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Abstract Under investigation in this paper is the
Ivancevic option pricing model. Based on trial func-
tion method, rogue wave and dark wave solutions are
constructed. By means of symbolic computation, these
analytical solutions are obtained with the Maple. Per-
turbation solutions are obtained through direct pertur-
bationmethod. These resultswill enrich the existing lit-
erature of the Ivancevic option pricing model. Dynam-
ical characteristics for rogue waves and dark waves are

Y.-Q. Chen (B)
School of Mathematics, Physics and Information Science,
Zhejiang Ocean University, Zhoushan, Zhejiang 316022,
China
e-mail: chenyuqiong@edu.email.cn

Y.-H. Tang
school of science, Beijing University of Posts and
Telecommunications, Beijing 100876, China

J. Manafian
Department of Applied Mathematics, Faculty of
Mathematical Sciences, University of Tabriz, Tabriz, Iran

J. Manafian
Natural Sciences Faculty, Lankaran State University,
50, H. Aslanov str., Lankaran, Azerbaijan

H. Rezazadeh
Faculty of Engineering Technology, Amol University of
Special Modern Technologies, Amol, Iran

M. S. Osman
Department of Mathematics, Faculty of Science, Cairo
University, Giza 12613, Egypt

M. S. Osman
Department of Mathematics, Faculty of Applied Science, Umm
Alqura University, Makkah 21955, Saudi Arabia

exhibited by using three-dimensional plots, curve plots,
density plots and contour plots.

Keywords Trial function method · Tanh expansion
method ·Direct perturbation method · Ivancevic option
pricing equation

1 Introduction

Most of nonlinear phenomena can be easily studied by
nonlinear partial differential equations (NPDEs) [1–
8]. Researchers have studied various kinds of waves
through this powerful tool, such as mixed lump wave
[9], multi-waves [10], three-wave [11], breather [12],
rogue waves [13–15], multiple complex soliton [16],
bright and dark soliton [17], complexwave [18], soliton
solution [19–22], traveling wave solutions [23], lump
solution [24–28], dark waves [29], double-wave solu-
tions [30], interaction solution [31–38]. At the same
time, various methods have been developed to study
these NPDEs, such as, Hirota bilinear method [39], the
general bilinear techniques [40], bilinear neural net-
work method [41–44], the tanh method [45], extended
tanh method [46], improved (G ′/G)-expansion [47],
sine-cosine method [48], tanh-coth method [49], Lie
group method [50], modified transformed rational
function method [51]. Most of these methods listed
above can be regarded as trial function method. Con-
sidering following general form of NPDEs,

P (ψ,ψt , ψs, ψss, . . .) = 0, (1)
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where ψ is a complex function. To find the analytical
solutions of Eq. (1), the trial function is constructed as
follows:

ψ = [Ψ0 + Ψ (ξ)] ei(c2t+k2s), (2)

where ξ = c1t + k1s, Ψ (ξ) can be any function with
the independent variable ξ , such as tanh(ξ), cos(ξ),
tanh(ξ)+ cos(ξ) and so on. Ψ (ξ) can even be an arbi-
trary function F(ξ) or F(ξ)+F2(ξ) and the like. Next,
substituting Eq. (2) into Eq. (1), extracting the coeffi-
cients of ei(c2t+k2s) and then collecting the coefficients
of Ψ (ξ) in both real part and imaginary part, the sys-
tem of equations can be obtained. Solving these equa-
tions, the constraint solutions of the coefficients in the
original equation Eq. (2) and the trial function Eq. (1)
will be obtained. By introducing these coefficient solu-
tions into the trial function Eq. (1), the explicit solution
ψ of Eq. (1) will be obtained. However, it is rare to
study nonlinear option equations by using these pow-
erful tools.

In this paper, we investigate the following Ivancevic
option pricing model:

i∂tψ = −1

2
σ∂ssψ − β|ψ |2ψ, (i = √−1). (3)

This is a wave-form, nonlinear, stochastic and adaptive
option pricing model. This model was first proposed
by Ivancevic in Ref. [52] to satisfy both behavioral and
efficient markets, where σ means the volatility, which
represents either stochastic process itself or just a con-
stant. Landau coefficient β = β(r, w) means the adap-
tivemarket potential. In simplest nonadaptive scenario,
β is equal to the r , which represents interest rate, while
in the adaptive case, β(r, w) can be related to the mar-
ket temperature and it depends on the set of adjustable
parameters {Wi }. The independent variable t represents
time, and s represents asset price. Response variable
ψ(s, t) represents the option price wave function, and
it is the probability density function |ψ(s, t)|2 that rep-
resents the potential field. A novel analytical technique
for the solution of time-fractional Ivancevic option
pricing model has been studied by Jena et. al. [53].

The organization of this paper is as follows. In
Sect. 2, dark wave solutions of Eq. (3) will be obtained
through the tanh expansion method. In Sect. 3, rogue
wave solutions of Ivancevic option pricing model will
be obtained via trial function method. The dynamical
characteristics of corresponding rogue waves will be
exhibited through curve plots, 3D plots, density plots
and contour plots. In Sect. 4, perturbation solutions are

obtained through direct perturbation method. Section
5 will conclude this paper.

2 Dark wave of Ivancevic option pricing model

To get the financial dark wave solutions of Eq. (3), a
transformation is given as follows:

ψ = ei(c2t+k2s)Ψ (ξ) , (4)

where ξ = c1t + k1s. Substituting transformation (4)
into Eq. (3), we get a complex equation,

ei(tc2+sk2)

⎛
⎝

(
d2

dξ2
Ψ (ξ)

)
σk21

2
+ (iσk1k2 + ic1)

(
d

dξ
Ψ (ξ)

)
+ Ψ (ξ)

(
β|Ψ (ξ)|2 − σk22

2
− c2

))

= 0. (5)

The real and imaginary parts of Eq. (5) are extracted as
follows:

(σk1k2 + c1)

(
d

dξ
Ψ (ξ)

)
, (6)

(
d2

dξ2
Ψ (ξ)

)
σk21

2
+ βΨ (ξ)|Ψ (ξ)|2

−Ψ (ξ)σk22
2

− Ψ (ξ)c2. (7)

Making the following transformation to Eq. (7),
Ψ (ξ) = a0 + a1 tanh(ξ), (8)
The real part of Eq. (5) is transformed as
tanh3(ξ)σa1k

2
1 − a1 tanh(ξ)σk21 + tanh(ξ) |a0

+a1 tanh(ξ)|2 βa1

+ |a0 + a1 tanh(ξ)|2 βa0 − tanh(ξ)σa1k22
2

−σa0k22
2

− tanh(ξ)a1c2 − a0c2. (9)

The term of d
dξ

Ψ (ξ) in Eq. (8) and the terms in Eq.
(9) having same order of tanh(ξ) are collected. Then,
equating these equations to 0, a system of equations for
concerned parameters is obtained as follows:

σk1k2 + c1 = 0,(
βa20 − σk22

2
− c2

)
a0 = 0,

βa31 + σa1k
2
1 = 0,

3βa0a
2
1 = 0,

3a1

(
βa20 +

(
−k21

3
− k22

6

)
σ − c2

3

)
= 0.

(10)
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The following three sets of solutions of Eq. (10) are
obtained

Case1:

{
a0 = a0, a1 = 0, c1 = −σk1k2, c2

= βa20 − σk22
2

, k1 = k1, k2 = k2

}
,

Case2:

{
a0 = 0, a1 =

√
−σ

β
k1, c1 = −σk1k2, c2

= −σk21 − 1

2
σk22, k1 = k1, k2 = k2

}
,

Case3:

{
a0 = 0, a1 = −

√
−σ

β
k1, c1 = −σk1k2, c2

= −σk21 − 1

2
σk22, k1 = k1, k2 = k2

}
. (11)

Substituting case 1 of Eq. (11) into (8), the explicit solu-
tion ψ1 of Eq. (3) via transformation (4) is obtained,

ψ1 = a0e
i(2tβa20−tσk22+2sk2)

2 . (12)

Substituting case 2 of Eq. (11) into (8), the explicit solu-
tion ψ2 of Eq. (3) via transformation (4) is obtained,

ψ2 = e− i
2

(
2tσk21+tσk22−2k2s

)
√

−σ

β
k1 tanh (−σ tk1k2 + k1s) . (13)

Substituting case3 of Eq. (11) into (8), the explicit
solutionψ3 ofEq. (3) via transformation (4) is obtained,

ψ3 = −e− i
2

(
2tσk21+tσk22−2k2s

)
√

−σ

β
k1 tanh (c1t + k1s) . (14)

Some appropriate values in Eq. (14) are given as:
β = 5, σ = 3, k2 = 2, k1 = 4, to analyze the dynam-
ics properties briefly. The wave function ψ3 with only
two independent variables of time t and asset price s is
obtained as follows:

ψ3 = 4
√
15

5
i tanh(4s − 24t)ei(2(s−27t)). (15)

Figure 1 shows the three-dimensional plots, density
plot, curve plots and contour plot for the strength |ψ3|
of dark wave solutions for Eq. (15).

3 Rogue wave of Ivancevic option pricing model

To obtain the analytical solutions of Eq. (3), a transfor-
mation is given as follows:

ψ = ei(ps+qt) (
ψ0 + vy

)
, (16)

where

v = a ln
(
b + y2

)
, y = eks−ωt,

from Eq. (16), the terms in Eq. (3) are obtained as fol-
lows:

ψ = exp (i(ps + qt))
(
ψ0y2 + 2ay + bψ0

)
y2 + b

,

|ψ | =
(
y2 + b

)
ψ0 + 2ay

y2 + b
,

∂

∂t
ψ =

(
iq

(
ψ0y2 + 2ay + bψ0

)
y2 + b

+
(−2ψ0ωy2 − 2aωy

y2 + b

+2ωy2
(
ψ0y2 + 2ay + bψ0

)
(
y2 + b

)2
))

exp (i(ps + qt)) ,

∂

∂s
ψ =

(
ip

(
ψ0y2 + 2ay + bψ0

)
y2 + b

+2kya
(−y2 + b

)
(
y2 + b

)2
)
exp (i(ps + qt)) ,

∂2

∂s2
ψ =

(
−

(
ψ0y2 + 2ay + bψ0

)
p2

y2 + b

+ 4I kya
(−y2 + b

)
p

(
y2 + b

)2

+2ak2y
(
y4 − 6by2 + b2

)
(
y2 + b

)3
)
exp (i(ps + qt)) .

(17)

Substituting Eq. (17) into Eq. (3), we get the following
algebraic equation,

−q
(
ψ0 y2 + 2ay + bψ0

)
y2 + b

+
(

−2ωψ0 y2 − 2aωy

y2 + b
+ 2ω y2

(
ψ0 y2 + 2ay + bψ0

)
(
y2 + b

)2
)
i

+
σ

(
−

(
ψ0 y2+2ay+bψ0

)
p2

y2+b
+ 4 ikya

(−y2+b
)
p

(y2+b)
2 + 2a k2 y

(
y4−6b y2+b2

)

(y2+b)
3

)

2
+ β

((
y2 + b

)
ψ0 + 2ay

)2 (
ψ0 y2 + 2ay + bψ0

)
(
y2 + b

)3 = 0.

(18)
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Fig. 1 (Color online) The three-dimensional plots, density plot, curve plots and contour plot for the strength |ψ3| of dark wave solutions
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We collect the terms in Eq. (18) having same order
of y and make them zero; the system of equations are
obtained as follows:

2β ψ0
3 − p2σψ0 − 2qψ0 = 0,

2b3β ψ0
3 − b3 p2σψ0 − 2b3qψ0 = 0,

6bβ ψ0
3 − 3b p2σψ0 + 24a2βψ0 − 6bqψ0 = 0,

6b2β ψ0
3 − 3b2 p2σψ0 + 24a2bβψ0 − 6b2qψ0 = 0,

24abβ ψ0
2 − 12ab k2σ − 4ab p2σ

+ 16a3β − 8abq = 0,

− 4 iakpσ + 12aβ ψ0
2 + 2a k2σ − 2a p2σ

+ 4 iaω − 4aq = 0,

4 ia b2kpσ + 12a b2β ψ0
2 + 2a b2k2σ − 2a b2 p2σ

− 4 ia b2ω − 4a b2q = 0.

(19)

Solving Eq. (19), we get the constraint relationship
between the coefficients as follows:

case1:
{
a =

√
bσ
β
k, p = ω

kσ , q = k4σ 2−ω2

2k2σ
, ψ0 = 0

}
,

case2:
{
a = −

√
bσ
β
k, p = ω

kσ , q = k4σ 2−ω2

2k2σ
, ψ0 = 0

}
.

(20)

Substituting the case 1 in Eq. (20) into Eq. (17), the
explicit solution ψ of Eq. (3) via transformation (16)
is obtained,

ψ =
2e

i

(
ωs
kσ + (k4σ2−ω2)t

2k2σ

)√
bσ
β
keks−ωt

(
eks−ωt

)2 + b
. (21)

In order to analyze the dynamics of the solution, some
parameters in Eq. (21) are given as follows:

ω = 2, k = 3, b = 3, β = 2, σ = 4. (22)

Figure 2 shows the three-dimensional plots, density
plot, curve plots and contour plot of the strength |ψ | of
rogue wave solutions for Eq. (21).

4 Perturbation solutions of Ivancevic option
pricing model

Aswe all know, there is white noise in option model. In
order to restore the real situation of the option model,
we add a perturbation term to the Ivancevic option
pricing model Eq. (3) and the Ivancevic option pric-
ing model with loss is obtained as follows:

i∂tψ + 1

2
σ∂ssψ + β|ψ |2ψ = −iεψ, (i = √−1).

(23)

To obtain the perturbation solutions, ψ is expanded as
follows:

ψ = eε(a+ib)ψ ′(ξ, τ, ε)

= eε(a+ib)
[
ψ0(ξ, τ ) + εψ1(ξ, τ ) + O

(
ε2

)]
,

(24)

where a = a(t, s), b = b(t, s), ξ = ξ(t, s, Γ ), τ =
τ(t, s, Γ ) and {ξ, τ } satisfy the following relationship,
{ξ, τ } ε→0−→ {t, s}. (25)

Substituting Eq. (24) into Eq. (23),

i
(σ

2
ψ0ττ τ

2
s + e2εaβ |ψ0|2 ψ0

)
− ψ0ξ ξt

+ε
{[

i
(σ

2
ψ1ττ τ

2
s + e2εaβ

(
2 |ψ0|2 ψ1 + ψ2

0ψ∗
1

)

−ψ1ξ ξt
]

+
[σ

2
(iatt − btt ) − at − ibt − 1

]
ψ0

[
1

ε

(
i
σ

2
τss − τt

)
+ στs (ias − bs)

]
ψ0τ

+iσ
ξs

ε
τsψ0ξτ

}
= O

(
ε2

)
. (26)

Let the coefficient of the same power of ε be zero, and
the following approximate equations are obtained,

−ψ0ξξ ξ + i
(σ

2
ψ0ττ τ

2
s + e2εaβ |ψ0|2 ψ0

)
= 0, (27)

−ψ1ξ ξt + i
[σ

2
ψ1ττ τ

2
s + e2εaβ

(
2 |ψ0|2 ψ1 + ψ2

0ψ∗
1

)]

+
[σ

2
(iass − bss) − at − ibt − 1

]
ψ0

+
[
1

ε

(
i
σ

2
τss − τt

)
+ στs (ias − bs)

]
ψ0τ

+iσ
ξs

ε
τsψ0ξτ = 0. (28)

Becauseψ0 in Eq. (27) is not explicitly related to ε, the
following relationship can be obtained,

ξt = e2εa, τs = eεa, (29)

so ψ0 is the exact solution of Eq. (3). From Eq. (24),
ψ1 is the solution of following equation,

−ψ1ξ + i

[
sigma

2
ψ1ττ + β2

(
2 |ψ0|2 ψ1 + ψ2

0ψ∗
1

)]

= 0. (30)

From Ref [54], the solution of Eq. (30) can be
ψ1 = ψ0ξ orψ1 = ψ0τ . For a given nontrivial solution
ψ0, Eqs. (28-30) are consistent in any t and s, so the
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Fig. 2 (Color online) The three-dimensional plots, density plot, curve plots and contour plot of the strength |ψ | of rogue wave solutions
for Eq. (21) by choosing ω = 2, k = 3, b = 3, β = 2, σ = 4
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Fig. 3 (Color online) The three-dimensional plot, density plot and contour plot of the intensity |ψ |2 of perturbation solutions for Eq.
(33) by choosing β = −4, σ = 2, ε = 0.01, k1 = 0.3, k2 = 0.5

last three terms of Eq. (28) are all equal to zero and we
can get,

ξs = 0,

sigma

2
(iass − bss) − at − ibt − 1 = 0,

1

ε

(
i
sigma

2
τss − τt

)
+ σ1τs (ias − bs) = 0.

(31)

The solutions of Eq. (29) and Eq. (31) are obtained,

a = −2t, b = s2

σ1
, τ = e−2εt s, ξ = 1

4ε

(
1 − e−4εt

)
.

(32)

Substituting the exact solutionEq. (32) into Eq. (14),
through transformation (24) and ψ1 = ψ0ξ , the pertur-
bation solutions of Ivancevic option pricing model Eq.
(14) can be obtained as follows:
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Fig. 4 (Color online) The curve plots of the intensity |ψ |2 of perturbation solutions for Eq. (33) by choosing β = −4, σ = 2,
ε = 0.01(left), k1 = 0.3, k2 = 0.5

ψ = −1

2
e

ε(Is2−2tσ)
σ e

I
8 (8 e

−2εt sk2ε+2σk21 e
−4εt+σk22 e

−4εt−2σk21−σk22)
ε

√
−σ

β
k1

(
2 Iεk21 tanh

(
k1

(
4 e−2εt sε + σk2e−4εt − σk2

)

4ε

)
σ

+ Iε tanh

(
k1

(
4 e−2εt sε + σk2e−4εt − σk2

)
4ε

)
σk22

−2ε

(
tanh2

(
k1

(
4 e−2εt sε + σk2e−4εt − σk2

)

4ε

))
σk1k2

+2εk1σk2 − 2 tanh(
k1

(
4 e−2εt sε + σk2e−4εt − σk2

)
4ε

))
.

(33)

By choosing β = −4, σ = 2, ε = 0.01, k1 = 0.3,
k2 = 0.5 in Eq. (32), the three-dimensional plot, den-
sity plot and contour plot of the intensity |ψ |2 of pertur-
bation solutions for Eq. (33) are shown well in Fig. 3.
Figure 4 shows the curve plots of Eq. (33), from which
we can find that perturbation solutions decays rapidly
with the increase in ε.

5 Conclusions

In this work, we have constructed the rogue wave solu-
tions and the dark wave solutions of Ivancevic option

pricing model by choosing some different trial func-
tions.With the help of symbolic computing technology,
the rogue wave solutions of Ivancevic option pricing
model are obtained via trial function method and the
dark wave solutions of Ivancevic option pricing model
are obtainedvia tanhmethod. Perturbation solutions are
obtained through direct perturbation method. Various
curve plots, density plot, three-dimensional plots and
contour plots, and dynamical characteristics of these
waves are shown well using Maple.
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