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Abstract We study the dynamics of a resonantly
driven nonlinear resonator (primary) that is nonlinearly
coupled to a non-resonantly driven linear resonator
(secondary) with a relatively short decay time. Due
to its short relaxation time, the secondary resonator
adiabatically tracks the primary resonator and modi-
fies its response. Our model, which is motivated by
experimental studies on the interaction between nano-
and micro-resonators, is relatively simple and can be
analyzed analytically and numerically to show that
the driven response of the primary resonator can be
enhanced significantly due to the interaction with the
secondary resonator. Such an arrangement may pave
the way for systematic control of driven responses and
signal amplification in engineering applications involv-
ing nano- and micro-electro-mechanical-systems.

Keywords Nano- and micro-electro-mechanical-
systems · Nonlinear driven resonators · Signal
amplification

1 Introduction

Signal amplification of driven resonators is essential in
engineering applications involving nano- and micro-
electro-mechanical-systems (N/MEMS). The impor-

S. Rosenberg (B) · O. Shoshani
Ben-Gurion University of the Negev, 84105 Beer-Sheva,
Israel
e-mail: saharros@post.bgu.ac.il

e-mail: oriels@bgu.ac.il

tance of signal amplification stems from the need to
operate above the noise-floor of the device with a large
signal-to-noise ratio in order to use these tiny resonators
for sensitive detection of displacement [1], mass [2],
force [3], torque [4], and charge [5]. Due to its practical
significance, signal amplification has received a con-
siderable amount of attention [6–20]. Diverse methods
have been devised for signal amplification including
electrical means, such as lock-in amplifiers [21] and
phase-locked loops [22], where the backaction from
the inherently noisy electrical amplifier needs to be
treated, and mechanical means, where the motion of
the resonator is mechanically preamplified by a large
factor before being transduced into an electrical signal.

The realm of mechanical amplification is vast and
includes numerous distinguishable techniques, such as
bifurcation-topology amplification [9], strongmechan-
ical coupling amplification [12], and parametric ampli-
fication [7]. The latter, i.e., parametric amplification—
the process of amplifying a driven resonator with a
parametric pump at twice its oscillation frequency and
with a phase-delay—is a well-established concept and
the most widely used technique with applications rang-
ing from radio engineering [23] to cavity optomechan-
ics [24].

In this study we present a relatively simple amplifi-
cation scheme inwhich a pair of drivenmechanical res-
onators are mutually coupled. One resonator (the sec-
ondary) decays much faster than the primary resonator
and can serve as an amplifier for the primary resonator.
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The amplification of the primary resonator depends on
the coupling between the resonators and the driving fre-
quency of the secondary resonator. Specifically, when
the coupling is linear and the driving frequency of the
secondary resonator is close to the eigenfrequency of
the primary resonator, a significant enhancement in the
drive level of the primary resonator is obtained, and
when the coupling is nonlinear (quadratic) and the driv-
ing frequency of the secondary resonator is close to
twice the eigenfrequency of the primary resonator, a
parametric amplification is obtained.

In general, coupled N/MEMS resonators can exhibit
diverse and complex dynamics [25–29], which may be
used in various engineering applications, such as fil-
ters, mixers, and sensors [14,30–32]. However, when
one of the resonator decays significantly faster than
the other resonator, it can be adiabatically eliminated
[33]. Therefore, the complex dynamics reduces con-
siderably, and the resulting dynamical system (after the
adiabatic elimination) consists of a single resonator (the
slow decaying resonator) that is being modified by the
coupling to the fast decaying resonator.

Using the method of adiabatic elimination, our
amplification technique comes from a straightforward
generalization of a previous study that was conducted
on the undriven counterpart of the dynamical system
under consideration [34]. The previous study, Ref. [34],
showed that in the undriven system, the linear and non-
linear characteristics of the primary resonator can be
altered in a significant manner. Therefore, as we show
in the present analysis, in the driven system it is pos-
sible to both modify the characteristics of the primary
resonator and amplify its response.

This paper is organized as follows: In Sect. 2, we
formulate the problem and show that the motion of
the relatively fast decaying secondary resonator can be
eliminated from the governing equation of the primary
resonator under the adiabatic approximation for times
that are considerably larger than the relaxation time
of the secondary resonator. In Sect. 3, we conduct an
asymptotic analysis and obtain the main results of the
paper, consisting of closed-form expressions for the
amplified response of the primary resonator. In addi-
tion, we present numerical validation of our theoretical
predictions. Finally, in Sect. 4 we summarize our main
findings, discuss their implications and suggest poten-
tial future work.

2 Problem formulation

We consider a system consisting of a pair of driven
resonators that are mutually coupled (Fig. 1).

The primary resonator q1 is driven resonantly by
an excitation F1 cos(ωF1 t + θ) and oscillates around
its stable equilibrium q1 = 0 with a large amplitude
and nonlinear restoring forces that stem from a poten-
tial U (q1). The secondary resonator q2 is driven by
a non-resonant excitation F2 cos(ωF2 t), i.e., the drive
frequency ωF2 is not close to its eigenfrequency ω2,
and oscillates linearly with small amplitude around its
stable equilibrium q2 = 0. The two resonators are cou-
pled via an interaction potential Uinter(q1, q2). Since
|q1| � |q2|, we assume that the interaction poten-
tial depends nonlinearly on q1 and linearly on q2, i.e.,
Uinter = −q2G(q1). Therefore, the Hamiltonian of the
system is given by

H = p21/2 + p22/2 +U (q1) + ω2
2q

2
2/2 − q2G(q1)

− q1F1 cos(ωF1 t + θ) − q2F2 cos(ωF2 t), (1)

where p1 and p2 are the conjugate momenta (nor-
malized bymass) of q1 and q2, respectively, i.e., p1,2 =
q̇1,2. The governing equations of q1 and q2 are formally
given by q̈k = ṗk = −2Γk q̇k − ∂H/∂qk , and can be
explicitly written as

q̈1 = −2Γ1q̇1 −U ′(q1) + F1 cos(ωF1 t + θ) + q2G
′(q1),

(2)

q̈2 = −2Γ2q̇2 − ω2
2q2 + F2 cos(ωF2 t) + G(q1), (3)

where the dot symbol denotes a time derivative,
the prime symbol denotes a differentiation of a func-
tion with respect to its single variable, and −2Γk q̇k
models the linear friction force experienced by res-
onator k (k = 1, 2). Moreover, both resonators are
lightly damped (Γk/ωk � 1), and the secondary res-
onator decays much faster than the primary resonator
(Γ2/Γ1 � 1).

Equation (3) is linear in q2; therefore, in a similar
spirit to the analysis of [34] we can formally solve for
q2 in terms of its Green’s function

q2(t) = e−Γ2t
[
q2(0) cos(ω2d t) + p2(0)

ω2d
sin(ω2d t)

]

+ 1

ω2d

t∫
0

[F2 cos(ωF2τ)

+ G(q1(τ ))]e−Γ2(t−τ) sin(ω2d(t − τ))dτ.

(4)
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Fig. 1 Conceptual view and simplified circuit schematic of
an electronic realization. Left panel: Two resonators are mutu-
ally coupled via the interaction potential −q2G(q1). The pri-
mary resonator q1 has a nonlinear conservative restoring force,
−U ′(q1), a weak linear dissipation −Γ1q̇1, and a resonant drive
F1 cos(ωF1 t + θ), where ωF1 ≈ √

U ′′(0). The secondary res-
onator has a linear conservative restoring force −ω2

2q2, a rela-
tively strong linear dissipation −Γ2q̇2, and a non-resonant drive
F2 cos(ωF2 t). The dissipation is indicated by the wiggly lines,
which indicates that the secondary resonator is more heavily
damped than the primary resonator. Right panel: For N/MEMS,

the motion of each resonator is detected using a parallel-plate
capacitive sensing technique. The signal from the primary res-
onator is fed into a mixer, amplifiers (for control of the different
coefficients of G), and an adder to form the function G(q1).
The signal G(q1) is then fed into the driving electrode of the
secondary resonator along with the external drive F2 cos(ωF2 t),
and to a differentiator and a mixer, which multiplies the signal
G ′(q1) with q2, and finally, the mixed signal q2G ′(q1) is fed
into the driving electrode of the primary resonator along with the
external drive F1 cos(ωF1 t + θ)

Becauseweconsider a lightly damped system (Γk/ωk �
1), the damped eigenfrequency of the secondary res-
onator in Eq. (4) can be replaced by the undamped
eigenfrequency, i.e., ω2d = ω2

√
1 − (Γ2/ω2)2 ≈ ω2.

By substitution of Eq. (4) into Eq. (2), we find that

q̈1 = −2Γ1q̇1 −U ′(q1) + F1 cos(ωF1 t + θ)

+ G ′(q1)(L[q1, t] + M(t)), (5)

where

L[q1, t] = 1

ω2

t∫
0

[F2 cos(ωF2τ)

+ G(q1(τ ))]e−Γ2(t−τ) sin(ω2(t − τ))dτ,

(6)

M(t) = e−Γ2t
[
q2(0) cos(ω2t) + p2(0)

ω2
sin(ω2t)

]
.

(7)

The functional L[q1, t] is the driven response (by the
external excitation and the primary resonator) of the
secondary resonator and M(t) is the response of the
secondary resonator to its initial state.

3 Asymptotic analysis

To analyze Eq. (5), we make a number of standard
assumptions that are relevant to weakly nonlinear
resonators, i.e., that all effects other than the iner-
tia (q̈1) and linear stiffness [U ′′(0) · q1] of resonator
are small. Specifically, we assume a weak nonlinear
interaction between the resonators [G ′(q1)(L[q1, t] +
M(t))/|U ′′(0) · q1| � 1], a weak damping (|2Γ1q̇1|
/|U ′′(0) · q1| � 1), and a weak drive of the primary
resonator (F1/|U ′′(0) ·q1| � 1). Under these assump-
tions, we can use themethod of averaging to derive evo-
lution equations for the slowvariations of the amplitude
and phase of the primary resonator [35,36].

To this end, wemake the following coordinate trans-
formation q1(t) = A(t)eiωF1 t + A∗(t)e−iωF1 t and

123



1430 S. Rosenberg, O. Shoshani

q̇1(t) = iωF1 [A(t)eiωF1 t − A∗(t)e−iωF1 t ], where A∗
is the complex conjugate ofA and the complex ampli-
tudeA(t) remains almost constant over the period T =
2π/ωF1 . Consequently,G(q1(t)) can be replaced by its
Fourier seriesG(q1(t)) = ∑

n cn(A(t),A∗(t))einωF1 t ,
where c−n = c∗

n , and the functional, L[q1, t], can be
rewritten as

L[q1, t] = F2
ω2

t∫
0

e−Γ2(t−τ)

sin(ω2(t − τ)) cos(ωF2τ)dτ

+
t∫

0

∑
n

cn(τ )

2iω2
[e−Γ2(t−τ)+i[nωF1 τ+ω2(t−τ)]

−e−Γ2(t−τ)+i[nωF1 τ−ω2(t−τ)]]dτ. (8)

Because cn(t) are functions of A(t) and A∗(t), they
also vary slowly in time. Hence, to the leading order,
we can approximate Eq. (8) in the following way

L[q1, t] ≈ F2
ω2

t∫
0

e−Γ2(t−τ) sin(ω2(t − τ)) cos(ωF2τ)dτ

+
∑
n

cn(t)

2iω2

t∫
0

[e−Γ2(t−τ)+i[nωF1 τ+ω2(t−τ)]

− e−Γ2(t−τ)+i[nωF1 τ−ω2(t−τ)]]dτ

= F2[k1 cos(ωF2 t − ϕ)

− k2e
−Γ2t cos(ωF2 t − ψ)]

+
∑
n

cn(t)

2ω2
einωF1 t

[
1 − e−[Γ2+i(nωF1−ω2)]t

−(nωF1 − ω2) + iΓ2
+ 1 − e−[Γ2+i(nωF1+ω2)]t

(nωF1 + ω2) − iΓ2

]
,

(9)

where

k1 =
√

(ω2
2 − ω2

F2
+ Γ 2

2 )2 + (2ωF2Γ2)2

[(ω2 − ωF2 )
2 + Γ 2

2 ][(ω2 + ωF2 )
2 + Γ 2

2 ] , tan ϕ

= 2ωF2Γ2

ω2
2 − ω2

F2
+ Γ 2

2

k2 =
√

(ω2
2 − ω2

F2
+ Γ 2

2 )2 + (Γ2/ω2)2(ω
2
2 + ω2

F2
+ Γ 2

2 )2

[(ω2 − ωF2 )
2 + Γ 2

2 ][(ω2 + ωF2 )
2 + Γ 2

2 ] ,

tanψ = Γ2

ω2

ω2
2 + ω2

F2
+ Γ 2

2

ω2
2 − ω2

F2
+ Γ 2

2

. (10)

We note that for t � Γ −1
2 , the functional L[q1, t] is

simplified considerably and reduces to

L[q1, t] ≈ k1F2 cos(ωF2 t − ϕ)

+
∑
n

ω2
2 − n2ω2

F1
− 2inωF1Γ2

(ω2
2 − n2ω2

F1
)2 + (2nωF1Γ2)2

cn(t)e
inωF1 t . (11)

Hence, we effectively eliminated the secondary res-
onator and obtained from Eq. (5) the following evolu-
tion equation of the primary resonator

q̈1 +U ′(q1) = F1 cos(ωF1 t + θ)

+k1G
′(q1)F2 cos(ωF2 t − ϕ)

−2Γ1q̇1 + G ′(q1)
∑
n

ω2
2 − n2ω2

F1
− 2inωF1Γ2

(ω2
2 − n2ω2

F1
)2 + (2nωF1Γ2)2

cn(t)e
inωF1 t . (12)

Moreover, this approximation applies even for internal-
resonance situations, where ω2 is close to a multiple of
ω1. That is, no further assumptions are needed (other
than Γ2 � Γ1 and a weakly nonlinear system) for the
validity of Eq. (12) even in caseswhereω2 ≈ ω1, ω2 ≈
2ω1 or ω2 ≈ 3ω1.

In the remainder of this paper, we focus only on
times that are considerably larger than the relaxation
time of the secondary resonator t � Γ −1

2 , where the
secondary resonator is adiabatically tracking the pri-
mary resonator [37].Wehave also assumedhere that the
functions cn(t) vary slowly over the time Γ −1

2 , which
is a restriction on the nonlinearity and the decay rate
of the primary resonator. For the weak coupling that
we consider here, the only terms to keep in the sum
over n of Eq. (12) are the resonant terms, which oscil-
late with slowly varying amplitude and phase at the
same frequency as q1(t). For linear coupling, where
G(q1) ∝ q1 and G ′(q1) is constant, the resonant
terms are associated with the fundamental harmonic
(n = ±1), whereas for quadratic coupling in which
G(q1) ∝ q21 and G ′(q1) is a linear function of q1, we
have to keep the second (n = ±2) and zeroth (n = 0)
harmonics. The same arguments hold for the external
excitation of the secondary resonator F2 cos(ωF2 t), i.e.,
for constant G ′, only a drive frequency ωF2 ≈ ω1 will
lead to a resonant term (under the assumption of weak
excitation, where |U ′′(0) · q1| � k1G ′F2), and if we
take into account the term ∝ q1 in G ′(q1), only a drive
frequency ωF2 ≈ 2ω1 will lead to a resonant term.
These distinctions are used in the analysis of the next
subsections.
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3.1 Essential leading-order nonlinear terms

In what follows, we restrict our attention to the essen-
tial leading-order nonlinear terms.We assume that both
U (q1) and G(q1) are analytic functions and hence
can be expanded to a Taylor series. Thus, the poten-
tial of the primary resonator can be explicitly writ-
ten as a Taylor expansion truncated at quartic order
U (q1) = ω2

1q
2
1/2+γ q41/4, where the non-secular term

βq31/3 renormalizes γ to the second order in β, which
we assume to have been taken into account. Similarly,
G(q1) can represented as G(q1) = G1q1 + G2q21/2+
O(q31 ), where G1 ≡ G ′(0) and G2 ≡ G ′′(0). There-
fore, we obtain the following complex amplitude equa-
tion of the primary resonator

Ȧ = − Γ1A
(
1 + α1

Γ2

Γ1
+ α2

Γ2

Γ1
|A|2

)

− iA
{

δω1 + α1

(
ω2
2 − ω2

1

2ω1

)
+

[
α2

(
3ω2

2 − 20ω2
1

4ω1
+ 8ω1

ω2
2

(Γ 2
2 + ω2

1)

)
− 3γ

2ω1

]
|A|2

}

− i

4ω1
(F1 exp(iθ) + k1G1F2 exp{i[(ωF2 − ωF1)t − ϕ]}

+ k1G2A∗F2 exp{i[(ωF2 − 2ωF1)t − ϕ]}), (13)

where we replaced ωF1 with ω1 in the various coef-
ficients of Eq. (13) other than the detuning parameter
δω1 = ωF1−ω1, since it leads to higher corrections that
can be ignored at the current level of approximation.
Accordingly, the coupling to the secondary resonator
is captured by the terms with the coefficients

α1 = G2
1

(ω2
2 − ω2

1)
2 + (2Γ2ω1)2

,

α2 = G2
2

(ω2
2 − 4ω2

1)
2 + (4Γ2ω1)2

. (14)

Hence, as shown in Ref. [34], the interaction of the pri-
mary resonator with the secondary resonator modifies
the linear and nonlinear restoring forces of the primary
resonator and leads to:

1. An increase in the linear decay rate Γ1eff = Γ1 +
α1Γ2

2. Addition of new nonlinear cubic (van der Pol type)
damping term −α2Γ2|A|2A

3. A shift in the eigenfrequency Δω1 = α1(ω
2
2 −

ω2
1)/(2ω1)

4. A modification to the Duffing nonlinearity −iα2[
(3ω2

2 − 20ω2
1)/(4ω1) + 8ω1(Γ

2
2 + ω2

1)/ω
2
2

] |A|2A
Moreover, in the current setup of driven resonators, the
interaction of the primary resonator with the secondary
resonator also modifies the external drive. In particu-
lar, there are two cases that lead to additional resonant
driving force:

• Case I: where ωF2 = ωF1 , and the uncoupled
direct external drive term F1eiθ in Eq. (13) is
replaced by F1eiθ + k1G1F2e−iϕ , which modi-
fies both the amplitude and phase of the direct
external drive. The parametric drive in Eq. (13),
k1G2A∗F2e−i(ωF1 t+ϕ), is averaged to zero. Hence,
in this case, Eq. (13) is consistent with the complex

amplitude equation that is obtained from the aver-
aging method for the following phenomenological
model

q̈1 + 2(Γ1eff q̇1 + α2Γ2q
2
1 )q̇1 + ω̃2

1q1

+γ̃ q31 = F̃ cos(ωF1 t + χ), (15)

where the square of the shifted eigenfrequency is
given by ω̃2

1 = ω2
1 − α1(ω

2
2 − ω2

1), the mod-
ified Duffing parameter is given by γ̃ = γ −
(2α2/3)[(3ω2

2 − 20ω2
1)/4 + 8ω2

1(Γ
2
2 + ω2

1)/ω
2
2],

the modified amplitude and phase of the direct
drive in Eq. (15) are given by F̃ = [F2

1 +
2k1G1F1F2 cos(θ +ϕ)+k21G

2
1F

2
2 ]1/2 and tan χ =

(F1 sin θ−k1G1F2 sin ϕ)/(F1 cos θ+k1G1F2 cosϕ).

• Case II: where ωF2 = 2ωF1 , and the direct exter-
nal drive F1eiθ remains unmodified because the
term k1G1F2e

i(ωF1 t−ϕ) is averaged to zero; how-
ever, there is an additional parametric drive term
k1G2A∗F2e−iϕ that can lead to non-trivial dynam-
ical outcomes. In this case, Eq. (13) is consis-
tent with the complex amplitude equation that is

123



1432 S. Rosenberg, O. Shoshani

obtained from the averaging method for the fol-
lowing phenomenological model

q̈1 + 2(Γ1eff q̇1 + α2Γ2q
2
1 )q̇1

+[ω̃2
1 − k1G2F2 cos(ωF2 t − ϕ)]q1

+γ̃ q31 = F1 cos(ωF1 t + θ). (16)

These two cases are considered in detail in the follow-
ing subsections.

3.2 The case of ωF2 = ωF1

While the modified linear (ω̃1, Γ1eff ) and nonlinear
(α2Γ2, γ̃ ) characteristics of the primary resonator have
been discussed in Ref. [34], the variation of the drive
amplitude F̃ and phase χ are new phenomena that
deserve further attention.We focus here on the dynami-
cal systems, where in addition to the large difference in
the relaxation times Γ2/Γ1 � 1, there is a large differ-
ence in resonators eigenfrequenciesω2/ω1 � 1. These
conditions occur frequently in the nonlinear interac-
tions between MEMS (primary) resonators and NEMS
(secondary) resonators [38–40].

From Fig. 2, we see that for a finite frequency ratio
ω2/ω1, there is amajor enhancement of the drive ampli-
tude due to the coupling with the secondary resonator
(e.g., F̃ ≈ 50F for ω2/ω1 = 10 and G1 = 4.9), and
a minor variation of the phase (e.g., χ ≈ −0.02 for
ω2/ω1 = 10 and G1 = 4.9). These results suggest that
we can use the linear coupling of the resonators G1 to
amplify the response of the primary resonator.

To further understand how the interaction with the
secondary resonator changes the forced response of the
primary resonator, we write the complex amplitude in
polar representationA = aeiφ/2 and consider the evo-
lution of the amplitude a and phase φ

ȧ = −
(

Γ1eff + α2Γ2a2

4

)
a

+ F̃

2ω1
sin(χ − φ), (17)

φ̇ = −δω̃1 + 3γ̃ a2

8ω1

− F̃

2ω1a
cos(χ − φ), (18)

where δω̃1 = ωF1 − ω̃1. For the steady-state response
we set ȧ = φ̇ = 0, and obtain from Eqs. (17) and (18)

the following well-known response curve of a forced
Duffing resonator with nonlinear damping [41]

a2
[(

δω̃1 − 3γ̃ a2

8ω1

)2

+ (Γ1eff

+α2Γ2a2

4

)2
]

=
(

F̃

2ω1

)2

. (19)

A standard stability analysis of this nonlinear response
indicates the expected results for a forced Duffing res-
onator, with upper and lower stable branches of the
response that are connected by the middle unstable
branch of the response [35].

To illustrate the amplification of the primary res-
onator response due to the linear coupling of the res-
onators G1, we use the following set of system param-
eters: ω1 = 1, ω2 = 10, Γ1 = 10−3, Γ2 = 1, F1 =
10−3, F2 = 1,G1 = 4,G2 = 0, γ = 0.01, which
yields almost a threefold increase in the linear decay
rate Γ1eff/Γ1 = 2.63, an 8% downward shift of the
eigenfrequency Δω1/ω1 = 0.08, and a forty times
stronger driving force F̃/F = 41. The numerically
validated modified response curve is shown in Fig.
3 along with the response of the non-interacting pri-
mary resonator (G = 0). It is clear that the response
is greatly enhanced due to the interaction with the sec-
ondary resonator. Specifically, the maximal amplitude
of the response curve, amax, which satisfy the backbone
curve equationωmax = ω̃1+3γ a2max/(8ω1), is given by
amax = F̃/(2ω1Γ1eff). Therefore, the maximal ampli-
tude is increased by more than an order of magni-
tude, and the ratio between themaximal amplitudewith
and without coupling is given by amax/(amax|G=0) =
Γ1 F̃/(Γ1effF) = 15.59. Moreover, due to the vari-
ations in the eigenfrequency ω̃1 and in the maximal
amplitude amax, the frequency of the maximal ampli-
tude also increases by 14.34%, and is explicitly given
by ωmax = ω̃1 + 3γ F̃2/(32ω3

1Γ
2
1eff).

3.3 The case of ωF2 = 2ωF1

In this case, we have a combined parametric and
directly driven Duffing resonator with nonlinear damp-
ing, and the polar evolution equations are given by
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Fig. 2 Variationof the direct drive normalized amplitude (F̃/F1)
and phase (χ) of the primary resonator as a function of the
linear coupling to the secondary resonator (G1) for Γ2/Γ1 =
F2/F1 = 103, θ = 0, and different frequency ratios: ω2/ω1 =
10 (magenta), ω2/ω1 = 20 (blue), ω2/ω1 = 30 (green),
ω2/ω1 = 40 (red), and ω2/ω1 → ∞ (dashed black), which
is equivalent to the case of no linear coupling (G1 = 0). Left

panel: The normalized drive amplitude increases significantly
as the frequency ratio decreases. Right panel: The phase of the
direct drive undergoes an insignificant variation as long as the
eigenfrequency of the secondary resonator is an order of mag-
nitude higher than the eigenfrequency of the primary resonator
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Fig. 3 Amplitude response curve of the primary resonator for
the case ofωF2 = ωF1 . The red/blue curves are the responses that
are obtained by analytically solving Eq. (19) with/without cou-
pling to the secondary resonator, respectively. The solid/dashed
curves indicate stable/unstable branches of the responses. The

black squares and gray dots indicate the sweep-up (increasing
ωF1 ) and sweep-down (decreasing ωF1 ) values, respectively, of
the numerically calculated amplitude of the primary resonator,
which are obtained by performing numerical time integration of
the original dynamical system, Eqs. (2) and (3)

ȧ = −
(

Γ1eff + α2Γ2a2

4

)
a − F1

2ω1
sin(φ − θ)

− k1G2F2
4ω1

a sin(2φ + ϕ), (20)

φ̇ = −δω̃1 + 3γ̃ a2

8ω1
− F1

2ω1a
cos(φ − θ)

− k1G2F2
4ω1

cos(2φ + ϕ). (21)

For the steady-state response, we set ȧ = φ̇ = 0, and
obtain from Eqs. (20)-(21) the following equation of
response curve

a2
[(

δω̃1 − 3γ̃ a2

8ω1

)2

+
(

Γ1eff + α2Γ2a2

4

)2
]

= 4F2
1 + 4ak1G2F1F2 cos(θ + ϕ + φ) + a2k21G

2
2F

2
2

16ω2
1

,

(22)
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Fig. 4 Amplitude response curve of the primary resonator for
the case of ωF2 = 2ωF1 . The red/blue curves are the response
curves obtained by analytically solving Eqs. (22) and (23)
with/without coupling to the secondary resonator, respectively.
The solid/dashed curves indicate stable/unstable branches of the

responses. The black squares and gray dots indicate the sweep-
up (increasing ωF1 ) and sweep-down (decreasing ωF1 ) values,
respectively, of the numerically calculated amplitude of the pri-
mary resonator, which are obtained by performing numerical
time integration of the original dynamical system, Eqs. (2)-(3)

and the following auxiliary equation for the phase φ

ak1G2F2 cos(2φ + ϕ) + 2F1 cos(φ − θ)

ak1G2F2 sin(2φ + ϕ) + 2F1 sin(φ − θ)

= 8ω1δω̃1 − 3γ̃ a2

8ω1Γ1eff + 2ω1α2Γ2a2
. (23)

As recently shown in Ref. [20], Eqs. (22) and (23)
can generate intricate amplitude response curves that
differ drastically from the standard directly driven
Duffing resonator and include isolas, dual peaks, loops,
and flat resonant peaks. However, we are interested
here in a relatively simple response curve, which is
amplified by the induced parametric excitation from
the secondary resonator. To this end, we set θ = −π/4
[20] and use the following set of system parameters:
ω1 = 1, ω2 = 10, Γ1 = 10−3, Γ2 = 1, F1 =
10−3, F2 = 1,G1 = 0,G2 = 5, γ = 0.13, which
yields a drastic reduction in the Duffing nonlinearity
γ̃ /γ = 2.57×10−2 (97.43%), a cubic nonlinear damp-
ingwith a coefficient ofα2Γ2 = 2.7×10−3, and a para-
metric drive level of k1G2F2 = 0.05. The numerically
validated modified response curve is shown in Fig. 4
along with the response of the non-interacting primary
resonator (G = 0). Note that for G �= 0 the response
curve is significantly more intricate, where there are
both an isola (due to symmetry-breaking) and Duff-
ing bistability. Therefore, the response curve exhibits
four saddle-node bifurcations and frequency regions
with three stable branches [20]. Moreover, it is clear

that the response of the primary resonator is amplified
significantly due to the interaction with the secondary
resonator. In particular, the maximal amplitude of the
response curve, amax, is increased by almost an order
of magnitude, where amax/(amax|G=0) = 8.41, and its
frequency ωmax is barely changed by the interaction
with secondary resonator (less than 1% variation).

4 Closing remarks

We analyzed the nonlinear interaction of mutually
coupled driven resonators with significantly different
decay rates. We considered a resonantly driven slowly
decaying nonlinear (primary) resonator, which is non-
linearly coupled to a non-resonantly driven relatively
fast decaying linear (secondary) resonator. We showed
that when the drive frequency of the secondary res-
onator is close to either the eigenfrequency or twice the
eigenfrequency of the primary resonator, the interac-
tionbetween the resonators canbe exploited tomechan-
ically amplify the response of the primary resonator. In
particular, the linear coupling between the resonators
can be used to enhance the direct drive of the primary
resonator when the drive frequency of the secondary
resonator is close to the eigenfrequency of the pri-
mary resonator, and the quadratic coupling between
the resonators can be used to parametrically pump the
response of the primary resonator when the drive fre-
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quency of the secondary resonator is close to twice the
eigenfrequency of the primary resonator.

We proposed a relatively simple amplification tech-
nique that can be analyzed theoretically in closed-form
due to the large difference in the relaxation times of the
resonators. Such systems of coupled resonators with
large difference in their relaxation times are frequently
encountered in coupling betweenMEMS (primary) and
NEMS (secondary) resonators [38–40]. This amplifica-
tion technique came from a straightforward generaliza-
tion of a previous study on a similar undriven system
[34], where it was shown that the linear and nonlinear
characteristics of the primary resonator can be altered
in a significant manner. Taken together the finding of
the earlier analysis [34] and the current study, we con-
clude that such a driven dynamical system can be used
to tailor a desired response curve of the primary res-
onator with prescribed linear and nonlinear character-
istics, and a specified amplification.

In future studies, we plan to develop methods for
designing and tuning the coupling between the res-
onators in a mechanical manner. Mechanical realiza-
tion of the coupling between the resonators can help
to reduce the noise in the system by avoiding the use
of inherently noisy electrical circuitry. To this end, we
will use tools of structural optimization such as those
described in Ref. [42], which will guide us in adjusting
the coupling terms in our reduced-order models of the
resonators.
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