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Abstract By introducing a sinusoidal function into a

three-dimensional map, a hyperchaotic map with three

positive Lyapunov exponents is derived. The map has

two amplitude controllers, a total controller, and a

partial controller. The hyperchaotic map shares a

unique structure of two-leaf and three-leaf attractors

under united Lyapunov exponents. Furthermore,

homogenous multistability is found in the 3-D map,

where the initial data determine the attractor structure

combined with the distance between any two leaves.

Experimental hardware based on STM32 is built to

prove the numerical findings. The hyperchaotic map is

introduced for color image encryption. The analysis of

key space, histogram, information entropy, correla-

tion, and antinoise infection shows its powerful

performance in encryption and security.

Keywords Hyperchaotic map � Amplitude control �
Homogenous multistability

1 Introduction

Chaos plays an important role in image encryption

[1–5], secure communication [6–9], computer engi-

neering [10], and even other fields [11–14]. The

discrete chaotic map shows its potential power as a

continuous chaotic system. Amplitude control and

polarity adjustment of the chaotic sequence obtain

much flexibility for chaos-based applications and

therefore introduce much more value in information

engineering [15–19]. Although the amplitude and

offset control of continuous chaotic systems have been

systematically explored and reported [20, 21], the

geometric control of discrete chaotic maps is still in

the beginning stages. The nonlinearity of the trigono-

metric function leaves a chance for chaos producing

[22], but it also increases the difficulty of amplitude

control and poses a great risk for multistability

[23–27]. It is of great theoretical significance and

engineering values to design chaotic maps based on

trigonometric function nonlinearity and study their

controllability. A couple of 2-D chaotic maps with

trigonometric functions have been studied [28–31],

with abundant dynamics for multistability. However,

we cannot find any single knob for amplitude control.

Amplitude control along with offset boosting seems to
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be well addressed in continuous chaotic systems [32],

but all chaotic systems ignore the nonlinearity of the

trigonometric function. Continuous chaotic systems

have been investigated, mainly focusing on polarity

balance and attractor self-reproduction [33, 34], gen-

eralized synchronization [35, 36], or attractor growing

[37, 38] rather than amplitude control. Amplitude

control in chaotic maps seems much more difficult to

design since the coefficient for variable rescaling has a

broader distribution on the right side of the map;

therefore, the control of chaotic maps has not received

enough attention in the field of nonlinear dynamics.

Additionally, homogenous multistability plays an

important role in amplitude control, where an initial

condition can be selected for easy variable rescaling.

Aiming to design a chaotic map with amplitude

control and rich dynamics, in this paper, a three-

dimensional (3-D) hyperchaotic map is created by

resorting to sinusoidal feedback. As a result, the map is

gifted with two independent knobs for total and partial

amplitude control. In Sect. 2, the hyperchaotic model

is constructed, and the dynamic development is

discussed, including fixed points and bifurcation

analysis. In Sect. 3, the principle of amplitude control

is explained. In Sect. 4, the special homogenous

multistability is demonstrated, where two-leaf and

three-leaf attractors are selected by the initial condi-

tion under a set of unified Lyapunov exponents. In

Sect. 5, a digital platform based on STM32 is set up

for experimental verification. In Sect. 6, the hyper-

chaotic sequence is applied to image encryption,

where the performance of encryption affected by

amplitude control and homogenous multistability is

exhaustively explored. The conclusions are presented

in the last section.

2 A 3-D hyperchaotic map and its basic dynamics

2.1 Map model

Based on the continuous jerk system, a new 3-D

discrete chaotic map is derived by introducing a

sinusoidal function,

xnþ1 ¼ xn þ axn sinðbynÞ

ynþ1 ¼ zn

znþ1 ¼ cxn � yn � zn

8
>>>>><

>>>>>:

ð1Þ

where xn, yn, zn (n = 0, 1, 2,…) are discrete sequences,

and map parameters a, b, c are not equal to 0. The fixed

points S = (x*, y*, z*) of map (1) is solved by Eq. (2),

x� ¼ x� þ ax� sinðby�Þ

y� ¼ z�

z� ¼ cx� � y� � z�

8
>>>>><

>>>>>:

ð2Þ

Therefore, the fixed points are,

S ¼ ðx�; y�; z�Þ ¼ 3mp
bc

;
mp
b

;
mp
b

� �

ð3Þ

where m is an integer.

When a = 0.9, b = 1, and c = - 2, the Jacobian

matrix of the discrete map at the fixed point (x *, y *, z

*) = (- 3mp/2, mp, mp) (m = 0,1,2, …) can be

described as

J ¼
1 �1:35mp cosðmpÞ 0

0 0 1

�2 �1 �1

2

4

3

5 ð4Þ

The Jacobian characteristic equation satisfies k3-
= 1?2.7mpcos(mp) (m = 0, 1, 2, …). For m = 0, 1,

2…, |1 ? 2.7mpcos(mp)| C 1, so |k1,2,3|\1, it cannot

be satisfied at the same time. The map has unsta-

ble fixed points.

When a = 0.9, b = , c = - 2, and IC = (- 0.1,

- 0.1, 0.1), map (1) exhibits hyperchaos with three

positive Lyapunov exponents, LE1 = 0.095, LE2 =

0.057, and LE3 = 0.011. The corresponding hyper-

chaotic sequences and attractors are shown in Fig. 1.

2.2 Bifurcation analysis

For map (1) with b = 1 and c = - 2, IC = (- 0.1,

- 0.1, 0.1), and a varies in [0.85, 0.95], the dynamical

behavior can be indicated by the Lyapunov exponent

spectrum and corresponding bifurcation as displayed

in Fig. 2. When a [ [0.85, 0.862] and a = 0.95, all

Lyapunov exponents are negative, and the map is

periodic. The typical x–y plane phase portraits are
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shown in Fig. 3a, d. When a [ [0.863, 0.868], map (1)

has one positive Lyapunov exponent showing its

chaotic state. The typical x–y plane phase portraits are

shown in Fig. 3b. When a [ [0.9, 0.94] and a [ [1,

1.02], three Lyapunov exponents are all positive

indicating that map (1) is hyperchaotic, corresponding

phase portraits are demonstrated in Fig. 3c (Table 1).

3 Amplitude control analysis

3.1 Total amplitude control

Theorem 1 In map (1), b is a total amplitude

controller.

Proof 1 Let un?1 = xn?1/b, vn?1 = yn?1/b and wn?1-

= zn?1/b, the resulting map is.

Fig. 1 Hyperchaotic

sequences and attractor of

map (1) with a = 0.9, b = 1,

c = - 2, IC = (- 0.1,

- 0.1, 0.1): a x(n), b y(n),
c z(n), and d phase portrait in
the x–y plane

Fig. 2 Dynamical analysis of map (1) when b = 1, c = - 2, and IC = (- 0.1, - 0.1, 0.1): a Lyapunov exponent spectrum and

b bifurcation evolvement
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unþ1 ¼ un þ aun sinðvnÞ
vnþ1 ¼ wn

wnþ1 ¼ cun � vn � wn

8
><

>:
ð5Þ

which is identical to Eq. (1) with b = 1. Therefore, the

parameter b adjusts the amplitude of all sequences of

x, y, and z according to 1/b, which means that b is a

total amplitude controller.

Fig. 3 Typical phase

portraits of map (1) with

b = 1, c = - 2,

IC = (- 0.1, - 0.1, 0.1)

under given parameters:

a a = 0.86, b a = 0.866,

c a = 0.9, and d a = 0.95

Table 1 LEs and attractor type for different values of a under

fixed IC = (- 0.1, - 0.1, 0.1), b ¼ �1, c ¼ �2

A Attractor type Lyapunov exponents

0.86 Periodic (0, - 0.1477, - 0.02449)

0.866 Chaotic (0.01503, - 0.1773, - 0.02504)

0.9 Hyperchaotic (0.09541, 0.05661, 0.01103)

0.95 Periodic points (0, - 0.1477, - 0.02449)

Fig. 4 Rescaled phase

portraits of map (1) with

a = 0.9, c = - 2, and

IC = (- 0.1, - 0.1, 0.1),

where parameter b takes

different values: a x–y plane
and b y–z plane
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Here the parameter b controls the amplitude of all

variables, and therefore b is a non-bifurcation param-

eter, as shown in Fig. 4, the attractor projection in all

plane is rescaled by b in inverse proportion. Inmap (1),

a = 0.9, c = - 2, and IC = (- 0.1, - 0.1, 0.1).

Further verification can be seen in Fig. 5, where the

averages of the absolute values of x, y, and z decrease

with the parameter b but almost without revising the

Lyapunov exponents. Unrevised Lyapunov exponents

prove that the frequency of the sequence in map (1)

remains independent with the parameter b.

3.2 Partial amplitude control

Theorem 2 The c in map (1) is a partial amplitude

controller.

Proof 2 Let un?1 = xn?1/c, vn?1 = yn?1, and wn?1-

= zn?1 the resulting map is.

unþ1 ¼ un þ aun sinðbvnÞ

vnþ1 ¼ wn

wnþ1 ¼ un � vn � wn

8
>>>>><

>>>>>:

ð6Þ

Therefore, the parameter c controls the amplitude

of the sequence of x according to 1/cwithout changing

the other two series of y and z. Therefore, parameter

c is a non-bifurcation partial amplitude controller for

the variable x.

As shown in Fig. 6b, the amplitude of the x signal is

controlled under different c. When c = - 2, the

amplitude of x is larger, and when c = - 20, the

amplitude is greatly reduced. Further verification can

be seen in Fig. 6c, where the average of the |x(n)|

increases with parameter c but almost without revising

the Lyapunov exponents. This also further proves that

the frequency of the sequence in map (1) is not

affected by parameter c.

4 Homogeneous multistability

Different initial conditions in chaotic systems may

lead to different attractors with the same shape

(sometimes with different amplitudes and/or frequen-

cies or offsets). This special multistability is defined as

homogeneous multistability.

To show the complex dynamics of map (1) with

infinitely many attractors, a bifurcation diagram under

the initial value is plotted in Fig. 7 where a = 0.9,

b = 1, c = - 1, and IC = (- 1, y0, 1). It proves that

the map displays homogeneous multistability indi-

cated by almost unchanged Lyapunov exponents and

gap-enlarged bifurcation.

Set to a = 0.9, b = 1, c = - 1, and IC = (- 1, y0,

1) in map (1), and rescaled coexisting two-leaf and

three-leaf attractors are plotted in Fig. 8. Map (1) has

infinite coexisting attractors with unified Lyapunov

exponents.

The dynamical behavior can be further observed by

setting a = 0.9, b = 1, c = - 1, and IC = (- 1, - 1,

z0), corresponding Lyapunov exponent spectrum and

bifurcation diagram of the signal y are plotted in

Fig. 9. Rescaled coexisting two-leaf and three-leaf

hyperchaotic attractors share the same set of unified

Lyapunov exponents. Moreover, the discrete periodic

points are scattered between any two hyperchaotic

states. To the best of our knowledge, this is a brand

new phenomenon in nonlinear mapping. Also with the

increase of z0 in the 3-D map, two-leaf and three-leaf

Fig. 5 Amplitude control in map (1) with a = 0.9, c = - 2, and IC = (- 0.1, - 0.1, 0.1): a almost invariable Lyapunov exponents,

b bifurcation diagram, and c average absolute value of the sequences
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attractors with different leaf distances are born. More

strikingly, the initial data modifies the distance

between any two leaves in a positive correlation.

Figure 10 shows the typical coexisting phase portraits

of map (1) accordingly. Note that the homogeneous

multistability found here shows the characteristic of

coexisting attractors with enlarged distance, which is

close to the regime of megamultistability [39, 40].

5 Hardware implementation based on STM32

An experimental test can be given for further demon-

stration. In this work, the MCU development suite was

used for experimental exploration. Here the electronic

platform and components mainly include STM32F103

MCU and TLV5618, 12-bit DAC modules. To meet

the requirement of the precision, here we select

DT = 1 and the TLV5618 is applied for giving two

separate sequences. The phase trajectories of map (1)

Fig. 6 Amplitude control in

map (1) with a = 0.9, b = 1,

and IC = (- 0.1, - 0.1,

0.1): a Lyapunov exponents

spectrum, b bifurcation

diagram of x(n), c average
value of |x(n)|, and
d rescaled phase portraits

under different c

Fig. 7 Dynamical transition

controlled by the initial

condition of map (1) with

a = 0.9, b = 1, c = - 1, and

IC = (- 1, y0, 1):
a Lyapunov exponents and

b bifurcation diagram
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Fig. 8 Rescaled coexisting

two-leaf and three-leaf

attractors of map (1) with

a = 0.9, b = 1, c = - 1,

IC = (- 1, y0, 1) under
different initial conditions of

y0

Fig. 9 Dynamical development of map (1) with a = 0.9, b = 1, c = - 1, and IC = (- 1,- 1, z0): a Lyapunov exponent spectrum and

b rescaled bifurcation
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Fig. 10 Rescaled

coexisting two-leaf and

three-leaf attractors of map

(1) with a = 0.9, b = 1,

c = - 1, IC = (- 1, - 1,

z0) under different initial
conditions of z

Fig. 11 Phase portraits of map (1) displayed in the oscilloscope when a = 0.9, b = 1, c = - 1, and IC = (- 1, y0, 1): a y0 = 1 ? 3p
and b y0 = 1
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are captured in the oscilloscope which is displayed in

Fig. 11. The experimental process is shown in Fig. 12.

6 Application of the hyperchaotic map in image

encryption

Hyperchaotic systems provide a larger key space and

higher complexity and therefore become more appli-

cable for encryption and secure communication. In the

following, the image encryption is studied based on

the above-proposed hyperchaotic map. Furthermore,

the amplitude control and coexisting two-leaf or three-

leaf hyperchaotic sequences are applied as shown later

that in fact the information entropy of the three-

channel encrypted image does not change

dramatically.

6.1 Algorithm design

Here, DNA coding is applied in hyperchaotic mapping

(1) for image encryption. Compared with other

algorithms, the encryption key space becomes larger

with stronger sensitivity, showing robustness to

attacks. The main encryption flowchart is shown in

Fig. 13: First, the image is encrypted by a logistic

map, then encrypted by the hyperchaotic sequence

combining with the DNA coding.

The specific encryption process can be described as

follows:

• Step 1: Add the horizontal and vertical pixels with

M0 = 0 and N0 = 0, so that they are divisible by the

block size S.

• Step 2: Given the initial condition of x0 and the

variable l of the logistic map, discrete signals

{Pi}(i = 2001, 2002,…,M 9 N ? 2000) with the

length of M 9 N ? 2000 is obtained.

• Step 3: All the numbers in the discrete signals are

transformed to [0, 255] and then randomly formed

into a 2-D matrix R of M 9 N.

• Step 4: Set S = 4, and correspondingly the size of

each block of the matrix R and the image are

S 9 S.

• Step 5: Given the initial conditions X0, Y0, Z0 and

the values of a and b in map (1), three discrete time

Fig. 12 Hardware equipment of the experimental device

Original 
image

Even 
partition

DNA 
decoding

Chaotic 
sequence

DNA 
computing

DNA 
decoding

Encrypted 
image

DNA 
coding

Even 
partition

Logistic 
chaotic 

sequence

Random 
matrix

Fig. 13 Encryption schematic diagram
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series {xi}, {yi}, and {zi} can be obtained

(i = 4002, 4003, …, 4001 ? M/S ? N/S).

• Step 6: The DNA coding pattern of each image

matrix and a stochastic matrix is determined by the

sequences {xi} and {yi}, respectively. Taking

image matrix as an example, this process of

encoding mode is defined as follows,

xi ¼ modðroundðxi � 104Þ; 8Þ þ 1 ð7Þ

Transform the grayscale values of all image

elements into the binary numbers and get DNA

coding pattern according to the value of xi.

• Step 7: DNA coding between random matrix and

image matrix according to {zi}. The conversion of

{zi} is as follows,

zi ¼ modðroundðzi � 104Þ; 4Þ ð8Þ

when zi = 0, the random matrix block and the

corresponding elements in the image matrix block

execute DNA addition, and when zi = 1, subtrac-

tion, zi = 2, exclusive or (XOR), and zi = 3, the

equivalence gate (XNOR) operation.

• Step 8: The encryption performance can be

optimized by adding a diffusion algorithm. {zi}

also determines the relationship between two

adjacent image blocks after encryption. In the case

of zi = 0, the encryption results ci can be

expressed:

ci ¼ ci�1 þ Ii þ Ri ð9Þ

The process of decryption and encryption are

inverse to each other. The operation mode of

randommatrix and DNA encoding can be obtained

by the keys shown below.

6.2 Chaotic encryption with DNA coding

In the following, we test with a standard RGB image,

as displayed in Fig. 14. The initial value x0 is 0.5475

and the parameter l of Logistic map is 3.999. Set the

parameters of hyperchaotic map (1) as a = 0.9, b = 1,

c = - 1 along with the initial condition: X0 = - 1,

Y0 = - 1, Z0 = 1, and therefore, the coding rule of

DNA is determined randomly by the corresponding

hyperchaotic sequence. As shown in Table 2, the

selected keys of M0 and N0 during the encryption

process are given; k1 and k2 are the average gray levels

of the B channel and G channel in the unencrypted

image, respectively. The encrypted image is shown in

Fig. 14b, where the information disappears and shows

nothing. Figure 14c shows the decrypted image which

is the same as the unencrypted image.

6.3 Safety performance analysis

Security is the essential requirement of the encryption

system. Generally, the encryption system requires a

large key space, a reversible encryption process, and

strong anti-attack property. Detailed analysis of the

hyperchaotic encryption algorithm is given from the

following five aspects.

Fig. 14 Encryption experiment: a unencrypted image, b encrypted image, and c decrypted image

Table 2 Algorithm keys

Key l x0 X0 Y0 Z0

Value 3.999 0.5475 - 1 - 1 1

Key k1 k2 M0 N0

Value 0.3883 0.4134 0 0
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6.3.1 Key space analysis

An excellent encryption method typically obtains its

high performance by its large key space in order to

against strong attack. In the above encryption algo-

rithm, the initial conditions of the 3-D hyperchaotic

map are applied as the keys, where the accuracy

reaches 10–16, and therefore the key space is 10160.

Furthermore, the logistic chaotic map is used for the

key generation. Its initial value and parameter are also

be introduced as a part of the key. By this means, the

key space is enlarged for resisting attacks more

effectively.

6.3.2 Histogram analysis

The R, G, B components are extracted from the

original color image and its encrypted image, and their

histograms are shown in Fig. 15. It can be easily

observed from Fig. 15 that the histograms of the R, G,

B are completely changed when they are encrypted.

6.3.3 Information entropy analysis

The uncertainty of image information can be analyzed

by information entropy. The size of information

entropy is proportional to the strength of randomness.

To ensure the random distribution of pixel values, we

use the following method,

HðxÞ ¼ �
XN

i¼1

pðxiÞ log2 pðxiÞ ð10Þ

where N is the number of gray levels, xi is a gray level

of the image, and P(xi) is the frequency of the

grayscale. Generally speaking, the pixel value of a

completely random gray image is scattered between

(a)

(b)

Fig. 15 Histogram of the original and encrypted image: a original image and b encrypted image

Table 3 Information entropy of three channels of the unen-

crypted and encoded images

Image Red Green Blue

Original image 7.2682 7.5901 6.9951

Encrypted image 7.9993 7.9993 7.9994
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[0, 255], p(xi) = 1/256, i [ [0, 255], and the entropy is

computed to be of 8 bits. Therefore, for the informa-

tion entropy of the encrypted image, the value closer to

8 wins the better encoding performance. The infor-

mation entropy of the three channels of the image

before and after encryption is displayed in Table 3.

The information entropy calculated by our method is

higher than that in reference [8] indicating better

image encryption performance.

Figure 16 shows the information entropy of the

encrypted image of the amplitude-controllable map

under different scales. Figure 17 shows the informa-

tion entropy of three channels of encrypted images

under multistable hyperchaotic sequences.

-6 -5 -4 -3 -2 -1c
7.9990

7.9992

7.9994

7.9996

In
fo

rm
at

io
n 

en
tr

op
y

R G B

Fig. 16 Information

entropy of encrypted image

in the R, G, and B channels

by the sequences from map

(1) with a = 0.9, b = 1, and

IC = (- 1, - 1, 1)

Fig. 17 Information entropy of the three-channel encrypted image by the multistable sequences from map (1) with a = 0.9, b = 1,

c = - 1 and IC = (- 1, y0, 1)
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6.3.4 Correlation analysis of images

before and after encryption

The degree of correlation between adjacent pixels is

directly proportional to its correlation coefficient, and

security is inversely proportional. To calculate the

correlation between the pixels next to each other of the

image before and after encryption, N pairs of adjacent

pixels are stochastically picked to analyze in vertical,

horizontal, and diagonal directions.

EðxÞ ¼ 1

N

XN

i¼1

xi ð11Þ

DðxÞ ¼ 1

N

XN

i¼1

ðxi � EðxÞÞ2 ð12Þ

covðx; yÞ ¼ 1

N

XN

i¼1

ðxi � EðxÞÞ2 ð13Þ

rxy ¼
covðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞDðyÞ

p ð14Þ

where cov(x, y) is the correlation function and

D(x) means square error. Table 4 shows that all the

pixels of the encrypted image are distributed with high

dispersion.

6.3.5 Analysis of resistance to noise

In the application of communication engineering,

encrypted image will be inevitably disturbed in the

channel. The most common disturb is the salt-and-

pepper noise. Figure 18 shows the decrypted image in

the R channel with different intensities of salt-and-

pepper noise. Although there is some distortion in the

decrypted image, it does not affect the access to valid

information.

7 Conclusion

In this paper, a class of three-dimensional maps with

homogenous multistability and amplitude control is

proposed. A set of united positive Lyapunov expo-

nents is well maintained in attractors with two-leaf and

three-leaf even when they stand at different distances.

The complex dynamical properties of the 3-D map are

studied by Lyapunov exponents and bifurcation dia-

grams. The proposed hyperchaotic map can be freely

controlled in one dimension or all three dimensions by

a single coefficient. These two isolated amplitude

controllers provide a quick passage for hyperchaotic

sequence rescaling, which is generally a great chal-

lenge for typical chaotic systems.

Table 4 Correlation of the

original image and

encrypted one

Image Channel Horizontal Vertical Diagonal

Original image Red 0.97547 0.9874 0.96432

Green 0.9762 0.98869 0.96611

Blue 0.95457 0.97557 0.93619

Encrypted image Red - 0.0036305 0.034173 - 0.015494

Green 0.0025112 0.030304 0.0069924

Blue 0.015605 0.028112 0.005062

Fig. 18 Decrypted images with salt-and-pepper noise of

various density n: a n = 0, b n = 0.05, c n = 0.1, and d n = 0.2
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Furthermore, the newly found hyperchaotic map

with a sinusoidal function has an infinite number of

coexisting attractors with united Lyapunov exponents,

in which the special phenomenon called homogeneous

multistability is found. Experimental results verify the

findings from the numerical simulations. A typical

application of image encryption is analyzed in detail.

Applying the hyperchaotic sequence generated by the

map, a color image can be easily encrypted and

decrypted in the key space. The lack of correlation

between the histograms and the pixels next to each

other proves that the hyperchaotic map shows high

performance for image encryption.
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