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Abstract Nonlinear energy sink (NES) refers to a
typical passive vibration device connected to linear or
weakly nonlinear structures for vibration absorption
and mitigation. This study investigates the dynamics
of 1-dof and 2-dof NES with nonlinear damping and
combined stiffness connected to a linear oscillator. For
the system of 1-dof NES, a truncation damping and
failure frequency are revealed through bifurcation anal-
ysis using the complex variable averaging method. The
frequency detuning interval for the existence of the
strongly modulated response (SMR) is also reported.
For the system of 2-dof NES, it is reported in a similar
bifurcation analysis that the mass distribution between
NES affects the maximum value of saddle-node bifur-
cation. To obtain the periodic solution of the 2-dof
NES systemwith the consideration of frequency detun-
ing, the incremental harmonic balance method (IHB)
and Floquet theory are employed.The corresponding
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response regime is obtained by Poincare mapping, it
shows that the responses of the linear oscillator and
2-dof NES are not always consistent, and 2-dof NES
can generate extra SMR than 1-dof NES. Finally, the
vibration suppression effect of the proposed NES with
nonlinear damping, and combined stiffness is analyzed
and verified by the energy spectrum, and it also shows
that the 2-dof NES system demonstrates better perfor-
mance.

Keywords Nonlinear energy sink · Strongly modu-
lated response · Vibration suppression · Incremental
harmonic balance method · Energy spectrum

Nomenclature

c1 Viscous damping of the linear oscillator.
c2, c3 Nonlinear damping of 1-dof NES and 2-

dof NES.
F External harmonic force.
k1 Linear stiffness of the linear oscillator.
knl , kn2 Combined nonlinear stiffness of 1-dof

NES and 2-dof NES.
m1,m2,m3 Mass of linear oscillator, 1-dof NES and

2-dof NES.
x1, x2, x3 Displacement of the linear oscillator, 1-

dof NES and 2-dof NES.
η Mass distribution in 2-dof NES.
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1 Introduction

The suppression of unwanted vibration has attracted
significant attention in various engineering applications
for many years. Structural vibration suppression appli-
cations can be divided into active, semi-active, pas-
sive and hybrid control systems [1–4]. Passive vibra-
tion mitigation devices are popular vibration reduc-
tion approaches as they are convenient in practice. A
classical passive vibration device is a tuned vibration
absorber (TVA) proposed by Frahm [5]. TVA has been
widely proved to be simple and efficient to mitigate
unwanted vibrations [6,7]. However, it can only be
effective in a narrow frequency range. To effectively
dissipate the vibration energy within a wide range of
frequencies, Roberson introduced a nonlinear system
into TVA, which could be called a nonlinear vibration
absorber [8]. A typical nonlinear vibration absorber is
the nonlinear energy sink (NES), which is a relatively
small and spatially localized nonlinear attachment con-
nected to the primary linear or weakly nonlinear sys-
tem to play a passive energy absorption role [9,10].
It is generally considered that nonlinearity is harmful,
but most of the studies show that NES is more effec-
tive than linear absorbers in suppressing vibration [11–
13]. NES can passively absorb and dissipate vibrational
energy in a wide range of frequencies [14]. NES have
received enough attention and research, such as piece-
wise stiffness, bi-stable NES, and internal rotational
NES [15–17]. The effectiveness of NES in vibration
absorption has been verified by many real engineering
systems, such as beams, buildings, and aeroelastic sys-
tem [18–20]. Due to the complexity of real engineering
system equations, many scholars simplified the linear
main structure into a simple oscillator for theoretical
research of discrete model [21–23]. In this paper, the
discrete model will be applied to conduct related the-
oretical research on the system with NES. Therefore,
the present study will be carried out on corresponding
simplified oscillators.

Gendelman et al. [24–26] investigated the energy
transfer when the main structure of NES was sub-
jected to harmonic excitation, it was found that SMR
of the system appeared near the resonance frequency,
and SMR can be explained as the jumping of the slow
invariant manifold in different stable branches. A fur-
ther study on the conditions of SMR generation and the
vibration suppression effect of NES have been carried
out. It is revealed that the generation of SMR requires

the system to contain nonlinearity and the ratio of NES
to linear main structure is small enough; SMR has a
better effect in suppressing vibration than steady-state
periodic response [26]. SMR has received extensive
attention and researched in Refs. [27–29]. It has spe-
cial advantages in vibration suppression, which also
provides a new idea and reference index for optimizing
the design of NES [30,31].

Literature [32] considers the influence of frequency
detuning on the vibration suppression of the coupled
NES system. It is indicated that the value of the fre-
quency detuning coefficient is related to the existence
of SMR; however, no specific expression is given.
Some scholars have found that the stiffness of nonlin-
ear vibration absorbers is not purely cubic; they believe
that the combined stiffness of some nonlinear vibra-
tion absorbers is more realistic [33–35]. However, their
research is not thorough enough.

Despite the fruitful success that has been achieved
in previous studies on NES, most studies only con-
sider the stiffness nonlinearity of NES and the damping
nonlinearity is received less attention. Starosvetsky and
Gendelman studied the nonlinear dampingNES system
with piecewise quadratic characteristics and drawn that
nonlinear damping can eliminate the unwanted peri-
odic response near the main resonance frequency of
the system [36]. Andersen revealed that a system cou-
pled with geometrically nonlinear damping NES could
lead to dynamical instability [37]. Some studies also
considered the effects of energy exchange and ampli-
tude decay caused by nonlinear damping [38,39]. In
general, most NES studies have ignored the effect of
nonlinear damping. However, nonlinear damping plays
an important role in suppressing the vibration of the
system through the research of these scholars. In the
research of nonlinear damping NES, most of them con-
sidered only the case of 1-dof NES to suppress system
vibration.

Therefore, in light of the research achievements and
existing drawbacks of previous scholars. In order to be
more in linewith engineering reality and considermore
comprehensive, this study focuses on the analysis of the
dynamic behavior of the system with nonlinear damp-
ing and combined stiffness NES considering frequency
detuning under harmonic excitation. By analyzing the
bifurcation and SMR of the system with NESs, and
comparing the energy of different structural systems,
the effects of the system frequency detuning, nonlin-
ear damping and combined stiffness are shown. The
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Fig. 1 Model diagram of the linear oscillator with 1-dof NES

effect of 2-dof NES on the system response regimes
and vibration suppression is also paid special atten-
tion. The structure of the study is as follows: Section 2
introduces the dynamics of the linear oscillator cou-
pled with 1-dof NES, which mainly analyzes its bifur-
cation and SMR, while considering the influence of
frequency detuning. Section 3 investigates the bifur-
cation of the linear oscillator with 2-dof NES. First,
the same method as 1-dof NES is applied for response
analysis, and then, the response of the overall model
is further analyzed by IHB. In addition, the numerical
simulation is also utilized to study the relevant modula-
tion response. In Sect. 4, the applications of 1-dof and
2-dof NES systems in vibration suppression are intro-
duced. The main concluding remarks of this paper are
summarized in Sect. 5.

2 Dynamic analysis of a linear oscillator with a
1-dof NES under harmonic forcing

2.1 Research on system mathematical model

The systemmodel is a linear oscillator with 1-dof NES
as depicted in Fig. 1. Where knl is composed of lin-
ear stiffness k21 and nonlinear stiffness k23, c2 repre-
sents the nonlinear damping of the NES [40], letting
F = F0cos(wt). The simplified system equation is
expressed as

ẍ1 + x1 + εk221(x1 − x2) + εk223(x1 − x2)
3

+ ελ(ẋ1 − ẋ2)
3 = εA cos(wt)

ẍ2 + k221(x2 − x1) + k223(x2 − x1)
3

+ λ(ẋ2 − ẋ1)
3 = 0

(1)

Two assumptions in Eq. (1) should be emphasized here.
Firstly, it is assumed in this system that 0 < ε � 1,
which means the NES is lightweight compared to the
linear oscillator. Secondly, as a matter of 1:1 resonance
condition, the frequency of the harmonic excitation is
assumed to be at the near neighborhood of the eigenfre-
quency of the linear oscillator in the order of ε1, setting
w = 1+ εδ, where δ stands for the frequency detuning
parameter [41], u and v represent the displacement of
the center of the system mass and the relative displace-
ment between the linear oscillator and NES, as shown
in Eq. (2). By substituting Eqs. (2) into (1), we can
derive Eq. (3).

u = x1 + εx2, v = x1 − x2 (2)

ü + u + εv

1 + ε
= εA cos(1 + εδ)t

v̈ + (1 + ε)k221v + (1 + ε)k223v
3 + λ(1 + ε)v̇3

+ u + εv

1 + ε
= εA cos(1 + εδ)t (3)

This study uses the complex variable averaging
method to approximate the system dynamics, by mak-
ing the following complex variable changes

ϕ1e
i(1+εδ)t = u̇ + iu, ϕ2e

i(1+εδ)t = v̇ + iv (4)

we could obtain the slow flow equation of the research
system as

ϕ̇1 + iεδϕ1 + iε

2(1 + ε)
(ϕ1 − ϕ2) = εA

2

ϕ̇2 + iεδϕ2 + i

2(1 + ε)
(ϕ2 − ϕ1) + ϕ2

8
(3|ϕ2|2λ

− 4ik221 − 3ik223|ϕ20|2i)(1 + ε) = εA

2

(5)

2.2 Bifurcation analysis

By substituting fixed point ϕ10 and ϕ20 into Eq. (5), we
can derive

iεδϕ10 + iε

2(1 + ε)
(ϕ10 − ϕ20) = εA

2

iεδϕ20 + i

2(1 + ε)
(ϕ20 − ϕ10) + ϕ20

8
(3|ϕ20|2λ

− 4ik221 − 3ik223|ϕ20|2)(1 + ε) = εA

2

(6)
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Eq. (6) could be rewritten as

9(λ2 + k2223)

16
|ϕ20|6 + 3

2
k223(k221 − 2δM)|ϕ20|4

+ (2δM − k221)
2|ϕ20|2 = A2M2

(7)

with M = (2εδ + 1)/(2εδ + 2δ + 1), Eq. (7) can be
expressed as

α0 + α1Z + α2Z
2 + α3Z

3 = 0 (8)

where α1 = ((2δM − k221)/M)2, α2 = (3k223(k221 −
2δM))/(2M2), α3 = (9(λ2 + k2223))/(16M

2), α0 =
−A2, Z = |ϕ20|2. Taking the derivative of Eq. (8) with
respect to Z leads to

α1 + 2α2Z + 3α3Z
2 = 0 (9)

eliminating Z from Eqs. (8) and (9), one has

α0 = − α1(− α2

3α3
±

√
α2
2 − 3α1α3

3α3
) − α2

(
− α2

3α3

±
√

α2
2 − 3α1α3

3α3

⎞
⎠

2

− α3(− α2

3α3
±

√
α2
2 − 3α1α3

3α3
)

3

(10)

Equation (10) gives an equation of the form A =
f (λ, δ), which can represent the saddle-node bifurca-
tion boundary curve on the [λ, A] plane; the param-
eters are selected as ε = 0.1, k1 = 1/3, k3 = 4/3
[14,25,35], as shown in Fig. 2.

In Fig. 2, the shape of the saddle-node bifurcation
boundary curve is approximately triangular and the
[λ, A] plane is divided into two parts to determine the
number of the real periodic solutions. Spot checks are
performed on different areas in Fig. 2. According to
Fig. 2, for λ = 0.3, A = 1.3 falls within the region
of the three real periodic solutions. However, for the
parameters outside this area region, for example, choos-
ing λ = 0.3, A = 1.8 or λ = 0.3, A = 0.5, only one
real solution is defined.

Then, we study the influence of the frequency detun-
ing coefficient on the saddle-node bifurcation; the dia-

Fig. 2 Saddle-node bifurcation for δ = 3

Fig. 3 Saddle-node bifurcation diagram with δ change

gram for different δ is described in Fig. 3. It is obvi-
ous from Fig. 3, for δ > 0, with the increase of δ

the maximum value of A gradually increases, when
−3.35 ≤ δ < 0, with the decreases of δ the maxi-
mum value of A progressively decreases. For δ = 0 or
δ < −3.35, the saddle-node bifurcation does not exist.

All saddle-node bifurcation shapes in the above
study are triangular-like. The right vertices of each
saddle-node bifurcation curve are on the same line
damping line, which is about λ = 0.77. After this
damping is exceeded, the saddle-node bifurcation
boundary line vanished and the number of the real peri-
odic solution is unique. We call this value truncation
damping and record it as λt ; its value is as follows:

λ t =
√
3

3
k223 (11)

From Eq. (11), it can be noted that λt is propor-
tional to k223, we can adjust the size of λt by selecting
different k223 and adjust the range of the saddle-node
bifurcation curve area. In this study, we use the Hopf
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bifurcation to determine the stability of the periodic
solution. Considering the perturbation motion of the
dynamic system near the fixed point, letting

ϕ1 = ϕ10 + o1, ϕ2 = ϕ20 + o2 (12)

substituting into the slow flow Eq. (5), we have

ȯ1 = −iεδo1 − iε

2(1 + ε)
(o1 − o2)

ȯ∗
1 = iεδo∗

1 + iε

2(1 + ε)
(o∗

1 − o∗
2)

ȯ2 = −iεδo2 − i

2(1 + ε)
(o2 − o1) − 1 + ε

8
(3(2o2|ϕ20|2

+ o∗
2ϕ

2
20)λ − 4ik221o2 − 3ik223(2o2|ϕ20|2 + o∗

2ϕ
2
20))

ȯ∗
2 = iεδo∗

2 + i

2(1 + ε)
(o∗

2 − o∗
1) − 1 + ε

8
(3(2o∗

2|ϕ20|2

+ o2ϕ
∗
20

2
)λ + 4ik221o

∗
2 + 3ik223(2o

∗
2|ϕ20|2 + o2ϕ

∗
20

2
))

(13)

The characteristic polynomial of Eq. (13) can be
expressed as

μ4 + γ1μ
3 + γ2μ

2 + γ3μ + γ4 = 0 (14)

where μ is the eigenvalues, and the coefficient γi (i =
1, . . . , 4) are given as

γ1 = 3λ(1 + ε)

2
Z

γ2 = εδ − k221
2

+ εk2221
2

+ k2221
4

+ ε2k2221
4

+2ε2δ2

+ 9(1 + ε)2(k2223 + λ2)

16
Z2 − k221εδ − 9λ2Z2

64

+ 3k223(k221 + 2εk221 − 2εδ + ε2k221 − 2ε2δ − 1)

4
Z

− ε2δk221 − 9k2223εZ
2

32
− 9ελ2Z2

32
− 9k2223Z

2

64

− 9ε2k2223Z
2

64
− 9ε2λ2Z2

64
+ 1

4

γ3 = 3ελ(4ε2δ2 + 4εδ2 + 4εδ + 1)

8
Z

γ4 = ε2(k221 − 2δ + 2k221δ − 4δ2ε + 2k221δε)
2
/16

+ 27Z2ε2(k2223 + λ2)(2δ + 2δε + 1)2/256

+ 3k223Zε2(2δ + 2δε + 1)(k221 − 2δ + 2k221δ

− 4δ2ε + 2k221δε)/16

(15)

where

Z = |ϕ20|2, Z2 = ϕ2
20ϕ

∗
20

2 (16)

When the Hopf bifurcation occurs, the fixed point
passes through the positive andnegative imaginary axes
of the complex plane; this implies

μ = ±iΩ (17)

By substituting Eqs. (17) into (14), we can yield

Ω4 − γ2Ω
2 + γ4 = 0, Ω(γ1Ω

2 − γ3) = 0 (18)

Then, eliminatingΩ in the above equation, we have

ν1Z
2 + ν2Z + ν3 = 0 (19)

the coefficient νi (i = 1, 2, 3) are shown as

ν1 = −243ελ2(ε + 1)(k2223 + λ2)

1024

ν2 = −27k223ελ2(1 + ε)(k221 + k221ε − 4εδ − 1)

64

ν3 = −9ελ2(k221 + k221ε − 4εδ − 1)2

64
(20)

Furthermore, solving Eq. (19) to get

Z1,2 =
−ν2 ±

√
ν22 − 4ν1ν3

2ν1
(21)

From Eq. (8), the boundary of the stable region of
the Hopf bifurcation is given by

α0 + α1Zi + α2Zi
2 + α3Zi

3 = 0 (22)

The saddle-node bifurcation and Hopf bifurcation
of the system are presented in Fig. 4. The solid line
represents the Hopf bifurcation and the dashed line
represents the saddle-node bifurcation; it can also be
observed that they coexist in certain regions.

The amplitude response and frequency response of
the system are shown in Figs. 5 and 6; meanwhile, the
stability of the solution of random check parameters is
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Fig. 4 Saddle-node bifurcation and Hopf bifurcation for δ =
3, ε = 0.1, k221 = 1/3, k223 = 4/3

Fig. 5 Amplitude response for δ = 3, ε = 0.1, k221 =
1/3, k223 = 4/3, λ = 0.3, N20 = |ϕ20|, solid line: stable branch,
asterisk: unstable branch

also analyzed. According to Fig. 5, with the increase
of A, the fixed point is first in a stable state, then turn
to an unstable state, and finally back to a stable state.
According to Fig. 6, the difference between Figs. 6 and
5 is that it contains a peak of the stable state in the unsta-
ble state. The peak value makes NES lose its effect on
the vibration suppression of the system; therefore, it
should be avoided as much as possible in the practi-
cal application of NES. The frequency that causes the
failure of NES vibration reduction is called the failure
frequency, and the interval to which it belongs is called
the failure interval where it is δ ∈ [−0.75,−0.49] in
Fig. 6.

Fig. 6 Frequency response for A = 1, ε = 0.1, k221 =
1/3, k223 = 4/3, λ = 0.3, N20 = |ϕ20|, solid line: stable branch,
asterisk: unstable branch

2.3 SMR analysis for the system with 1-dof NES

Based on the research results of Starosvetsky and
Gendelman, the combination of essential nonlinear-
ity and strong mass asymmetry brings about a possi-
ble response mechanism called SMR [24–26]. SMR is
different from the steady-state and weakly modulated
response under the condition of 1:1 resonance, and has
a better performance in suppressing vibration. The goal
of this section is to determine the range of frequency
detuning coefficients where SMR exists. Equation (5)
can be reduced to a function of ϕ2 as follows:

ϕ̈2 + d

dt
[ i(4εδ + 1)

2
ϕ2 + 1+ε

8
(3ϕ2|ϕ2|2λ − 4k221ϕ2i

− 3k223ϕ2|ϕ2|2i)] + ϕ2[ iε(2δ + 2εδ + 1)

16
(3|ϕ2|2λ

− 4k221i − 3k223|ϕ2|2i) − εδ(2εδ + 1)

2
] − iεA

4
(1

+ 2εδ) = 0

(23)

Since this study assumes that ε(0 < ε � 1) is
sufficiently small, the multi-scale method can be used
to solve Eq. (23). Defining

ϕ2 = ϕ2(t0, t1, · · ·), tm = εmt,m = 0, 1, · · ·
D = D0 + εD1 + · · · = ∂

∂t0
+ ε

∂

∂t1
+ · · · = d

dt
(24)
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By substituting Eqs. (24) into (23) and separating
the ε0, ε1 order scale, we can get

ε0 : D2
0ϕ2 + D0(

3ϕ2|ϕ2|2λ − 4k221ϕ2i − 3k223ϕ2|ϕ2|2i
8

+ iϕ2

2
) = 0

ε1 : D0(2δϕ2i + 3ϕ2|ϕ2|2λ − 4k221ϕ2i − 3k223|ϕ2|2i
8

)

+ D1(
i

2
ϕ2 + 3ϕ2|ϕ2|2λ − 4k221ϕ2i − 3k223ϕ2|ϕ2|2i

8
)

+ ϕ2(2δ + 1)i

16
(3|ϕ2|2λ − 4k221i − 3k223|ϕ2|2i)

− δ

2
ϕ2 − i A

4
+ 2D0D1ϕ2 = 0

(25)

Furthermore, by integrating the equation of ε0 order
respect to t0, we could obtain

D0ϕ2 + 3ϕ2|ϕ2|2λ − 4k221ϕ2i − 3k223ϕ2|ϕ2|2i
8

+ iϕ2

2
= C(t1, · · ·)

(26)

Since the derivative at the fixed point is zero, Eq.
(25) only considers two independent variables t0, t1.
Then, Eq. (26) is reformulated as

iϕ2

2
+3ϕ2|ϕ2|2λ − 4k221ϕ2i − 3k223ϕ2|ϕ2|2i

8
= C(t1)

(27)

Hence, ϕ2 is only a function of t1, setting

ϕ2 = N (t1)e
iθ(t1) (28)

substituting Eqs. (28) into (27), one has

(
i N

2
+ 3N 3λ − 4k221Ni − 3k223N 3i

8

)
eiθ = C

(29)

Taking the magnitude of Eq. (29), letting Z = N 2,
Eq. (29) could be rewritten as

9

16
(λ2 + k2223)Z

3 − 3

2
k223(1 − k221)Z

2

+ (1 − k221)
2Z = 4|C |2

(30)

Then, taking the derivative of Z on both sides of Eq.
(30), one can derive

27

16
(λ2 + k2223)Z

2 − 3k223(1 − k221)Z

+ (1 − k221)
2 = 0

(31)

The roots of Eq. (31) are as follows:

Z1,2 =
4(2k223 ∓

√
k2223 − 3λ2)(1 − k221)

9(λ2 + k2223)

⇒ N1,2 =

√√√√4(2k223 ∓
√
k2223 − 3λ2)(1 − k221)

9(λ2 + k2223)

(32)

At the jumping point, Eq. (30) can be described as

9

16
(λ2 + k2223)Z1,2

3 − 3

2
k223(1 − k221)Z1,2

2

+ (1 − k221)
2Z1,2 = 9

16
(λ2 + k2223)Zu,d

3

− 3

2
k223(1 − k221)Zu,d

2 + (1 − k221)
2Zu,d

(33)

The solutions of Eq. (33) are given by

Zu,d =
8(k223 ±

√
k2223 − 3λ2)(1 − k221)

9(λ2 + k2223)

⇒ Nu,d =

√√√√8(k223 ±
√
k2223 − 3λ2)(1 − k221)

9(λ2 + k2223)

(34)

Equation (30) defines the slow invariant manifold
(SIM) of the system on the (N , 4|C |2) plane shown
in Fig. 7. The dashed line with an arrow indicates the
trajectory for the jumps from one stable branch of the
SIM to another. Nu and Nd are the jumping target points
on the SIM with the same value of C as N1 and N2.
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Fig. 7 SIM projection for λ = 0.3, k221 = 1/3, k223 = 4/3,
solid line: stable branch, dashed line: unstable branch

One of the trajectories of the system is to run from the
left stable branch to N1, then jump to Nu and continue
to move on the right stable branch. Similarly, the other
starts at point N2 on the right stable branch, then jumps
to Nd and continues at the left stable branch. The jump
between different stable branches provides conditions
for the existence of SMR and is also themost important
mechanism to produce SMR.

Equation (25) continued to be analyzed at the ε1

order, taking t0 → +∞, we have

D1

(
i

2
ϕ2 + 1

8
(3ϕ2|ϕ2|2λ − 3k223ϕ2|ϕ2|2i

−4k221ϕ2i)) − δ

2
ϕ2 + ϕ2(2δ + 1)i

16
(3|ϕ2|2λ

− 4k221i − 3k223|ϕ2|2i) − i A

4
= 0

(35)

Letting

M = i A

4
− ϕ2(2δ + 1)i

16
(3|ϕ2|2λ − 4k221i

− 3k223|ϕ2|2i) + δ

2
ϕ2

(36)

Equation (35) can be simplified as

∂ϕ2

∂t1

(
1 − k221

2
i + 3(λ − k223i)

4
|ϕ2|2

)

+ 3(λ − k223i)

8
ϕ2

2 ∂ϕ*
2

∂t1
= M

(37)

Taking the complex conjugate and making substitu-
tion to Eq. (37), it can be written as

∂ϕ2

∂t1
= {M(−2(1 − k221)i + 3(λ + k223i)|ϕ2|2)

− 3

2
(λ − k223i)ϕ

2
2M

∗}/{[(1 − k221)
2

− 3|ϕ2|2(1 − k221)k223] + 27

16
(λ2 + k2223)|ϕ2|4}

(38)

By substituting Eqs. (28) into (37) and Eq. (38), we
can derive

∂N

∂t1
+ i N

∂θ

∂t1
= {Me−iθ (−2(1 − k221)i + 3(λ

+ k223i)N
2)

− 3

2
(λ − k223i)N

2eiθ M∗}/{[(1 − k221)
2

− 3N 2(1 − k221)k223] + 27

16
(λ2 + k2223)N

4}

Me−iθ = −3(2δ + 1)

16
(λi + k223)N

3 + i A

4
e−iθ

− [k221(2δ + 1) − 2δ]
4

N

M∗eiθ = 3(2δ + 1)

16
(λi − k223)N

3 − i A

4
eiθ

− [k221(2δ + 1) − 2δ]
4

N

(39)

Furthermore, Eq. (39) can be simplified as

G(N )
∂N

∂t1
=−3λN 3

4
+ A(1 − k221) cos θ

+ 3AN 2(λ sin θ − k223 cos θ)

4

G(N )
∂θ

∂t1
= − 27(2δ + 1)(λ2 + k2223)N

4

16

+ 9AN (λ cos θ + k223 sin θ)

4

− A(1 − k221) sin θ

N

+ [(2δ + 1)(3k223 − 12k221k223) + 18k223δ]N 2

4
+ [k221(2δ + 1) − 2δ](1 − k221)

(40)
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where

G(N ) =2[(1 − k221)
2 − 3N 2(1 − k221)k223

+ 27

16
(λ2 + k2223)N

4] (41)

WhenG(N ) = 0, the fold lines occur. Thus, in order
to avoid singularities, Eq. (40) can be rescaled as

N ′ = −3λN 3

4
+ 3AN 2(λ sin θ − k223 cos θ)

4
+ A(1 − k221 cos θ)

θ ′ = −27(2δ + 1)(λ2 + k2223)N
4

16
+ [k221(2δ + 1)

− 2δ](1 − k221) + 9AN (λ cos θ + k223 sin θ)

4

+ [(2δ + 1)(3k223 − 12k221k223) + 18k223δ]N 2

4

− A(1 − k221) sin θ

N
(42)

The phase portraits of the system, as seen in Fig. 8,
can be described by numerical integration of Eq. (42).
The phase portraits show stable trajectories on the SIM.
Arrowsdenote the direction of the trajectorieswith time
increase. The two horizontal lines at N1 and N2 in the
phase trajectory represent the twofold lines in the SIM.
θ1 and θ2 denote the initial phase angle; the value can
be given by solving θ ′ = 0.

Each case has its own characteristics in Fig. 8.
According to Fig. 8b, the lower phase trajectory starts
from the phase angle interval [θ1, θ2] on the N1 hori-
zontal line, thenmoves downwards on the left and right
sides, and finally can return to the N1 horizontal line
and jump to the upper branch to continue the move-
ment. There are some phase trajectories near θ1 that
cannot return to the horizontal line in Fig. 8a; this phe-
nomenon also occurs near θ2 in Fig. 8c. The reason
is that attractors appear in the stable branch of the sys-
tem, and the partial phase trajectories converging to the
attractor instead of the horizontal line. From inspection
of Fig. 8d, the phase trajectory starting from the phase
angle interval [θ1, θ2] on the horizontal line of N1 only
moves downward to the left; it finally can return to the
horizontal line of N1 and jump to the upper branch. This
phenomenonmeans that themovement of the phase tra-

Fig. 8 Phase portraits of the SIM with δ varying for λ =
0.3, A = 1, k221 = 1/3, k223 = 4/3
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jectory can move unilaterally and not only move both
sides simultaneously

All phase trajectories in the lower part of Fig. 8 start
moving downward from the initial interval [θ1, θ2], and
mostly arrive at N1. Then, the phase trajectories jump to
the upper branch of the phase portraits, along with the
upper trajectory move to the N2. Finally, the phase tra-
jectories jump to the initial interval [θ1, θ2] of the N1. In
this process, the amplitude of the system is constantly
changing, which provides the possibility for the emer-
gence of SMR. The phase angle interval [θ1, θ2] is also
called the jump interval. On the one hand, the jump pro-
cess between different stable branches is unstable and
complicated. On the other hand, a complete jump pro-
cess starts and endswithin the jump interval. Therefore,
to simplify the jumping process, a 1-D mapping from
the defined jump interval to itself can be used. In this
process, the frequency detuning interval for generating
SMR is determined.

From Eq. (29), the phase angle of the fixed point can
be expressed as

argC = θ + tan−1
(
4 − 4k221 − 3k223Z

3λZ

)
(43)

According to the SIM, the C values at N1 and Nu ,
N2 and Nd are, respectively, equal, and the following
relationship can be obtained

θu,d = θ1,2 + tan−1
(
4 − 4k221 − 3k223Z1,2

3λZ1,2

)

− tan−1
(
4 − 4k221 − 3k223Zu,d

3λZu,d

) (44)

The 1-D mapping for various values of δ is illus-
trated in Fig. 9. It should be noted from Fig. 9 that
the 1-D mapping trajectory of a jumping process in
the jumping interval is represented by a straight line
with an arrow and the interval in which SMR exists
is δ ∈ [−10.04, 6.90] by varying δ value until the 1-D
mappingdisappears.Wechange the value of A to obtain
the δ interval where SMR exists, as demonstrated in
Table 1.

According to Table 1, the start coordinates of the δ

intervalwhere SMRexists decreasewith the increase of
A, and the approximate linear trend is y = −9.8754x−
0.8308. The end coordinates increase with the increase
of A; the approximate linear trend is y = 4.972x +
1.9112. The length of the interval increases with the

Fig. 9 1-D mapping with δ varying from −10.04 to 6.90 for
λ = 0.3, A = 1, k221 = 1/3, k223 = 4/3

Table 1 The δ interval where SMR exists with varying A

A δ interval where SMR exists

0.5 δ ∈ [−6.23, 4.58]
2 δ ∈ [−20.37, 11.96]
3 δ ∈ [−30.86, 16.33]
5 δ ∈ [−50.43, 26.86]
7 δ ∈ [−69.75, 36.82]

Fig. 10 System model of coupled with 2-dof NES

increase of A, and the approximate linear trend is
y = 14.847x + 2.742. It is worth mentioning that the
existence interval of SMR obtained by 1-D mapping is
only a necessary condition. Whether the specific SMR
exists needs to be determined in combination with the
dynamic response.
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3 Dynamic analysis of a linear oscillator with a
2-dof NES under harmonic forcing

3.1 Description of considered system mathematical
model

The system model considered in this section is a linear
oscillator with 2-dof NES as shown in Fig. 10. The
relationship among the mass of oscillators could be
denoted as

m2

m1
= εη,

m3

m1
= ε(1 − η) (45)

Carrying out a similar transformation as in the second
section, the dimensionless form equation of the model
considered in this section can be expressed as

ẍ1 + x1 + εk221(x1 − x2) + εk223(x1 − x2)
3

+ ελ1(ẋ1 − ẋ2)
3 = εA cos(wt)

ηẍ2 + k221(x2 − x1) + k223(x2 − x1)
3 + λ1(ẋ2 − ẋ1)

3

+ k331(x2 − x3) + k333(x2 − x3)
3

+ λ2(ẋ2 − ẋ3)
3 = 0

(1 − η)ẍ3 + k331(x3 − x2) + k333(x3 − x2)
3

+ λ2(ẋ3 − ẋ2)
3 = 0

(46)

3.2 Analysis without considering frequency detuning

Letw = 1 and ẋi +i xi = ψi ei t , Eq. (46) can bewritten
as

ψ̇1 − εk221ψu

2
+ 3ε|ψu |2ψu(λ1 − k223i)

8
= εA

2

ψ̇u + 3|ψu |2ψu(1 + εη)(λ1 − k223i)

8η

− ψ1 − ψu

2
i − (1 + εη)k221ψu

2η
i + k331ψv

2η
i

− 3|ψv|2ψv(λ2 − k333i)

8η
= εA

2

ψ̇v + ψv

2
i − 3|ψu |2ψu(λ1 − k223i)

8η
+ k221ψu

2η
i

− k331ψv

2η(1 − η)
i + 3|ψv|2ψv(λ2 − k333i)

8η(1 − η)
= 0

(47)

where ψu = ψ1 − ψ2, ψv = ψ2 − ψ3. By substituting
the fixed point, Eq. (47) could be rewritten as

− k221ψui + 3|ψu |2ψu(λ1 − k223i)

4
= A

iηψv − k331ψv

1 − η
i + 3|ψv|2ψv(λ2 − k333i)

4(1 − η)
= A

ψ1i − ψui − (1 − η)ψvi = A

(48)

The first equation of Eq. (48) is the same as the
1-dof NES bifurcation equation when δ = 0, which
the saddle-node bifurcation does not exist according
to the previous analysis. Analyzing the third equation
of Eq. (48), we should note that the value of ψ1 cor-
responds to the value of ψu and ψv . Therefore, the
number of fixed points in the system is determined by
the second equation of Eq. (48). Further simplifying
the second equation of Eq. (48), one has

9(k2333 + λ22)Z
3

16(1 − η)2
+ 3k333(η2 − η + k331)Z2

2(1 − η)2

+ (η2 + 2η2k331 − 2ηk331 + k2331
(1 − η)2

)Z = A2

(49)

where Z = |ψv|2 , the Cardano discriminant is used to
determine the number of roots of Eq.(49), which can
be described as

Δ = (
q

2
)
2 + (

p

3
)
3

q = 128k333(k2333 + 9λ22)(η
2 − η + k331)

3

729(k2333 + λ22)
3

+ 16A2(η − 1)2

9(k2333 + λ22)
2

p = −16(k2333 − 3λ22)(η
2 − η + k331)

2

27(k2333 + λ22)
2

(50)

The number of roots of Eq. (49) can be obtained
from the discriminant: when Δ < 0, the equation has
three unequal real roots. When Δ > 0, the equation
has three roots, one of which is a real root and two are
conjugate imaginary roots. According to the analysis of
the discriminant, the saddle-node bifurcation boundary
curve appears when Δ = 0. The saddle-node bifurca-
tion with different values of η is depicted in Fig. 11.
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Fig. 11 The saddle-node bifurcation with different values of η

in the [λ2, A] plane

The systemwith 2-dof NES selects parameters in Refs.
[14,25,35].

From inspection of Fig. 11, the saddle-node bifur-
cation exists in the system with 2-dof NES, which is
different from the 1-dof NES system. The 1-dof and 2-
dof NES saddle-node bifurcations are similar in shape,
and both of them have truncation damping. The 2-dof
NES truncation damping λt2 can be expressed as

λt2 =
√
3

3
k333 (51)

In Fig. 11, for η < 0.6, the maximum value of A
increases with the increase of η, and A reaches the
maximum value when η = 0.6. For η > 0.6, the max-
imum value of A decreases as η increases. Analyzing
the stability of the fixed point and performing perturba-
tion motion of the dynamic system near the fixed point,
letting

ψ1 = ψ10 + Δ1, ψu = ψu0 + Δu, ψv = ψv0 + Δv

(52)

and substituting Eqs. (52) into (47), we have

Δ̇1 = εk221Δu

2
i − 3ε

8
(2Δu |ψu0|2 + Δ∗

uψ
2
u0)(λ1 − k223i)

Δ̇∗
1 = −εk221Δ∗

u

2
i − 3ε

8
(2Δ∗

u |ψu0|2 + Δuψ
∗
u0

2
)(λ1 + k223i)

Δ̇u = (Δ1 − Δu)

2
i − (1 + aε)k221Δu

2a
i − k331Δv

2a
i

Fig. 12 The saddle-node and Hopf bifurcation of 2-dof NES,
solid line: saddle-node bifurcation, dot line: Hopf bifurcation

− 3(1 + aε)

8a
(2Δu |ψu0|2 + Δ∗

uψ
2
u0)(λ1 − k223i)

+ 3(λ2 − k333i)

8a
(2Δv |ψv0|2 + Δ∗

vψ
2
v0)

Δ̇∗
u = − (Δ∗

1 − Δ∗
u)

2
i + (1 + aε)k221Δ∗

u

2a
i + k331Δ∗

v

2a
i

− 3(1 + aε)

8a
(2Δ∗

u |ψu0|2 + Δuψ
∗
u0

2
)(λ1 + k223i)

+ 3(λ2 + k333i)

8a
(2Δ∗

v |ψv0|2 + Δvψ
∗
v0

2
)

Δ̇v = −Δv

2
i − k221Δu

2a
i + k331Δv

2a(1 − a)
i + 3

8a
(2Δu |ψu0|2

+ Δ∗
uψ

2
u0)(λ1 − k223i) − 3(λ2 − k333i)

8a(1 − a)
(2Δv |ψv0|2

+ Δ∗
vψ

2
v0)

Δ̇∗
v = Δ∗

v

2
i + k221Δ∗

u

2a
i − k331Δ∗

v

2a(1 − a)
i + 3

8a
(2Δ∗

u |ψu0|2

+ Δuψ
∗
u0

2
)(λ1 + k223i) − 3(λ2 + k333i)

8a(1 − a)
(2Δ∗

v |ψv0|2

+ Δvψ
∗
v0

2
) (53)

The characteristic polynomial of Eq. (53) can be
written as

μ6+γ1μ
5+γ2μ

4+γ3μ
3+γ4μ

2+γ5μ+γ6 = 0 (54)

whereμ is the eigenvalues, and γi (i = 1, 2, . . . , 6) are
the calculation coefficients.

In Fig. 12,Ws andWu are applied to denote the sta-
ble region and the unstable region. There are three parts
of the unstable region in Fig. 12, which are located in
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Fig. 13 Amplitude response for η = 0.6, ε = 0.1, λ1 =
0.3, k221 = 0.133, k223 = 1.333, k331 = 0.133, k333 = 1.333,
Nv0 = |ψv0|

the upper part of the figure, the saddle-node bifurca-
tion, and the upper part of the saddle-node bifurcation.
Therefore, the three different real roots of the saddle-
node bifurcation are almost unstable. By comparing
with theHopf bifurcation of 1-dofNES, theHopf bifur-
cation of 2-dof NES has no boundary.

In this section, we choose two values of λ2, one
of which is less than λt2 and the other is greater than
λt2. The amplitude response of the system is shown in
Fig. 13.According toFig. 13, the number offixedpoints
is different with different λ2. When A is greater than a
certain value and continues to increase, the system will
be in an unstable state.

3.3 Application of incremental harmonic balance
method for response analysis

In the previous section, the analytical method was car-
ried out to analyze the dynamic characteristics of the
system at w = 1. This section will study the dynamic
characteristics of the system when the frequency of
excitation changes. Since IHB is simple and effective
in solving such problems, IHB is applied to analyze the
dynamic characteristics of the system when the excita-
tion frequency changes in this section.

Letting τ = wt , Eq. (46) can be rewritten as

w2M̄Ẍ + w3C̄NẊ + (K̄ + K̄N)X = F̄ cos τ (55)

where

X =
⎡
⎣
x1
x2
x3

⎤
⎦ , M̄ =

⎡
⎣

1
ε

η

1 − η

⎤
⎦ , F̄ =

⎡
⎣
A
0
0

⎤
⎦ ,

K̄ =
⎡
⎣

1
ε

+ k221 − k221 0
−k221 k221 + k331 − k331
0 − k331 k331

⎤
⎦

L1 = x1 − x2, L2 = x2 − x3,

C̄ N =
⎡
⎣

λ1 L̇2
1 − λ1 L̇2

1 0
−λ1 L̇2

1 λ1 L̇2
1 + λ2 L̇2

2 − λ2 L̇2
2

0 − λ2 L̇2
2 λ2 L̇2

2

⎤
⎦

K̄ N =
⎡
⎣
k223L1

2 − k223L1
2 0

−k223L1
2 k223L1

2+k333L2
2 − k333L2

2

0 − k333L2
2 k333L2

2

⎤
⎦

(56)

The first step of IHB is the incremental process,
let X0, w0 and F̄0 be a set of solutions of Eq. (55),
then the incremental form of neighboring states can be
expressed as follows:

X = X0 + ΔX, w = w0 + Δw, F̄ = F̄0 + ΔF (57)

Substituting Eqs. (57) into (55) and omitting the
high-order small terms, we have

w2
0M̄ΔẌ + 3w3

0C̄N0ΔẊ + (K̄ + 3K̄N0)ΔX

= R̄ − (2w0M̄Ẍ0 + 3w2
0C̄N0Ẋ0)Δw + ΔF cos τ

(58)
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with

R̄ = F̄0 cos τ − w2
0M̄Ẍ0 − w3

0C̄N0Ẋ0 − (K̄ + K̄N0)X0

C̄N0 = C̄ N (X0), K̄N0 = KN(X0)

(59)

It can be concluded from the expression of R̄ that
whenX0,w0 and F̄0 are precise solutions, one has R̄ =
0. The second step of IHB is the process of harmonic
balance; the periodic solution of Eq. (55) is assumed to
be

x j =
n∑

k=1

a jk cos(2k − 1)τ +
n∑

k=1

b jk sin(2k − 1)τ = BD j

Δx j =
n∑

k=1

Δa jk cos(2k − 1)τ

+
n∑

k=1

Δb jk sin(2k − 1)τ

= BΔDj

(60)

where

B = [cos τ, cos 3τ, ..., sin τ, sin 3τ, ...]
Dj = [a j1, a j2, ..., a jn, b j1, b j2, ..., b jn]T

ΔDj = [Δa j1, ..., Δa jn,Δb j1, ..., Δb jn]T
(61)

Equation (60) can be described in matrix form as

X0 = SD, ΔX = SΔD (62)

with

D = [D1,D2, ... ,Dn], S = [B; B; ... ; B]
ΔD = [ΔD1,ΔD2, ... , ΔDn] (63)

Inserting Eqs. (62) into Eq. (58) and employing the
following integral

∫ 2π

0
δ(ΔX)T [w2

0M̄ΔẌ + 3w3
0C̄N0ΔẊ + (K̄

+ 3K̄N0)ΔX]dτ =
∫ 2π

0
δ(ΔX)T [R̄

− (2w0M̄Ẍ0 + 3w2
0C̄N0Ẋ0)Δw + ΔF cos τ ]dτ

(64)

Fig. 14 Frequency response of the system for η = 0.6, ε =
0.1, λ1 = 0.3, λ2 = 0.3, k221 = 0.133, k223 = 1.333,
k331 = 0.133, k333 = 1.333, A = 0.3

one can be simplified as

KmcΔD = R + RmcΔw + RfΔF (65)

where

Kmc = w2
0M + 3w3

0CN0 + K + 3KN0,

Rmc = (−2w0M + 3w2
0CN0)D,

R = F − (w2
0M + w3

0CN0 + K + KN0)D,

Rf =
∫ 2π

0
ST cos τdτ,CN0 =

∫ 2π

0
STC̄N0Ṡdτ,

F =
∫ 2π

0
STF̄0 cos τdτ, M =

∫ 2π

0
STC̄N0S̈dτ,

K =
∫ 2π

0
STK̄Sdτ,KN0 =

∫ 2π

0
STK̄N0Sdτ

(66)

This study considers the frequency response of the
system under a fixed external excitation amplitude.
Hence, Eq. (65) becomes

KmcΔD = R + RmcΔw (67)

The frequency response of the system is drawn in
Fig. 14, where D1 is the amplitude of the linear struc-
ture, D21 is the amplitude of the first-orderNES relative
to the linear structure, and D32 is the amplitude of the
second-order NES relative to the first-order NES.
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In Fig. 14, the saddle-node bifurcation exists in the
system near w = 1. The three frequency response
curves are bent after they intersect, which shows hard
characteristic nonlinearity. The curve bending phe-
nomenon is extremely prominent in the linear oscilla-
tor, and the upward trend of amplitude is significantly
reduced. To this extent, it can be demonstrated that the
2-dof NES system has a vibration suppression effect
near the resonance frequency.

Then, the stability of the periodic solution of the
system is studied by applying themultivariable Floquet
theory. X0 is set as the solution, and the perturbations
near it can be derived

X = X0 + ΔX (68)

By implementing the same simplification process as
Eqs. (58, 55) can be reformulated as

w2M̄ΔẌ + 3w3C̄N0ΔẊ + (K̄ + 3K̄N0)ΔX = 0 (69)

According to Floquet theory, Eq. (69) yields

Ẋ = Q(τ )X (70)

with

X =
[

ΔX
ΔẊ

]
, Q(τ ) =

[
0 I
Q21 Q22

]

Q21 = −1

w2 M̄
−1

(K̄ + 3K̄N0),

Q22 = −3wM̄
−1

C̄N0

(71)

where 0, I represent the zero matrix and the identity
matrix, X0 is a solution with period T = 2π , therefore,
Q(τ ) is also a function with period T . For Eq. (70),
assuming that there is a fundamental matrix solution
Y(τ ), since Q(τ + T ) = Q(τ ), Y(τ + T ) is also
a solution of Eq. (70), and consequently, the relation
between the two solutions can be described as

Y(τ + T ) = PY(τ ) (72)

with P refers to the transition matrix. Hence, solving
the transfer matrix P becomes the key to analyze the
stability of the system.

In this study, an effective method is implemented to
numerically calculate P . The system period is equally

divided into N intervals, for the kth interval [τk τk−1],
the value of coefficientmatrix Q(τ ) is approximated by
a constant matrix Qk , and the local transition matrix
Pk can be approximately presented in the following
form:

Pk = ehQk = I +
N∑
j=1

(hQk)
j

j ! (73)

Therefore, the transition matrix P can be expressed
as

P = N
Π
k=1

Pk (74)

The stability of the periodic solution is obtained by
studying the spectral radius of the matrix P ; the sta-
bility analysis of the linear oscillator is illustrated in
Fig. 15. In order to study the response regimes near
the main resonance frequency, take P1, P2, P3, and
P4 in Fig. 15a, from w = 1 + εδ, they correspond to
δ = −0.5, δ = 0, δ = 0.5, δ = 1, respectively, and
Poincaremapping is shown in Fig. 16. From Fig. 15(b),
it can be concluded that proper selection of parameters
can change the stability region and reduce the linear
oscillator amplitude. Figure 15c illustrates that com-
pared with the 1-dof NES, 2-dof NES can eliminate
undesired response near the main resonance frequency.
Figure 16 indicates that when δ = 0.5 and δ = 0, the
responses of the linear oscillator andNES are both peri-
odic. For δ = 0.5, thewhole system possesses a chaotic
response. When δ = 1, the response of the linear oscil-
lator is chaotic, while the response of NES becomes
periodic. In conclusion, the response of linear oscil-
lator and NES can be inconsistent in the 2-dof NES
system, which is significantly different from the 1-dof
NES system.

3.4 SMR analysis for the system with 2-dof NES

This section studies SMRof the systemwith 2-dofNES
and compares their differences with 1-dof NES. Since
the slow invariant manifold equation of the systemwith
2-dof NES is not solved, the analysis method of 1-
dof NES cannot be applied. This section analyzes its
numerical simulation results to conduct related SMR
research.
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Fig. 15 Stability analysis for the frequency response of the linear
structure, solid line: stable periodic solutions, asterisk: unstable
periodic solutions

Fig. 16 Poincare map for the system with red part refers to
the system reaches steady state, x1, v1 : the displacement and
velocity of the linear structure, xNc, vNc: the displacement and
velocity of the center of mass of the NES with two degrees of
freedom

As the systemwith 2-dofNEShas rich dynamic phe-
nomena, which provides the possibility for the emer-
gence of SMR. This section investigates whether SMR
can exist in a 2-dof NES system when there is no SMR
in a 1-dof NES system. To achieve reasonable compar-
isons, a system composed of 2-dof NES is adopted, the
mass distribution η = 1.0 is applied to represent 1-dof
NES, and the initial conditions are zero.

Two examples of time response of the 1-dof and
2-dof NES system are presented as shown in Fig. 17.
In Fig. 17a, the response regimes of 1-dof and 2-dof
NES systems are the steady-state periodic (no modula-
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Fig. 17 Time response of the 1-dof and 2-dof NES system, x1:
displacement of the linear structure. The parameters of the sys-
tem: a δ = 0.1, λ1 = 0.5, ε = 0.1, k221 = 0.133, k223 =
1.333, λ2 = 0.3, k331 = 0.133, k333 = 1.333, A = 1.0 ;(b)
δ = 0.7, λ1 = 0.5, ε = 0.1, k221 = 0.133, k223 = 1.333, λ2 =
0.1, k331 = 0.133, k333 = 1.333, A = 0.3

tion) and strongly modulated, respectively. In Fig. 17b,
when the response regime of 1-dof NES system is
weakly modulated, while the 2-dof NES system also
exhibits strongly modulated. The reason for the above
phenomenon could be explained as follows: on the one
hand, the occurrence of SMR is strongly related to the
dynamical instability of the system. On the other hand,
according to the previous analysis in this study, the 2-
dof NES can increase the instability near the resonance
frequency of the system. Therefore, the system with
2-dof NES could generate additional SMR.

In order to further verify that the system with 2-
dof NES can generate additional SMR and analyze
the effect of parameters on the generation of SMR,
the response regimes of the1-dof and 2-dof NES sys-
tem with different parameters are spot-checked in
Table 2. The other relevant parameters are selected as
ε = 0.1, k221 = 0.133, k223 = 1.333, k331 = 0.133,
k333 = 1.333, λ1 = 0.3, λ2 = 0.3. It is evidently
portrayed in Table 2 that the 2-dof NES can bring extra
SMR. Most of these system response regimes are con-
sistent; it implies that the mechanisms governing these
system responses are highly similar.

In order to better reveal the impact of the mass dis-
tribution η on the response regime, a set of simulation

results are illustrated in Fig. 18. We can observe from
Fig. 18 that the time responses of the linear oscilla-
tor and NES significantly change with the variation
of mass distribution η. For the case of η = 0.8, the
response regime of linear oscillator is weakly modu-
lated, but each NES is strongly modulated. It is further
confirmed that the response mechanism of the linear
oscillator and NES is no longer consistent, which is
significantly different from 1-dof NES.

In summary, the following conclusions are empha-
sized: for one thing, the appropriate selection of the
2-dof NES parameter can generate extra SMR. For
another, the mass distribution η of 2-dof NES has a sig-
nificant impact on the response regime of the system.
Above all, the response mechanism of linear oscilla-
tor and NES are no longer consistent in the 2-dof NES
system. These conclusions are helpful for solving the
vibration suppression problem in the next section.

4 Vibration suppression applications for the NES
system

This section concerns the application of the 1-dof and
2-dof NES in vibration suppression. The goal of this
section is to discover the optimal vibration suppression
parameters through the parameter tuning process of the
strongly nonlinear vibration absorber, and to verify the
systemwith 2-dofNEShas better vibration suppression
effects than 1-dof NES.

Since the NES system has rich response regimes
in the vicinity of the main resonance frequency, the
system amplitude is also related to time. Therefore, this
study uses the energy spectrum to assess the vibration
suppression efficiency of NES. The energy spectrum
is generated by calculating the average energy of the
linear structure in a period of time which is greater than
one modulation period. According to Eq. (1) or (46),
the energy of linear structure can be expressed as

E =
〈
1

2
ẋ21 + 1

2
x21

〉

t
(75)

where < · >t means to calculate the average value
in the time interval t . In this sense, the optimization of
NES in vibration suppression can be equivalent to min-
imizing the value of the above formula E . To simplify
the calculation, the fixed parameters are selected as ε =
0.1, A = 0.3, k221 = 0.1, k223 = 1, t ∈ [2000, 3000].
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Table 2 Response regimes of the 1-dof and 2-dof NES system with different parameters, S: strongly modulated, W: weakly modulated,
P: the steady-state periodic (no modulation)

A δ η = 0.6 η = 0.7 η = 0.8 η = 1.0

0.3 −0.5 W W P P

0 W W W W

0.7 S W W W

1 −0.5 S P P P

0 S S S S

0.7 S S S S

2 −0.5 P P P P

0 P P P P

0.7 S S S S

Fig. 18 Time response of each part for the 2-dof NES system
with the change of the mass distribution η, x1, x2, x3: the dis-
placement of the linear oscillator, the first and second NES, sys-

tem parameter: A = 0.3, δ = 0, λ1 = 0.3, ε = 0.1, k221 =
0.133, k223 = 1.333, λ2 = 0.3, k331 = 0.133, k333 = 1.333
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Fig. 19 The energy spectrum of the linear oscillator with damp-
ing change

This section analyzes the vibration suppression of
the 1-dof NES system under different damping and
stiffness. First, the vibration suppression of 1-dof NES
with different damping is studied to evaluate the impor-
tance of damping. The energy spectrum of the linear
oscillator with different damping is shown in Fig. 19.

Poincaremapping and time response are applied to ana-
lyze systems with λ1 = 0.7 and λ1 = 0.2 to obtain
Fig. 20.

From the above analysis, it can be noted that the sys-
tem truncation damping of 1-dof NES is 0.577. When
λ1 = 0.7, there is no bifurcation in the 1-dof NES sys-
tem; Fig. 20a demonstrates that the system possesses a
steady-state periodic response near the resonance fre-
quency. For λ1 = 0.2, SMR of the system in the vicin-
ity of the resonance frequency can be obtained from
Fig. 20b. Therefore, increasing the damping of theNES
does not necessarily reduce the average energy of the
system. SMR can greatly reduce the average energy of
the system and make the system vibration suppression
effect better.

In this section, we further describe the effect of stiff-
ness on the energy spectrum of the system, let ε = 0.1,
A = 0.3, λ1 = 0.5, k221/k223 = 0.1, whose results
are presented in Fig. 21. Poincare mapping and time
response are applied in the study of the system with
different stiffness; they are demonstrated in Fig. 22.

Figures 21 and 22 illustrate that the average energy
of the system monotonically reduces and the vibration

Fig. 20 Poincare map and time response of different damping systems, x1, v1: the displacement and velocity of the linear oscillator,
xN , vN : the displacement and velocity of the NES
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Fig. 21 Energy spectrum of the linear oscillator with different
stiffness

suppression bandwidth keeps growing when the stiff-
ness increases in the SMR interval. However, when the
value of k223 continues to improve to 2.94, an unde-
sired steady-state periodic response appears near the
resonance frequency, and an abnormal peak appears in
the energy spectrum. It is called a failure of efficiency
and should be avoided when designing NES. In sum-
mary, increasing the stiffness of NES within a certain
range can continuously improve the vibration suppres-
sion effect, but the vibration suppression fails when the
stiffness is too large.

By varying the value of damping λ and stiffness k,
the energy spectrum is applied to discover the param-
eters of the optimal vibration suppression effect of
NES. The criterion to evaluate the vibration suppres-
sion effect is mainly that the area of E in the energy
spectrum is the smallest. The minimum peak value
at each position is also a reference indicator. When
k221 = 0, according to the optimization standard,
the optimal value of 1-dof NES can be obtained as
k223 = 5, λ1 = 1.2. When k221 �= 0, the best param-
eters of 1-dof NES can be got similarly as k223 =
3.9, λ1 = 0.7, k221 = 0.09. To verify the effectiveness
of NES vibration suppression, the energy spectrum is
compared with the optimal vibration suppression of the
linear damping NES in Ref. [14,26]. The comparison
result of the energy spectrum is shown in Fig. 23.

It is found that the energy amplitude of the single-
stiffness nonlinear damping NES is higher than lin-
ear damping NES in individual positions; however, the
overall area of E is smaller than linear damping NES.

Therefore, the single-stiffness nonlinear damping NES
overall vibration suppression effect is better than lin-
ear damping NES. The NES with combined stiffness
and nonlinear damping has the smallest area in the
energy spectrum, and it has the smallest peak every-
where. Therefore, it can provide the best vibration sup-
pression effect.

Then, this study analyzes the influence of mass dis-
tribution η on vibration suppression. As indicated in
Fig. 24, by appropriately selecting themass distribution
η, 2-dof NES can effectively eliminate the undesired
periodic response which occurred in 1-dof NES, and it
can release some parameter limitations of the selected
value of 1-dof NES. Therefore, this is of great signifi-
cance for optimizing 2-dof NES to suppress vibration.

In this section, based on the best-tuned energy spec-
trum of 1-dof NES, the parameters of better vibration
suppression of 2-dof NES can also be appropriately
designed. For example, a set of satisfactory 2-dof NES
parameters is k221 = 0.14, k223 = 4.8, λ1 = 0.7, η =
0.9, k331 = 0.01, k333 = 1.6, λ2 = 0.5. The sys-
tem energy spectrum of 2-dof NES under satisfactory
parameters is compared with the optimal tuning of 1-
dof NES in Fig. 25.

According to Fig. 25, the vibration energy of 2-dof
NES with geometrically nonlinear damping and com-
bined stiffness at the near and small of the main reso-
nance frequency is obviously reduced.Hence, the 2-dof
NES researched in this study has a better vibration sup-
pression effect than 1-dof NES.

5 Conclusion

This study has investigated a NES system with geo-
metrically nonlinear damping and combined nonlinear
stiffness under the harmonic excitation, and the rich
dynamic characteristics are also demonstrated. First,
for 1-dof NES, it has been found that there is a trunca-
tion damping in the saddle-node bifurcation. Through
analyzing the amplitude–frequency response, the inter-
val of the failure frequency should be avoided in the
actual application of NES. SMR research is carried out
by using phase trajectory diagram and 1-D map; the
frequency detuning interval for the existence of SMR
is also reported.

Next, the 2-dof NES system is analyzed. Whenw =
1, compared with 1-dof NES, the 2-dof NES system
has the saddle-knot bifurcation, and Hopf bifurcation
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Fig. 22 Poincare mapping and time response of systems with different stiffness

loses its range limitation. When w = 1+ εδ, the value
of NES mass distribution has a certain influence on
the response regime of the system. It has found that
2-dof NES can generate extra SMR than 1-dof NES,
which stressed that the response mechanism of linear
oscillator and NES is no longer consistent.

Finally, the energy spectrum, Poincaremapping, and
time response are applied to compare the vibration
reduction of different NESs. Adjusting the mass distri-

bution η of 2-dof NES can eliminate some constraints
on the selected value of 1-dof NES. It also demon-
strates that nonlinear damping NES can provide better
vibration suppression effect than linear damping NES,
NESwith combined stiffness is more preferable for the
vibration mitigation than pure cubic stiffness NES, and
2-dof NES system has a much better vibration suppres-
sion effect than 1-dof NES system.
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Fig. 23 The comparisonof the energy spectrumof the best vibra-
tion suppression for different NESs

Fig. 24 The energy spectrumof 1-dof and2-dofNESmain struc-
ture through parameter variation to eliminate unwanted periodic
responses

Fig. 25 Energy spectrum of 2-dof NES under satisfactory
parameters and 1-dof NES with best-tuned parameters
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6 Appendix: Derivation of simplified system
equations

The system equation is expressed as

m1 ẍ1 + k1x1 + c1 ẋ1 + k21(x1 − x2)

+ k23(x1 − x2)
3 + c2(ẋ1 − ẋ2)

3 = F0 cos(wt)

m2 ẍ2 + k21(x2 − x1) + k23(x2 − x1)
3

+ c2(ẋ2 − ẋ1)
3 = 0

(A.1)

To transform Eq. (A.1) into a dimensionless form,
the following coordinate transformations are intro-
duced

t̄ =
√

k1
m1

t, x̄i = xi , w̄ = w

√
m1

k1
(A.2)

Letting c1 = 0, by defining the following variables

k21
k1

= εk221,
k23
k1

= εk223,
c2
m1

√
k1
m1

= ελ

m2

m1
= ε,

F0
k1

= εA

(A.3)

and substituting Eqs. (A.2) and (A.3) into Eq. (A.1),
we have

ẍ1 + x1 + εk221(x1 − x2) + εk223(x1 − x2)
3

+ ελ(ẋ1 − ẋ2)
3 = εA cos(wt)

ẍ2 + k221(x2 − x1) + k223(x2 − x1)
3 + λ(ẋ2 − ẋ1)

3 = 0

(A.4)
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