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Abstract For nonlinear Itô-type stochastic systems,
the problem of event-triggered optimal control (ETOC)
is studied in this paper, and the adaptive dynamic
programming (ADP) approach is explored to imple-
ment it. The value function of the Hamilton–Jacobi–
Bellman(HJB) equation is approximated by applying
critical neural network (CNN). Moreover, a new event-
triggering scheme is proposed, which can be used to
design ETOC directly via the solution of HJB equa-
tion. By utilizing the Lyapunov direct method, it can
be proved that the ETOC based on ADP approach can
ensure that the CNN weight errors and states of sys-
tem are semi-globally uniformly ultimately bounded
in probability. Furthermore, an upper bound is given
on predetermined cost function. Specifically, there has
been no published literature on the ETOC for nonlin-
ear Itô-type stochastic systems via the ADP method.
This work is the first attempt to fill the gap in this sub-
ject. Finally, the effectiveness of the proposed method
is illustrated through two numerical examples.
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1 Introduction

The control problem of nonlinear stochastic systems
is diffusely considered in different fields, such as bio-
logical systems, chemical reaction processes, financial
systems [1,2]. And in existing control theories, the
time-triggered control (TTC) is an important method
for most control problems [3–7]. As we know, the TTC
requires the controller to be updated at every moment.
This defect of TTC greatly limits its practical appli-
cations [8]. Therefore, the method of event-triggered
control (ETC) was proposed, which greatly reduces
the computational complexity compared with the TTC
approach. In ETC, the execution of the control task is
determined according to a well-designed event-trigger
mechanism, and the input control action is updated only
when the triggering condition is violated. Since the
property of less computation is required in ETC, it has
been widely used to solve consistency problems in dif-
ferent systems, including multi-agent systems [9–11],
unknown dynamics nonlinear systems [12,13], switch-
ing systems [14,15], and networked control systems
[16,17].

It has been well acknowledged that nonlinear Itô-
type stochastic systems are widely used in various
fields, such as biological engineering, finance, nuclear
reactors, and physics [18,19]. The stochastic systems
not only supplement the deterministic systems, but
also precisely reflect the dynamic characteristics of
engineering systems. The existence of stochastic dis-
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turbances changes the dynamic characteristics of the
original system, reduces the control performance, and
even destroys the stability of the stochastic systems. In
recent years, many scholars have studied the stability of
stochastic systems. The problem of ETC for stochastic
nonlinear delay systems with exogenous disturbances
was first solved by Zhu in [20]. In [21], the stabil-
ity analysis and design procedure of ETC for nonlin-
ear stochastic systems with state-dependent noise were
studied. For network-based control of linear stochastic
systems with state multiplicative noise, the time-delay
method andETCapproachwere proposed to obtain suf-
ficient conditions for the exponential mean square sta-
bility in [22]. However, almost all researches on ETC
problems for stochastic systems focus on the design
of feedback controller to achieve the control objec-
tives. Different from the traditional control methods,
the optimal control not only realizes the control goal
but also optimizes the given performance cost function
[23]. Optimal control has a very wide scope of applica-
tions in practice, such as enterprise planning, satellite
launch, and production control. Therefore, it is of great
significance to study the event-triggered optimal con-
trol (ETOC) of the nonlinear stochastic systems.

Aswe all know, the solution of optimal control prob-
lem usually comes down to the solution of HJB equa-
tion. However, the analytical solution of the HJB equa-
tion of nonlinear systems is very hard to get [24]. The
ADP method that combines dynamic programming,
reinforcement learning, and adaptive technology was
firstly presented by Werbos in [25]. It provides a novel
and effective method for solving the optimal control
problemof nonlinear systems.Comparedwith dynamic
programming, the advantage of ADP is suitable for
complex nonlinear systems. Moreover, it can effec-
tively solve nonlinear HJB equation and overcome the
disaster of dimensionality. A greedy iterative algorithm
by ADP was designed to solve the HJB for discrete-
time nonlinear optimal control in [26]. For nonlinear
polynomial systems, a new global ADP approach was
suggested to do with the adaptive optimal control prob-
lem [27]. The difference between this method and the
known nonlinear ADP method is that it avoids the neu-
ral network (NN) approximation and greatly improves
computational efficiency.

ADP methods for deterministic nonlinear systems
with ETOC have been studied by many scholars
and have been well developed [28–36]. For discrete-
time nonlinear deterministic systems, the ETOC prob-

lem was studied in [28], which proposes an adap-
tive ETOC according to heuristic dynamic program-
ming. In [29], an ETC based on ADP method was sug-
gested to solve the optimal control problemof unknown
nonlinear continuous-time systems with input con-
straints. Dong proposed an ETOC structure and ADP
approach for nonlinear systemswith control constraints
in [32]. According to event-trigger mechanism and
ADP approach, a new optimal control method for
unknown nonlinear continuous-time systems was pro-
posed in [34].Guo et al. [36] studied the event-triggered
guaranteed cost optimal tracking control problem for
a class of uncertain nonlinear system by using ADP
approach. However, there is no research for Itô-type
stochastic systems with ETOC based on ADP method.

In addition, most works on ETOC problems for non-
linear deterministic systems first need to obtain event-
triggeredHJBequations and thenget approximate solu-
tions by using ADP methods [37–40]. Noting that the
fact that the event-triggered HJB equation is already
a kind of approximate of the given equation, the error
of the solution is relatively large. Moreover, the opti-
mal performance index in ETOC is bound to degrade
to some extent since the use of event-triggered con-
trol. Therefore, it is essential to investigate how much
performance will decline for the ETC approach. How-
ever, there is little research on how the event-trigger
scheme affects the optimal performance index. In the
works of Dong et al. [32] and Zhu et al. [33], the pre-
specified cost function (C-F) for the ETOC contains
an integral term, and the boundedness of the integral
term was not analyzed. Luo et al. [41] proposed a new
ETOC method, which guarantees an upper bound for
C-F. However, this work does not take into account
the impact of stochastic disturbances for system and
performance index, which is not in line with practical
applications.

Motivated by the above discussions, the problem of
ETOC for nonlinear Itô-type stochastic systems is stud-
ied utilizing the ADP method in this paper. And the
main contributions are as follows.

i) ETOC for nonlinear Itô-type stochastic systems is
designed for the first time in this paper by using
ADPmethod, which can get the numerical solution
of HJB equation. Moreover, it can reduce computa-
tional load and savings communication resources.

ii) In the existing researches, there is no literature to
study the influence of ETOC on the corresponding
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performance index of Itô-type stochastic optimal
control problem. In our work, a new ETOC is pre-
sented to ensure the predetermined upper bound of
the corresponding performance index for Itô-type
stochastic optimal control problem.

iii) For ETOC problems, the main purpose of most
works is to achieve the numerical solution of the
event-triggered HJB equation by applying ADP
method [37–40]. However, considering the fact that
the event-triggered HJB equation itself is already a
kind of approximate of the original HJB equation.
In our work, a new event-triggering scheme is pro-
posed, which can be used to design ETOC directly
via the solution of HJB equation and the accuracy
of the approximate solution can be improved.

The rest of the paper is introduced as follows. In
Sect. 2, we give the problem statements and prelimi-
naries. The ETOC scheme, stability problem, and an
upper bound of the C-F are developed in Sect. 3. Sec-
tion 4 constructs CNN to estimate the optimal value
function. The ETOC based onADPmethod is analyzed
theoretically in Sect. 5. In Sect. 6, examples results are
presented to illustrate the application of the proposed
method. Section 7 concludes this paper.

2 Problem statements and preliminaries

The notations used in this paper are as follows. Rn

denotes the n-dimensional Euclidean space and ‖ · ‖
represent vector norm. The superscript T represents the
operation of transpose. Denote by (Ω,F , {Ft }t≥0, P)

a complete probability space with a natural filtration
{Ft }t≥0. E{·} denotes the correspondent expectation
operator with regard to a given probability measure P .
σ(·) and σ(·) represent the minimum and maximum of
singular values. X is a compact set of Rn . Let C2(X )

represent the family of nonnegative functions V(x) and
Y(x), which are twice differentiable in x ∈ X ⊂ R

n .
‖A‖2b = bTAb for symmetric matrix A > (≥)0 and
real vector b.

Consider the Itô-type nonlinear stochastic systems
as

dx(t) = F(x(t))dt + G1(x(t))u(x(t))dt + G2(x(t))dw(t),

(1)

where x = [x1, · · · , xn]T ∈ X ⊂ R
n represents the

system state, the control input u(x(t)) ∈ R
p, and

w(t) be a one-dimensional Brownian motion defined
on space (Ω,F , {Ft }t≥0, P). F(x(t)), G1(x(t)), and
G2(x(t)) are Lipschitz continuous on compact set X ∈
R
n . Moreover, F(0) = 0, G1(0) = 0, G2(0) = 0.
The cost function of (1) can be written as

J (x(t), u(t))

= E

{∫ +∞

0

(
Q(x(t)) + uT(x(t))Ru(x(t))

)
dt

}
,

(2)

whereQ(x(t)) is a positive definite function, expressed
as a weighting function of state x(t) with Q(0) = 0,
and R > 0.

The goal of optimal control problems is to find the
optimal value function as

V∗(x(t)) = min
u(x(t))

J [x(t), u(x(t))], (3)

where V∗(x(t)) ∈ C2(X ), V∗(x(t)) ≥ 0, and V∗(0) =
0. If the control input u(x(t)) is admissible, then the
Hamiltonian of V∗(x(t)) and u(x(t)) is given as

H(x, u(x),V∗
x )

= V∗
x F(x) + V∗

xG1(x)u(x) + 1

2
GT
2 V∗

xxG2
+ Q(x) + uT(x)Ru(x), (4)

where

Vx �
[

∂V
∂x1

∂V
∂x2

· · · ∂V
∂xn

]
,

and

Vxx �
[

∂2V
∂xi x j

]
n×n

=

⎡
⎢⎢⎣

∂2V
∂x1∂x1

· · · ∂2V
∂x1∂xn

...
. . .

...
∂2V

∂xn∂x1
· · · ∂2V

∂xn∂xn

⎤
⎥⎥⎦ .

Based on [42], V∗(x) can be achieved through solv-
ing HJB equation as

min
u(x)

H (
x, u(x),V∗

x

) = 0. (5)

Therefore, the optimal control is given as

u∗(x) = −1

2
R−1(x)GT

1 (x)V∗
x , (6)
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and the optimal performance index can be written as

J ∗(x0) = minJ (x0, u) = V∗(x0).

Substituting (6) into (5), the HJB equation becomes

V∗
x F(x) + 1

2
GT
2 V∗

xxG2

− 1

4
V∗
xG1(x)R−1(x)GT

1 (x)(V∗
x )

T + Q(x) = 0. (7)

Remark 1 Noticing that the HJB (7) is a time-triggered
HJB equation, the controller is required to stay active at
every time instance. Obviously, the time-triggered opti-
mal control (TTOC) has the disadvantage of requiring a
heavy computational burden andneedsmore communi-
cation sources. Fortunately, the controller in the ETOC
method is updated only when the triggering condition
is violated, which can surmount the above shortcom-
ings. In this paper, we will develop a novel ETOC to
achieve the approximate solution of (7).

3 Design of ETOC and stability analysis

Let triggering instants set {tk} satisfy 0 = t1 < · · · <

tk < · · · , limk→∞ tk = ∞ and define the sampled
state as

x̄(t) = x (tk) , t ∈ [
tk, tk+1) , k ∈ N,

where tk is the triggering instant. Let e(t) represent the
error of true state x(t) and sampled state x̄(t). Then,
we have

e(t) = x̄(t) − x(t), for ∀ t ∈ [
tk, tk+1) . (8)

The sampling interval of the ETOC is defined as

hk � tk+1 − tk .

According to (6), the ETOC has the form

μ(x̄) = u∗(x̄) = −1

2
R−1GT

1 (x̄)(V ∗̄
x )

T. (9)

By system (1), error (8), and ETOC (9), the closed-
loop system is written as

dx

= F(x)dt + G1(x)μ(x̄)dt + G2(x)dw

= F(x)dt − 1

2
G1(x)R−1GT

1 (x̄)(V ∗̄
x )

T + G2(x)dw

= F(x)dt − 1

2
G1(x)R−1GT

1 (x + e)(V∗
x+e)

T

+ G2(x)dw. (10)

Now, a new event-triggering scheme considered in
this paper is

Zc(x, x̄)

= (1 + c)

[
V∗
x F(x) + V∗

xG1(x)μ(x̄) + 1

2
GT
2 V∗

xxG2

]

+ Q(x) + μT(x̄)Rμ(x̄)

< 0, (11)

where c > 0 is a predetermined constant parameter,
which will determine an upper bound of the C-F of
(2). The controller will be updated according to the
current state when the triggering scheme (11) is vio-
lated. Therefore, the next release time instant tk+1 can
be updated as

tk+1 = inf {t |Zc(x(t), x̄(t)) � 0, t � tk} . (12)

Theorem 1 Closed-loop system (10) with the event-
triggered optimal controller μ(x̄) in (9) and the event-
triggering scheme (11) is asymptotically stable in prob-
ability and the upper bound can be given for the C-F if
V∗(x) is a solution of (7).

Proof Choose V∗(x) as the Lyapunov function.
According to (11) and (12), we acquire

LV∗ = V∗
x F(x) + V∗

xG1(x)μ(x̄) + 1

2
GT
2 V∗

xxG2

= 1

1 + c

[
Zc(x, x̄) − Q(x) − μT(x̄)Rμ(x̄)

]

� − 1

1 + c

[
Q(x) + μT(x̄)Rμ(x̄)

]

� 0, (13)

which implies that (10) is asymptotically stable in prob-
ability.

Based on (13), we have

Q(x) + μT(x̄)Rμ(x̄) � −(1 + c)LV∗(x).
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Next, it follows from Dynkin formula and (13) with
V(xT ) > 0 that for any T > 0,

E

{∫ T

0

(
Q(x(t)) + μT(x(t))Rμ(x(t))

)
dt

}

� −(1 + c)E

{∫ T

0
LV∗(x(t))dt

}

= (1 + c)E{V(x0) − V(xT )}
≤ (1 + c)V∗(x0)
= (1 + c)J ∗(x0).

Letting T → ∞, one can obtain

E

{∫ ∞

0

(
Q(x(t)) + μT(x̄(t))Rμ(x̄(t))

)
dt

}

≤ (1 + c)J ∗(x0).

Accordingly, an upper bound (1+c)J ∗(x0) is guar-
anteed on the cost function J (x0, μ). ��
Corollary 1 For system (10) with the triggering
scheme (11) and the triggering time sequence (12), the
sampling interval hk of the ETOC is monotonic non-
decreasing. That is, hk1 � hk2 , for any k1 � k2 > 0.

Proof For t ∈ [
0, hk2

]
, according to (12), we have

Zk1 (x, x̄) − Zk2 (x, x̄)

= (k1 − k2)

[
V∗
x F(x) + V∗

xG1(x)μ(x̄) + 1

2
GT
2 V∗

xxG2

]

= k1 − k2
1 + k2

[Zk2 (x, x̄) − Q(x) − μT(x̄)Rμ(x̄))
]

� − k1 − k2
1 + k2

[Q(x) + μT(x̄)Rμ(x̄))
]

� 0,

one can obtainZk1(x, x̄) � Zk2(x, x̄), then, hk1 � hk2 .
��

Corollary 2 Combining system (10) with triggering
scheme (11) and the triggering instant sequence (12).
If the parameter c = 0, we can obtain the sampling
interval hk = 0 for all k and J (x0, μ) = J ∗(x0).
Then, the ETOC will degrade into a traditional TTOC.

Proof According the HJB equation (7), we obtain

V∗
x F(x) + 1

2
GT
2 V∗

xxG2 + Q(x) = (u∗(x))TRu∗(x).
(14)

Based on (11), (14) and the condition c = 0, we get

Zc(x, x̄)

= V∗
x F(x) + V∗

xG1(x)μ(x̄) + 0.5GT
2 V∗

xxG2
+ Q(x) + (μ(x̄))TRμ(x̄)

= (u∗(x))TRu∗(x) − 2(u∗(x))TRμ(x̄)

+ (μ(x̄))TRμ(x̄)

= ∥∥u∗(x) − μ(x̄)
∥∥2R ≥ 0,

one can obtain from (12) that tk+1 = tk , that is, hk = 0
for all k = 0, 1, 2, · · · . According to the condition c =
0 and Theorem 1, we can obtain J (x0, u) ≤ J ∗(x0).
Meanwhile, J ∗(x0) is the minimum performance, i.e,
J (x0, u) ≥ J ∗(x0). Then,we getJ (x0, u) = J ∗(x0).

��

Remark 2 Based on Corollary 1, we know that a larger
c will lead to a larger sampling time, which greatly
reduces the computational complexity and saving com-
munication resources. That is, c is a tuning parameter
between the TTOC and the ETOC.

Remark 3 It is worth noting that our proposed event-
triggered scheme (11) can guarantee that the C-F has
an upper bound, and we consider the system and C-F
affected by stochastic disturbances. Although the ADP
methodwas used to solve the ETOC problem of contin-
uous systems in [32,34,43], the C-F of event-triggered
control was not unsolved. In addition, there has been
no works to study the influence of ETOC on the C-F of
stochastic optimal control problems.

Remark 4 In our work, the proposed ETOC approach
only needs to solve the HJB equation (7) directly and
does not need the event-triggered HJB equation, which
has better practicability. However, the HJB equation
of event-triggered was needed in [37,40], where the
value function V∗(x) was required to satisfy both the
event-triggered HJB equation and original HJB equa-
tion. Thus, our work is more practical than those in
[37,40].

4 Critic neural network design

The V∗(x) is estimated by using a CNN. And the struc-
ture of NN-based approximate value function as
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V∗(x) =
L∑

k=1

ω∗
kmk(x) + δ(x), (15)

where ω∗ �
[
ω∗
1, · · · , ω∗

L

]T represents the CNN
weight vector, mk(x) � [m1(x), · · · ,mL(x)]T is the
vector activation function with mk(x) ∈ C2(X ) and
mk(0) = 0, and δ(x) denotes the error of CNN estima-
tion.

Due to the ideal weight ω∗ is usually not available
and difficult to obtain. Therefore, the CNN is applied
to approximate V∗(x) as

V̂(x) =
L∑

k=1

ωkmk(x) = MT
L (x)ω. (16)

Submitting (16) to (9), the ETOC based on ADP is
expressed as

μ(x̄) = −1

2
R−1GT

1 (x̄)∇x̄ ML(x̄)ω̄, (17)

where ∇x̄ ML �
[

∂ML
∂ x̄1

∂ML
∂ x̄2

· · · ∂ML
∂ x̄L

]
, ω̄(t) = ω (tk),

∀t ∈ [
tk, tk+1), and Zc(x, x̄) in the event-triggering

scheme (11) is performed with

Zc(x, x̄)

= (1 + c)[V̂x F(x) + V̂xG1(x)μ(x̄) + 1

2
GT
2 V̂xxG2]

+ Q(x) + μ(x̄)T(x)Rμ(x̄)

< 0, (18)

where c > 0 is the predetermined constant that will
determine an upper bound of the C-F with the ETOC
(17). V̂(x) is the approximation of V∗(x). When the
event-triggering scheme (18) is violated, the controller
will be updated according to the current state x(t).

The ADP approach is developed to study the CNN
weight vector ω. Motivated by works [34,41,44], the
following assumption is presented.

Assumption 1 Let P(x) ∈ C2(X ) and P(0) = 0 be a
Lyapunov function candidate such that

∇xP(x)F(x) + ∇xP(x)G1(x)u∗(x)

+ 1

2
GT
2

∂2P(x)

∂x2
G2 � 0,

where

∇xP �
[

∂P
∂x1

∂P
∂x2

· · · ∂P
∂xn

]
,

and

∂2P(x)

∂x2
�

[
∂2P
∂xi x j

]
n×n

=

⎡
⎢⎢⎣

∂2P
∂x1∂x1

· · · ∂2P
∂x1∂xn

...
. . .

...
∂2P

∂xn∂x1
· · · ∂2P

∂xn∂xn

⎤
⎥⎥⎦ .

Meanwhile, ‖∇xP‖ � PM with PM > 0.

According to (16) and (17), the approximate Hamil-
tonian has the form

Ĥ(x, μ(x),∇x V̂(x))

= ωT[∇T
x ML(x)F(x) + ∇T

x ML(x)G1(x)μ(x)]

+ 1

2
GT
2 In×n ⊗ ωT ∂2ML(x)

∂x2
G2

+ Q(x) + μT(x)Rμ(x),

where ⊗ represents the Kronecker product. Since
the estimation error in the CNN, the replacement of
V∗(x) and u∗(x) in (5) with V̂(x) and μ(x) will
cause residual error, that is, V̂(x) �= 0. Therefore,
the residual error between Ĥ(x, μ(x),∇x V̂(x)) and
H(x, u∗(x),∇xV∗(x)) can be expressed as

η(x, ω) � Ĥ
(
x, μ(x),∇x V̂(x)

)

− H (
x, u∗(x),∇xV∗(x)

)
= Ĥ

(
x, μ(x),∇x V̂(x)

)
− 0

= Ĥ
(
x, μ(x),∇x V̂(x)

)
. (19)

Due to derive the minimum value of η, the square
residual error has the form

E(x, ω) � 1

2
η2(x, ω).

Accordingly, the following gradient-descent-like
rule is designed as

ω̇ = −γ
φ(x)

1 + φT(x)φ(x)
η(x, w)

+ k

2
∇T
x ML(x)G1(x)R−1GT

1 (x)∇T
x P(x), (20)
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where

φ(x) = ∇T
x ML(x)F(x) + ∇T

x ML(x)G1(x)μ(x)

+ 1

2
GT
2 ⊗ IL×L

∂2ML(x)

∂x2
G2,

and

k �

⎧⎪⎨
⎪⎩
0, if ∇xP(x)F(x) + ∇xP(x)G1(x)μ(x̄)

+ 1
2GT

2
∂2P(x)

∂x2
G2 � 0,

1, else.

(21)

Remark 5 Two explanations for (20) are showed as fol-
lows.

(1) The purpose of the first term in (20) is to minimize
the target function E(x, w) via the gradient descent
method. Meanwhile, 1/(1 + φT(x)φ(x)) is a nor-
malized processing term, and γ > 0 is a constant
gain.

(2) The last term in (20) is added to ensure the sta-
bility of system (1). The derivation of this term is
as follows. Represent the derivative of P(x) along
system trajectory

dx = F(x)dt + G1(x)μ(x)dt + G2(x)dw

as

Ψ = ∇xP(x)F(x) + ∇xP(x)G1(x)μ(x)

+ 1

2
GT
2

∂2P(x)

∂x2
G2.

Applying the gradient descent approach to Ψ , we
have

−∂Ψ

∂ω
= 1

2
∇T
x ML(x)G1(x)R−1GT

1 (x)∇T
x P(x).

Obviously, it is helpful to prove Ψ < 0, which can
ensure the stability of system (1).

Remark 6 Now,we introduce the implementation prin-
ciple of the ETOC based on ADP. Utilizing x and x̄ to
validation event-triggering scheme (18), and using x in
(20) to calculate the CNN weight ω. The control input
(17) will be calculated according to x̄ and ω̄ when the
event-triggering scheme (18) is violated.

5 Theoretical analysis

The system stability and cost function bound are ana-
lyzed theoretically in this section. First, the following
definition and assumptions are introduced.

Definition 1 [45] For system (10), the trajectory x(t)
is SGUUB in p-th moment. For a compact set X ∈ Rn

and any x(t0) = x0, if there exist constant b1 > 0 and
T (b1, x0) satisfying E[‖x(t)‖p] < b1, t > t0 + T .

Define the CNN weights error is ω̂(t) � ω(t)−ω∗.
Then, we have

˙̂ω(t) = ω̇(t). (22)

Assumption 2 The control input u∗(x) is Lipschitz
continuous, that is to say, for every x1, x2 ∈ X , there
exists K > 0 satisfies
∥∥u∗(x1) − u∗(x2)

∥∥ ≤ K ‖x1 − x2‖ .

Assumption 3 Assume that K1‖x‖2 � Q(x) �
K2‖x‖2, and K3‖x‖ � ‖u∗(x)‖ � K4‖x‖, where
K1, K2, K3, K4 > 0.

Assumption 4 Assume that

(1) F(x) is Lipschitz continuous, that is, for any
x1, x2 ∈ X , there exists l f > 0 satisfying

‖F (x1) − F (x2)‖ � l f ‖x1 − x2‖.
F(x), G1(x), and G2(x) are bounded on the com-
pact set X , that is, ‖F‖ � FM , ‖G1‖ � G1M ,
‖G2‖ � G2M , where FM , G1M , and G2M > 0;

(2) ω∗ is bounded, that is, ‖ω∗‖ � ωM , where ωM >

0;
(3) There exists MM , dM , and dMM > 0 such that

‖ML(x)‖ � MM , ‖∇x ML(x)‖ � dM , and∥∥∥ ∂2ML (x)
∂x2

∥∥∥ � dMM for all x ∈ X ;

(4) ∇xδ(x) is Lipschitz continuous, that is, for every
x1, x2 ∈ X , there exists ldδ > 0 such that

‖∇xδ (x1) − ∇xδ (x2)‖ � ldδ ‖x1 − x2‖ ,

and there exist δM , δdM , and δDM > 0 such that

‖δ(x)‖ � δM , ‖∇xδ(x)‖ � δdM , and
∥∥∥ ∂2δ(x)

∂x2

∥∥∥ �
δDM for all x ∈ X ;

(5) φ(x) is bounded on the compact setX , that is,φm �
φ(x) � φM , where φm, φM > 0;
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Theorem 2 Consider system (1) with control (17) and
the event-triggering scheme (11) with (18), and let
Assumptions 2–4 hold. Then, the true state x(t), sam-
pled state x̄(t), and CNN weights error ŵ(t) are
SGUUB in probability, if there exist matrices Y > 0
and

‖S‖ � D̄, (23)

where

S = [‖x‖, ‖x̄‖, ‖ŵ‖]T,

D̄ = ‖V ‖ + √‖V ‖2(V ) + 4Uσ(Y )

2σ(Y )
,

and U, V , Y are as follows:

U = 1

2
‖G2M‖2‖δDM‖ + δdM FM + q1,

V =
⎡
⎢⎣

q2
δdMG1MK4 + q2

dM FM − γφ2
MωM

1+φ2
M

+ 1
2‖G2M‖2‖dMM‖

⎤
⎥⎦ ,

Y =

⎡
⎢⎢⎢⎣

K1
1+c + γφM (K1+K3)

1+φ2
M

0 0

0
K 2
3

1+c − dMG1MK4
2

0 − dMG1MK4
2

γφ2
M

1+φ2
M

⎤
⎥⎥⎥⎦ ,

where

q1 = 1

2
PMG2

1Mσ−1(R)δM , q2 = PMG1MK3.

Proof Selecting the Lyapunov function condition

Y(x(t)) = V∗(x̄k) + V∗(x(t)) + 1

2
ω̂Tω̂ + P(x(t)),

(24)

where P(x(t)) ∈ C2(X ) is given in Assumption 1,
Y(x(t)) ∈ C2(X ), and Y(x(t)) ≥ 0 is a positive func-
tion due to V∗(x̄k) > 0, V∗(x(t)) > 0, V∗(0) = 0,
P(x(t)) > 0, P(0) = 0. Since (24) includes both dis-
crete dynamics and continuous dynamics, we analyze
the stability analysis under the following two cases.

Case 1 Events are not triggered, that is, t ∈
[tk, tk+1). For system (10), taking the derivative oper-
ation for (24) and using (22), we get

LY(x(t)) = LV∗(x̄k)+LV∗(x(t))+ω̂T ˙̂ω+LP(x(t)).

It is worth noting that x̄k remains invariant on t ∈
[tk, tk+1), thus,

LV∗(x̄k) = 0. (25)

From (15), one has

V∗(x) = MT
L (x)ω∗ + δ(x) = MT

L (x)(ω − ω̂) + δ(x)

= V̂(x) − MT
L (x)ω̂ + δ(x). (26)

It follows from Assumption 2, Assumption 4 and (26)
that

LV∗(x) = V∗
x F(x) + V∗

xG1(x)μ(x̄) + 1

2
GT
2 V∗

xxG2

= V̂x F(x) + V̂xG1(x)μ(x̄) + 1

2
GT
2 V̂xxG2

− ∇x ML (x)F(x)ω̂ − ∇x ML (x)G1(x)μ(x̄)ω̂

− 1

2
GT
2

∂2ML (x)ω̂

∂x2
G2 + ∇xδ(x)F(x)

+ ∇xδ(x)G1(x)μ(x̄) + 1

2
GT
2

∂2δ(x)

∂x2
G2

� − 1

1 + c

[Q(x) + μ(x̄)TRμ(x̄)
]

− [∇x ML (x)ω̂ − ∇xδ(x)
] [F(x) + G1(x)μ(x̄)]

− 1

2
GT
2

∂2ML (x)ω̂

∂x2
G2 + 1

2
GT
2

∂2δ(x)

∂x2
G2

� − 1

1 + c

[
K1‖x‖2 + K 2

3‖x̄‖2]
+ (

dM‖ω̂‖ + δdM
)
(FM + G1MK4‖x̄‖)

+ 1

2
‖G2M‖2‖dMM‖‖ω̂‖ + 1

2
‖G2M‖2‖δDM‖.

(27)

The infinitesimal generator of P(x) is written as

LP(x) = ∇xP(x)(F(x) + G1(x)μ̄(x)) + 1

2
GT
2

∂2P(x)

∂x2
G2

= ∇xP(x)(F(x) + G1(x)μ(x)) + 1

2
GT
2

∂2P(x)

∂x2
G2

+ ∇xP(x)G1(x)μ̄(x) − ∇xP(x)G1(x)μ(x). (28)

According to (20) and (22), one can obtain

LVω̂(ω̂) = ω̂T ˙̂ω = −γ
ω̂Tφ(x)

1 + φT(x)φ(x)
η(x, ω)

+ k

2
ω̂T∇T

x ML(x)G1(x)R−1GT
1 (x)∇T

x P(x).

(29)
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From Assumptions 3, 4, and (19), the first term of
right side in (29) has the following property:

− γ
ω̂Tφ(x)

1 + φT(x)φ(x)
η(x, w)

= −γ
ω̂TφT(x)φ(x)

1 + φT(x)φ(x)
ω − γ

(Q(x) + μT(x)Rμ(x))

1 + φT(x)φ(x)
φ(x)

= −γ
ω̂TφT(x)φ(x)

1 + φT(x)φ(x)
(ω∗ + ω̂)

− γ
(Q(x) + μT(x)Rμ(x))

1 + φT(x)φ(x)
φ(x)

� −γ
φ2
M‖ω̂‖(ωM + ‖ω̂‖)

1 + φ2
M

− γ
φM (K1 + K3)‖x‖2

1 + φ2
M

.

For k in (21), consider the following two situations:
1) For k = 0, one have

∇xP(x)(F(x) + G1(x)μ(x̄))

+1

2
GT
2

∂2P(x)

∂x2
G2 � 0.

Then, we can get

k

2
ω̂T∇T

x ML(x)G1(x)R−1GT
1 (x)∇T

x P(x) + LP(x)

� 0. (30)

2) For k = 1, one have

∇xP(x)(F(x) + G1(x)μ(x̄)) + 1

2
GT
2

∂2P(x)

∂x2
G2 > 0.

Then, from (28), one can obtain

LP(x) + k

2
ω̂T∇T

x ML (x)G1(x)R−1GT
1 (x)∇T

x P(x)

= ∇xP(x)F(x) + ∇xP(x)G1(x)μ(x) + 1

2
GT
2

∂2P(x)

∂x2
G2

+ ∇xP(x)G1(x)μ(x̄) − ∇xP(x)G1(x)μ(x)

+ 1

2
ω̂T∇T

x ML (x)G1(x)R−1GT
1 (x)∇T

x P(x)

= ∇xP(x)F(x) − 1

2
G1(x)R−1GT

1 (x)∇x ML (x)(ω − ω̂)

+ 1

2
GT
2

∂2P(x)

∂x2
G2 + ∇xP(x)G1(x)(μ(x̄) − μ(x))

= ∇xP(x)F(x) − 1

2
G1(x)R−1GT

1 (x)∇x (V∗(x) − δ(x))

+ 1

2
GT
2

∂2P(x)

∂x2
G2 + ∇xP(x)G1(x)(μ(x̄) − μ(x))

= ∇xP(x)F(x) + ∇xP(x)G1(x)u
∗(x) + 1

2
GT
2

∂2P(x)

∂x2
G2

+ 1

2
∇xP(x)G1(x)R−1GT

1 (x)∇xδ(x)

+ ∇xP(x)G1(x)(μ(x̄) − μ(x)). (31)

Based on (30), (31), and Assumptions 2–4, we have

LP(x) + 0.5kω̂T∇T
x ML(x)G1(x)R−1GT

1 (x)∇T
x P(x)

≤ 1

2
∇xP(x)G1(x)R−1GT

1 (x)∇xδ(x)

+ ∇xP(x)G1(x)(μ(x̄) − μ(x))

≤ q1 + q2(‖x̄‖ + ‖x‖), (32)

Combining (30) and (32), we have

LP(x) + k

2
ω̂T∇T

x ML (x)G1(x)R−1GT
1 (x)∇T

x P(x)

≤ max{0, q1 + q2(‖x̄‖ + ‖x‖)} ≤ q1 + q2(‖x̄‖ + ‖x‖).

Next, by (25), (27), (29), and (32), we have

LY(x(t))

� − 1

1 + c

[
K1‖x‖2 + K 2

3‖x̄‖2
]

+ (
dM‖ω̂‖ + δdM

)
(FM + G1MK4‖x̄‖)

+ 1

2
‖G2M‖2‖dMM‖‖ω̂‖ + 1

2
‖G2M‖2‖δDM‖

− γ
φ2
M‖ω̂‖(ωM + ‖ω̂‖)

1 + φ2
M

− γ
φM (K1 + K3)‖x‖2

1 + φ2
M

+ q1 + q2(‖x̄‖ + ‖x‖)
= −STY S + V TS +U. (33)

Then, from condition Y > 0, we have

LY(x(t)) � −σ(Y )‖S‖2 + ‖V ‖‖S‖ +U. (34)

Using condition (23) and doing completing the
squares for (34), we get

LY(x(t)) � 0.

By applying E[LY(x(t))] � 0 and using Dykin for-
mula, one can obtain

E[Y(x(t))] − E[Y(x0)] ≤ E

∫ t

0
LY(x(s))ds ≤ 0.

Thus, we get

E[Y(x(t))] ≤ E[Y(x0)].
Then, the true state x(t), sampled state x̄(t), and

CNN weights error ŵ(t) are SGUUB in probability.
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Case 2We consider the event-triggered moment t =
tk . Consider the difference of the Lyapunov function
Y(x(tk)) defined in (24) on the event-triggered instant,
we get

ΔY(x(tk)) = Y(x(tk)) − Y(x(t−k ))

= ΔV∗(x̄(tk)) + ΔV∗(x(tk))
+ ΔVω̂(ω̂(tk)) + ΔP(x(tk)),

where x(t−k ) = lim
α→0

x(tk−1 − α).

From the stability of the flow dynamics, we have
that for ‖S‖ � D̄,

ΔV∗ (x (tk)) � V∗ (x (tk)) − V∗ (
x− (tk)

) ≤ 0,

ΔVω̂(ω̂(tk)) � Vω̂(ω̂(tk)) − Vω̂

(
ω̂− (tk)

) ≤ 0,

ΔP (x (tk)) � P (x (tk)) − P (
x− (tk)

) ≤ 0,

ΔV∗ (x̄ (tk)) � V∗ (x̄ (tk)) − V∗ (x̄ (tk−1))

≤ −K(‖e(tk)‖),
where K(·) represents class-K functions in [46]. The
strictly increasingproperty of class-K functions ensures
the decrease of ΔV∗ (x̄ (tk)).

Therefore, we can get ΔY (x(tk)) < 0 when ‖S‖ �
D̄. Finally, one can obtain E[Y(x(tk))] ≤ E[Y(x0)]
when ‖S‖ � D̄. Then, the true state x(t), sampled
state x̄(t), and CNN weights error ŵ(t) are SGUUB in
probability. ��
Theorem 3 For system (1) with control input (17), let
Assumptions 2–4 hold. Then, an upper bound is given
on the cost function J̄ (x0, μ).

Proof For system (1) with control (17), doing deriva-
tive operation for V∗(x) in (15), we get

LV∗(x) = LV̂(x) + Lδ(x)

= V̂∗
x F(x) + V̂∗

xG1(x)μ(x̄) + 1

2
GT
2 V̂∗

xxG2 + Lδ(x)

= 1

1 + c

[
Hc(x, x̄) − Q(x) − μT(x̄)Rμ(x̄)

]
+ Lδ(x)

� − 1

1 + c

[
Q(x) + μT(x̄)Rμ(x̄)

]
+ Lδ(x).

Then, we get

Q(x) + μT(x̄)Rμ(x̄) ≤ −(1 + c)[LV∗(x) + Lδ(x)].
According to the Dynkin formula and condition

‖δ‖ � δM , for any T > 0 and V(xT ) > 0, one has

E

{∫ T

0

(
Q(x(t)) + μT(x̄(t))Rμ(x̄(t))

)
dt

}

� −(1 + c)E

{∫ T

0
[LV∗(x(t)) + Lδ(x(t))]dt

}

= (1 + c)E
{V∗(x0) − V∗(xT ) + δ(x0) − δ(xT )

}
≤ (1 + c)(V∗(x0) + 2δM )

= (1 + c)[J ∗(x0) + 2δM ].

Letting T → ∞, we have

J̄ (x0, μ) = E

{∫ ∞

0

(Q(x(t)) + μT(x̄(t))Rμ(x̄(t))
)
dt

}

≤ (1 + c)[J ∗(x0) + 2δM ].

Thus, we can conclude that there exist an upper
bound (1+c)[J ∗(x0)+2δM ] for the real performance
index. Furthermore, it can be demonstrated that the
upper bound of prespecified C-F will be close to the
ideal value when the NN estimation error δ(x) → 0. ��

Remark 7 Noticing that for deterministic continuous-
time systems, there have been many results reported
about ETOC based on the ADP method [33,41]. How-
ever, there has been no published paper on the topic for
nonlinear Itô-type stochastic systems. Our work is the
first attempt to fill the gap of this subject.

Remark 8 It is worth emphasizing that an upper bound
of the prespecified C-F can be obtained by the parame-
ter c. Besides, according to Theorem 3, when the esti-
mation error of NN is considered, the upper bound of
NN can also be analyzed viaADP.However, in [32,33],
the prespecified C-F for the ETOC contained an inte-
gral term, and the boundedness of the integral termwas
not analyzed.

Remark 9 In our work, the event-triggering scheme
(11) is different from those in [38,39], and the latter
ignored the effect of stochastic disturbances. In [38,39],
the main purpose is to achieve the numerical solution
of the event-triggered HJB equation by applying ADP
method. However, the event-triggered HJB equation is
really a kind of approximate of the given HJB equa-
tion. It is noteworthy that the event-triggering scheme
(11) can utilize the ADPmethod directly to get original
solution of HJB equation. Thus, the error of numerical
solution can be reduced.
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6 Simulation results

Example 1 In this example, a controlled Van der Pol
oscillator of system (1) is expressed as

dx(t) = A(x(t))dt+G1(x(t))u(x(t))dt

+ G2(x(t))dw(t), (35)

where

A(x) = [0.1x2 − x1 − 1

3
x2

(
1 − x21

)
− 0.1x21 x2]T,

G1(x) = [0 0.2x1]T, G2(x) = [0 x2]T.

The corresponding cost function is given in (2),
whereR = 1 andQ(x) = xT I x with an identitymatrix
I . The Lyapunov function candidate P(x) = 1

2 (x
2
1 +

x22 ) and the initial value x(t) = [0.5,−1]T. Let the
CNN activation function is ML(x) = [x21 , x22 , x1x2]T,
and the CNNweight vector ω = [ω1, ω2, ω3]T. Let the
parameter c of triggering scheme (18) as 0.05.

By means of MATLAB, the simulation figures are
shown in Figs. 1–4. Figure 1 shows the response of
the state x and x̄ , one can obtain that system (35)
is asymptotically stable in probability. Meanwhile, it
shows that the state x under the TTOC and the ETOC
has a similar effect, and ETOC reduces the comput-
ing load. Figure 2 shows that the ETOC μ(t) and the
TTOC u(x). It reflects that the frequency of control
updating of ETOC can be greatly reduced. The con-
vergence of the CNN weight ω is shown in Fig. 3,
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Fig. 1 The state response x(t) and x̄(t)

0 5 10 15 20 25 30

Time(s)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

V
al
ue

s

Fig. 2 The ETOC μ(t) and TTOC u(t)
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which demonstrates that the CNN weight converges
to [0.0467,−1.1023,−0.2016]T. Thus, the approxi-
mate value function is written as V̂(x) = MT

L (x)ω =
0.0467x21 − 1.1023x22 − 0.2016x1x2. Moreover, in
Fig. 3, the initial weights of the CNN are all set to
zero, which means that the implementation of the con-
trol strategy does not require the initial stabilizing con-
trol. Figure 4 shows the intersample times hk , and the
minimum hk is 0.02 s. Moreover, simulation results
about t ∈ [0, 30] incidents that only 36 state samples
applied to execute the ETOC approach, which takes
about 0.036% of the whole state samples. Thus, the
use of communication resources can be promoted and
the computational complexity is greatly decrease.

Example 2 Consider the power system with stochastic
disturbance as

dx = Axdt + B(x)u(x)dt + C(x)dw, (36)

where the system matrices as

A =
⎡
⎢⎣

− 1
Pt

Pk
Pt

0
0 − 1

Tt
1
Tt− 1

RgGt
0 − 1

Gt

⎤
⎥⎦ ,

B(x) =
⎡
⎢⎣

1
Pt
x1

1
Tt
x2

1
Gt

x3

⎤
⎥⎦ , C(x) =

⎡
⎣ 0

0
1
Gt

x3

⎤
⎦ .

where x = [
ΔPf ,ΔGp,ΔVg

]�, ΔPf represents
the incremental frequency deviation, ΔGp denotes
the incremental change in generator output, and ΔVg
denotes the incremental change in governor valve posi-
tion. By x1 denoting the ΔPf , x2 denoting the ΔGp,
and x3 denoting the ΔVg . Pt = 0.5, Rg = 0.1,
Tt = 0.6, Gt = 0.5, and Pk = 0.6 represent the plant
model time constant, the feedback regulation constant,
the turbine time constant, the governor time constant,
and the plant gain, respectively.

Remark 10 Most works on the power systems are
based on deterministic systems [38,47]. However, in
practical applications, stochastic perturbations will
have an impact on all aspects of the power systems,
such as the fluctuation of system frequency, node volt-
age, and generator speed. The existence of stochastic
perturbations destroys the stability and reduces the con-
trol performance of the systems. Therefore, the ETOC

problem of the power system with stochastic perturba-
tions is studied in this paper.

The cost function is given in (2), let Q(x) =
xT I x with an identity matrix I and R = 1. Select
the critic NN activation function vector is ML(x) =
[x21 , x1x2, x22 , x1x3, x2x3, x23 ]T. The Lyapunov func-
tion candidate P(x) = 1

2 (x
2
1 + x22 + x23 ) and the initial

condition x(t) = [1,−1, 0.5]T. Choosing the parame-
ter c of triggering scheme (18) as 0.06.

Simulation figures are shown in Figs. 5, 6, 7,
and 8. Figure 5 shows the response of the state x
and x̄ , one can find that the ETOC can guaran-
tee system (36) is asymptotically stable in probabil-
ity. Figure 6 shows the trajectories of ETOC μ(t)
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Fig. 5 The state response x(t) and x̄(t)
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Fig. 6 The response of ETOC μ(t) and TTOC u(x)
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Fig. 7 The trajectories of ω
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and TTOC u(t), which reveals that the frequency
of control updating of ETOC is greatly reduced. As
reflected in Fig. 7, the CNN weight converges to
[0.334,−0.3568, 0.4211,−0.3813, 0.4064, 0.407]T.
Thus, the approximate value function as V̂(x) =
MT

L (x)ω = 0.334x21 − 0.3568x1x2 + 0.4211x22 −
0.3813x1x3 + 0.4064x2x3 + 0.407x23 . As illustrated
in Fig. 8, the minimum interexecution times are 0.06
s. Moreover, simulation results about t ∈ [0, 10] inci-
dents that only 11 state samples applied to accomplish
the ETOC algorithm, which takes about 0.03% of the
whole state samples. In that sense, the ETOC used in
this paper can maintain the control performance while
effectively reducing the number of sampling and con-
trol tasks.

7 Conclusion

In this paper, we study the ETOC problem for nonlin-
ear Itô-type stochastic systems based on ADP method.
A new event-triggering scheme is proposed, which can
be used to design ETOC directly via the solution of
HJB equation. Furthermore, the stability of nonlinear
Itô-type stochastic system is analyzed, and the given
ETOC scheme can give an upper bound for predeter-
mined C-F. In particular, the ADP approach is firstly
applied to study nonlinear Itô-type stochastic systems
with ETOC, which can achieve the numerical solution
of the HJB equation.

There are some meaningful topics that can be inves-
tigated in the future. Since the practical systems are
inevitably impacted by time-delay, stochastic perturba-
tions, and unknown dynamics. Therefore, it is of great
significance to study the ETOC for stochastic systems
with time-delay and unknown dynamics. In addition, it
is also a very promising topic to study the ETOC for
nonlinear stochastic multi-agent systems.
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