ofN = 3 is valid

for the problem at hand and all the results given in

Sect. 3 are obtained by using N = 3.
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