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Abstract Advanced prostate cancer (PCa) is usu-
ally treated with androgen deprivation therapy (ADT),
which is initially effective but can lead to metastatic
castration-resistant prostate cancer. The dendritic cell
vaccine immunotherapy can enhance the antitumor
immune responses to help fight cancer and has been
shown to be effective. A stochastic impulsive PCa
model incorporatingADTand immunotherapy is devel-
oped in this article to analyze the elimination of
androgen-dependent and androgen-independent cancer
cells under the noise interference. Besides the exis-
tence, uniqueness and boundedness of global positive
solution of the model, some sufficient conditions of
extinction and persistence in mean of PCa cells are
also obtained by using the Itô’s formula and the com-
parison theoremof stochastic differential equation.Our
study illustrates that high-intensity noise perturbation
can inhibit the development of PCa and verifies theo-
retically and numerically that frequent vaccination can
improve the survival time of the patient with ADT.
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1 Introduction

Prostate cancer (PCa) is the second most common can-
cer in male cancer patients, and the fifth leading cause
of death [1]. Beginning as early as the second decade of
life, the development of PCa can require over 50 years
to reach a detectable state. Due to the slow growth rate
of PCa, chemotherapy has a limited effect on the dis-
ease. Instead, treatment focuses on surgery and radio-
therapy for localized disease and hormone therapy for
metastatic cancer [2,3].

The growth of PCa is highly dependent on androgen,
such as testosterone and dihydrotestosterone, mainly
produced by testis. Therefore, formetastatic cancer, the
standard hormone therapy is androgen deprivation ther-
apy (ADT) [3–6]. Although androgen suppression ini-
tially succeeds in reducing PCa inmost patients, almost
all patients with metastatic disease relapse within a few
years, known as metastatic castration-resistant prostate
cancer (mCRPC). At this hormone refractory stage, the
androgen-dependent (AD) cancer cells have mutated
into the androgen-independent (AI) cancer cells, and
the AI cancer cells are not sensitive to androgen inhibi-
tion and able to sustain growth even in androgen defi-
cient environment and may be resistant to the apop-
tosis effect of this environment [2,6–9]. During the
development of AD to AI cancer cells, most differen-
tially expressed genes and signal networks are down-
regulated, which indicates that the performance of AD
cancer cells in proliferation, apoptosis and movement
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is different from that of AI cancer cells. Therefore,
when AD and AI cancer cells compete for nutrition
resources, the competition intensity should be differ-
ent [10–12]. Jackson proves for the first time through
mathematical modeling that the relapse following pos-
itive responses to hormonal castration is because PCa
is composed of different cell subpopulations, and each
has different dependence on androgen [13]. Ideta et
al. establish a model of ADT considering the mutation
from AD to AI cancer cells and investigate the factors
affecting an AI relapse [14]. However, Jackson’s and
Ideta et al. models do not directly incorporate the com-
petitive effect of the two populations. To address this
limitation, Shimada, Aihara and Yang propose models
to directly explain the competition between two kinds
of cancer, and both of their numerical simulation show
that the competition between two kinds of cancer cells
can prevent the recurrence of PCa [15,16]. Zhang et al.
utilize a three-population Lotka–Volterra type model
to investigate solely the competition aspect of cancer
sub-populations, and their results show that AD cells
are likely to have a significant competitive advantage
over AI cells when treatment is not applied [17].

For the treatment of asymptomatic or minimally
symptomatic mCRPC, sipuleucel-T is the only
immunotherapy currently approved by the United
States Food and Drug Administration. The sipuleucel-
T, a type of dendritic cell (DC) vaccine immunotherapy,
is manufactured by extracting DCs from the patient,
loading antigen in DCs, and injecting DCs into the
patient’s body. DCs are the most powerful antigen-
presenting cells in the human body, and they ingest
antigens and present antigen substances to the naive
and memory T-cells, which then clear specific antigens
[18–20]. The sipuleucel-T stimulates the anti-tumor
immune response against PCa cells carrying prostatic-
acid phosphatase (PAP) antigen and has shown evi-
dence of efficacy in reducing the risk of death among
men with asymptomatic or minimally symptomatic
mCRPC [9,21]. Therefore, researchers began to pay
attention to the application of mathematical model in
the vaccine immunotherapy of PCa. Peng et al. con-
struct a differential equation system composed of two
kinds of PCa cells and immune microenvironment.
Their study shows the potential of a system biology
type approach in the modeling of PCa [22]. Kirschner
and Panetta explore the effects of immunotherapy
on the tumor-immune system taking T-cells, cytokine
interleukin-2 and tumor cells into consideration [23].

By combining the models of [14] and [23], Portz and
Kuang study a system of ordinary differential equa-
tions of PCa treatment with ADT and DC vaccine
immunotherapy [4]. They simulate the injections of
DC vaccine numerically, and the result illustrates that
the DC vaccination can successfully stabilize the dis-
easewithADT.Rutter andKuang appropriatelymodify
Portz andKuang’smodel and further research the effect
of DC vaccine injection frequency on relapse time of
cancer by simulating [18].

Great progress has been made in the mathemati-
cal modeling of ADT and immunotherapy for PCa.
However, it should be noted that these models above
are deterministic systems, while actually the therapeu-
tic effect is usually affected due to the sensitivity of
tumor microenvironment. d’Onofrio points out that the
extremely complex interaction between tumor cells and
immune effectors justifies the inclusion of noise on a
deterministic model of tumor-immune system in order
to take into account a plethora of relevant phenomena,
such as the variable intensity of neoantigen that stim-
ulate the immune response, the expression or absence
of expression of molecules needed for T-cell activa-
tion [24]. Therefore, random perturbation should be
included in deterministic models in order to consider
more related phenomena [25–30]. By taking the effect
of white noise into the model of ordinary differential
equations in [18], Zazoua and Wang investigate the
dynamic behaviors of AD and AI cancer cells with
ADT and reveal the impacts of random disturbance
and tumor cancer competitiveness on the recurrence
of cancer [12].

For modeling the DC vaccination, in fact, after each
injection of DC vaccine, the number of DCs increases
transiently, which is one of the key factors to activate
T-cells and stimulate antitumor immunity. In [4], the
vaccinations are administered every 30 days in model
simulations, and the numerical simulations suggest that
immunotherapy can promote the stabilization of PCa
treated by ADT. In [18], Rutter and Kuang run a series
of simulations varying only the dosage level and fre-
quency of the DC immunotherapy. They illustrate that
increasing the frequency of the injections but keeping
the total dosage identical can vast improve the survival
time of the patient. However, in the existing studies
on vaccine immunotherapy of PCa model, the pulse
effect of vaccine injection is only simulated by com-
puter, while there is lack of theoretical research on the
elimination of PCa cells by immunotherapy. Therefore,
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in our model, we introduce an impulsive equation to
depict the pulse effect of DC vaccination and theoreti-
cally investigate the extinction and persistence of PCa
cells with ADT and vaccine immunotherapy. In addi-
tion, our model considering the incorporation of ADT
and DC vaccination is the extension of the reference
[12] that considering two kinds of PCa cells underADT
alone.

The structure of the article is as follows: In Sect. 2,
the mathematical model is formulated and some pre-
liminaries for the study are given. Section 3 focuses
on the analysis of the dynamic behaviors of cells and
obtains the sufficient conditions for cancer cell extinc-
tion and persistence in mean. In Sect. 4, numerical sim-
ulations are implemented to demonstrate our results.
Our main conclusions are recalled in Sect. 5. Section 6
presents the general discussions of this paper.

2 Mathematical model

2.1 Model formation

Zazoua andWang [12] investigate the following stoch-
astic model of ADT considering androgen, AD and AI
cancer cells,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA =
[

− γ
(
A − a0

)
− γ a0u

]

dt,

dX1(t) =
{

r1A

(

1 − X1 + αX2

K

)

−
(
d1 + m1

)(

1 − A

a0

)}

X1dt + σ1X1dB1(t),

dX2(t) =
{

r2

(

1 − βX1 + X2

K

)

X2

+ m1

(

1 − A

a0

)

X1

}

dt + σ2X2dB2(t),

(1)

where X1 and X2 are the concentrations of AD and
AI cancer cells, respectively, A is the concentration of
androgen, r1 and d1 are the AD cancer cell prolifer-
ation and death rate, respectively, r2 is the AI cancer
cell net proliferation rate, a0 is the normal androgen
concentration, α and β are the positive rivalry intensity
of the two cancer cells, m1 is the maximum mutation
rate from AD to AI cancer cells, u is the ADT effi-
cacy, K is the carrying capacity of these cells, γ is

the clearance and production rate of androgen, Bi (t)
(i = 1, 2) are independent one-dimensional standard
Brownian motions defined on a given complete proba-
bility space

(
Ω,F , {Ft }t≥0,P

)
, and σ 2

i (i = 1, 2) are
the intensities of white noise.

Now, we introduce immunotherapy of DC vaccines
into model (1). When the DC vaccine is injected into
the body, a large number of DCs increase suddenly
in vivo and then activate T-cells to induce antitumor
immunity. Therefore, we utilize an impulse differ-
ential equation to describe the change of DC num-
ber with DC vaccination and add the description of
anti-tumor immune responses in the model as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t) =
{[

r1A

(

1 − X1 + αX2

K

)

−
(
d1 + m1

)(

1 − A

a0

)]

X1 − e1T X1

g1 + X1 + X2

}

dt

+ σ1X1dB1(t),

dX2(t) =
{

r2

(

1 − βX1 + X2

K

)

X2

+ m1

(

1 − A

a0

)

X1 − e2T X2

g2 + X1 + X2

}

dt

+ σ2X2dB2(t),

dT (t) =
(

e3D

g3 + D
− μT

)

dt,

dA(t) =
[

γ
(
a0 − A

)
− γ a0u

]

dt,

dD(t) = −cDdt, t �= nτ, n ∈ Z
+,

�X1(t) = �X2(t) = �T (t) = �A(t) = 0,

�D(t) = D(nτ+) − D(nτ ) = h, t = nτ, n ∈ Z
+,

(2)

where T is the concentration of T-cell, μ is T-cell
death rate, c is the decay rate of DCs, e1 and e2
are the max killing rate of T-cells to AD and AI
cancer cells, respectively, g1 and g2 are the AD
and the AI cancer cell saturation level for T-cell
kill rate, respectively, e3 is maximum activation rate
of DCs to T-cells, g3 is DC saturation level for
T-cell activation, h is the number of DCs injected
with vaccination, τ is the period of the DC vaccina-
tion.
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2.2 Preliminaries

We list some notations, lemmas and definitions of the
paper here. For convenience, we give some notations,

f (t)∗ = lim sup
t→+∞

f (t), f (t)∗ = lim inf
t→+∞ f (t),

〈
f (t)
〉 = 1

t

∫ t

0
f (s)ds,

H0 = e3h

μ[g3(ecτ − 1) + h] , H = e3h

μ[g3(1 − e−cτ ) + h] ,

R
n+ =

{
x =

(
x1, . . . , xn

)
∈ R

n : xi > 0, i = 1, . . . n
}
,

(3)

where f (t) is an integrable function on [0,+∞).
For the following subsystem of system (2),

{
dD(t) = −cDdt, t �= nτ, n ∈ Z

+,

D(nτ+) = D(nτ) + h, t = nτ, n ∈ Z
+,

(4)

the following Lemma 1 gives its solution.

Lemma 1 [31] System (4) has a unique τ -periodic
solution D̃(t), where

⎧
⎪⎪⎨

⎪⎪⎩

D̃(t) = he−c(t−nτ)

1 − e−cτ
,

D̃(0) = h

1 − e−cτ
,

for any t ∈
(
nτ, (n + 1)τ

]
and n ∈ Z

+. For each

solution D(t), we have that limt→+∞ D(t) = D̃(t).

From the periodic solution of D(t), it is easy to
obtain its boundedness that

D(t)∗
.= he−cτ

1 − e−cτ
≤ D(t) ≤ h

1 − e−cτ
.= D(t)∗,

and other basic properties. It is noted that androgen
dynamics evolves much faster than cancer cell dynam-
ics and androgen concentration can reach equilibrium
in a relatively short time. So, we consider the steady
state of androgen concentration, A∗ = a0(1 − u), and
in the sequent research, we focus on the following sys-
tem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t) =
{

R

(

1 − X1 + αX2

K

)

−U

− e1T

g1 + X1 + X2

}

X1dt + σ1X1dB1(t),

dX2(t) =
{

r2

(

1 − βX1 + X2

K

)

X2

+ m1uX1 − e2T X2

g2 + X1 + X2

}

dt + σ2X2dB2(t),

dT (t) =
(

e3D(t)

g3 + D(t)
− μT

)

dt,

(5)

where R = r1a0(1 − u),U = (d1 + m1)u.

Lemma 2 [32]Suppose f (t) ∈ C

(
Ω×[0,+∞),R+

)
.

1. If there are constants λ0 > 0, t1 > 0 and λ ≥ 0
such that

ln f (t) ≤ λt − λ0

∫ t

0
f (s)ds +

n∑

i=1

σidBi (t)

for any t > t1, where σi is a constant, 1 ≤ i ≤ n,

then 〈 f (t)〉∗ ≤ λ

λ0
a.s.

2. If there are constants λ0 > 0, t1 > 0 and λ ≥ 0
such that

ln f (t) ≥ λt − λ0

∫ t

0
f (s)ds +

n∑

i=1

σidBi (t)

for any t > t1, where σi is a constant, 1 ≤ i ≤ n,

then 〈 f (t)〉∗ ≥ λ

λ0
a.s.

Lemma 3 [12] Let M = {Mt }t≥0 be a real-valued
continuous local martingale vanishing at time zero. If

lim sup
t→+∞

〈M, M〉t
t

< ∞ a.s.,

then

lim
t→+∞

Mt

t
= 0 a.s.

The Brownian motion B(t) is a continuous square
integrable martingale, and its quadratic variation is
〈B(t), B(t)〉t = t (t ≥ 0). Therefore, from Lemma 3,

lim
t→+∞

B(t)

t
= 0 a.s. (6)
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and for any small ε ∈ (0, 1), there exists a T̄ such that

∣
∣
∣
∣
B(t) − B(s)

t − s

∣
∣
∣
∣ < ε, t − s > T̄ a.s. (7)

Definition 1 [12]

1. The population Xi (t) becomes extinct if

lim
t→+∞ Xi (t) = 0 a.s.

2. The population Xi (t) becomes persistent in mean
if

〈Xi (t)〉∗ > 0 a.s.

Definition 2 [12] The system (5) is stochastically ulti-
mately bounded in the sense that for any ε ∈ (0, 1),
there is a positive constant M such that for any initial
value X (0) = (X1(0), X2(0), T (0)) ∈ R

3+, the solu-
tion of system (5) satisfies

lim sup
t→+∞

P

{
∣
∣X (t)

∣
∣ > M

}

< ε.

3 The dynamical analysis of system (5)

The following two theorems will show the existence,
uniqueness and boundedness of global positive solu-

tions
(
X1(t), X2(t), T (t)

)
of system (5).

Theorem 1 Forany initial value
(
X1(0), X2(0), T (0)

)
∈

R
3+,model (5)hasauniqueglobal solution

(
X1(t), X2(t),

T (t)
)

∈ R
3+ a.s.

Proof This proof is inspired by reference [33]. We
firstly show the existence of unique local positive solu-
tion of model (5). For the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =
{

R
(
1 − ex(t) + αey(t)

K

)
−U

− 1

2
σ 2
1 − e1ez(t)

g1 + ex(t) + ey(t)

}

dt + σ1dB1(t),

dy(t) =
{

r2
(
1 − βex(t) + ey(t)

K

)
+ m1uex(t)

ey(t)

− 1

2
σ 2
2 − e2ez(t)

g2 + ex(t) + ey(t)

}

dt + σ2dB2(t),

dz(t) =
( e3D(t)

(g3 + D(t))ez(t)
− μ

)
dt,

(8)

with initial data
(
x(0), y(0), z(0)

)
=
(
ln X1(0), ln

X2(0), ln T (0)
)
, model (8) has a unique local solu-

tion
(
x(t), y(t), z(t)

)
on [0, te) under the local Lip-

schitz condition, where te is the explosion time. It

is from Itô’s formula that
(
X1(t), X2(t), T (t)

)
=

(
ex(t), ey(t), ez(t)

)
is the unique local positive solution

of model (5).
Now, it suffices to prove te = +∞. Consider the

following auxiliary equations:

dφ(t) =
( e3D(t)∗
g3 + D(t)∗

− μφ(t)
)
dt, (9)

dΦ(t) =
( e3D(t)∗
g3 + D(t)∗ − μΦ(t)

)
dt, (10)

dN (t) = N (t)
(
R −U − R

K
N (t)

)
dt + σ1N (t)dB1(t), (11)

dm(t) = m(t)
(
r2 − βr2N (t)

K
− e2Φ(t)

g2
− r2

K
m(t)

)
dt

+σ2m(t)dB2(t), (12)

dM(t) = M(t)
(
r2 + m1uN (t)

m(t)
− r2

K
M(t)

)
dt

+σ2M(t)dB2(t), (13)

dn(t) = n(t)
(
R −U − αRM(t)

K
− e1Φ(t)

g1
− R

K
n(t)

)
dt

+σ1n(t)dB1(t), (14)
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with Φ(0) = φ(0) = T (0), N (0) = n(0) =
X1(0), M(0) = m(0) = X2(0). According to the com-
parison theorem for stochastic differential equations
[34], for t ∈ [0, te),
φ(t) ≤ T (t) ≤ Φ(t),m(t) ≤ X2(t) ≤ M(t), n(t)

≤ X1(t) ≤ N (t) a.s.

Wecan compute equations from (9) to (14) and get their
solutions as follows:

φ(t) = e−μtφ(0) + H0

(
1 − e−μt

)
,

Φ(t) = e−μtΦ(0) + H
(
1 − e−μt

)
,

N (t) =
exp
{[

R −U − 1

2
σ 2
1

]
t + σ1B1(t)

}

1

N (0)
+ R

K

∫ t
0 exp

{[
R −U − 1

2
σ 2
1

]
s + σ1B1(s)

}
ds

,

m(t) =
exp
{ ∫ t

0

[
r2 − 1

2
σ 2
2 − βr2N (s)

K
− e2Φ(s)

g2

]
ds + σ2B2(t)

}

1

m(0)
+ r2

K

∫ t
0 exp

{ ∫ v

0

[
r2 − 1

2
σ 2
2 − βr2N (s)

K
− e2Φ(s)

g2

]
ds + σ2B2(v)

}
dv

,

M(t) =
exp
{ ∫ t

0

[
r2 − 1

2
σ 2
2 + m1uN (s)

m(s)

]
ds + σ2B2(t)

}

1

M(0)
+ r2

K

∫ t
0 exp

{ ∫ v

0

[
r2 − 1

2
σ 2
2 + m1uN (s)

m(s)

]
ds + σ2B2(v)

}
dv

,

n(t) =
exp
{ ∫ t

0

[
R −U − 1

2
σ 2
1 − αRM(s)

K
− e1Φ(s)

g1

]
ds + σ1B1(t)

}

1

n(0)
+ R

K

∫ t
0 exp

{ ∫ v

0

[
R −U − 1

2
σ 2
1 − αRM(s)

K
− e1Φ(s)

g1

]
ds + σ1B1(v)

}
dv

,

where H0 and H are given in (3). Note that φ(t) >

0, Φ(t) > 0, N (t) > 0,m(t) > 0, M(t) > 0,m(t) >

0 hold for all t ≥ 0, therefore te = +∞. �


Theorem 2 The system (5) is stochastically ultimately
bounded.

Proof Define the functionV
(
t, X1, X2, T

)
= et

(
X p
1 +

X p
2 + T p

)
, where p > 1. Applying Itô’s formula to

V
(
t, X1, X2, T

)
yields
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dV
(
t, X1, X2, T

)
= et

(
X p
1 + X p

2 + T p
)
dt + pet

(
X p−1
1 dX1 + X p−1

2 dX2 + T p−1dT
)

+ 1

2
p(p − 1)et

[

X p−2
1

(
dX1

)2 + X p−2
2

(
dX2

)2
]

= pet
{

X p
1

[
R
(
1 − X1 + αX2

K

)−U − e1T

g1 + X1 + X2

]
dt + σ1X

p
1 dB1(t)

}

+ pet
{

X p−1
2

[
r2
(
1 − βX1 + X2

K

)
X2 + m1uX1 − e2T X2

g2 + X1 + X2

]
dt + σ2X

p
2 dB2(t)

}

+ pet T p−1
[ e3D

g3 + D
− μT

]
dt + et

(
X p
1 + X p

2 + T p
)
dt + 1

2
et p(p − 1)

(
σ 2
1 X

p
1 + σ 2

2 X
p
2

)
dt

≤ et
{[

1 + p
(
R + 1

2
(p − 1)σ 2

1

)]
X p
1 − pR

K
X p+1
1

}

dt

+ et
{

pm1uX1X
p−1
2 +

(
1 + p(r2 + 1

2
(p − 1)σ 2

2 )
)
X p
2 − pr2

K
X p+1
2

}

dt

+ et
{

pe3D

g3 + D
T p−1 + (1 − pμ

)
T p
}

dt + pet
2∑

i=1

σi X
p
i dBi (t)

≤ et
(
Q1 + Q2 + Q3

)
dt + pet

2∑

i=1

σi X
p
i dBi (t),

(15)

where constants Q1, Q2, Q3 > 0. Write Q = Q1 +
Q2 +Q3. Integrating both sides of (15) from 0 to t and
calculating the expectation of both sides leads to

E
[
et
(
X p
1 (t) + X p

2 (t) + T p(t)
)]

≤ X p
1 (0) + X p

2 (0) + T p(0) + Q
(
et − 1

)
,

and then

E
[
X p
1 (t) + X p

2 (t) + T p(t)
]

≤ e−t
(
X p
1 (0) + X p

2 (0) + T p(0)
)

+ Q
(
1 − e−t

)
.

Therefore,

lim sup
t→+∞

E
[
X p
1 (t) + X p

2 (t) + T p(t)
]

≤ Q. (16)

Note that

|X |p =
(
X2
1 + X2

2 +T 2
)p/2

< 3p/2
(
X p
1 + X p

2 +T p
)
.

(17)

Hence, from (16) and (17), we get

lim sup
t→+∞

E
[
|X |p

]
< 3p/2Q.

For any ε ∈ (0, 1), let χ = √
3
(
Q/ε

)1/p. According
to the Chebyshev inequality,

lim sup
t→+∞

P
{
|X | > χ

}
= lim sup

t→+∞
P
{
|X |p > χ p

}

<
3p/2Q

[√
3
(
Q/ε

)1/p
]p = ε.

So the solutions of the model are stochastically ulti-
mately bounded. �


Theorem 3 Assume that

R −U − 1

2
σ 2
1 < 0, (18)

then there are the following assertions:

(i) Androgen-dependent cells X1 will be extinct.
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2652 H. Yang, Y. Tan

(ii) If

r2 − 1

2
σ 2
2 < 0, (19)

then androgen-independent cells X2 will be extinct.
(iii) If

r2 − 1

2
σ 2
2 − e2

g2
H > 0, (20)

then androgen-independent cells X2 are persistent
in mean.

Proof i) Let us prove the extinction of androgen-
dependent cells X1 under condition (18). Applying
Itô’s formula to ln X1(t) and integrating from 0 to t
lead to

ln
X1(t)

X1(0)
=
(
R −U − 1

2
σ 2
1

)
t − R

K

∫ t

0
X1(s)ds − αR

K

∫ t

0
X2(s)ds

−
∫ t

0

e1T (s)

g1 + X1(s) + X2(s)
ds + σ1B1(t),

then,

1

t
ln

X1(t)

X1(0)
= R −U − 1

2
σ 2
1 − R

K

〈
X1(t)

〉
− αR

K

〈
X2(t)

〉

−
〈 e1T (t)

g1 + X1(t) + X2(t)

〉
+ σ1

B1(t)

t
.

(21)

Taking the superior limit of (21) and then using (6) and
(18) yields

lim sup
t→+∞

1

t
ln

X1(t)

X1(0)
≤ R −U − 1

2
σ 2
1 < 0 a.s.

Therefore,

lim
t→+∞ X1(t) = 0 a.s.

That is to say, for Ω1 =
{
ω ∈ Ω : limt→+∞ X1(t,

ω) = 0
}
, P(Ω1) = 1 holds. In view of ω ∈ Ω1, for

any ε1 > 0, there is a large T1(ε1, ω) > 0 such that for
all t > T1, we have

X1(t, ω) < ε1. (22)

(ii) Next, the extinction of androgen-independent
cells X2 under conditions (18) and (19) will be proved.

It is clear that

dX2(t) =
{

r2

(

1 − βX1 + X2

K

)

X2 + m1uX1

− e2T X2

g2 + X1 + X2

}

dt + σ2X2dB2(t)

≤
(
m1uX1 + r2X2

)
dt + σ2X2dB2(t).

In view of (22), for all t > T1 and ω ∈ Ω1,

dX2(t, ω) ≤
(
m1uε1 + r2X2(t, ω)

)
dt + σ2X2(t, ω)dB2(t, ω).

Consider this following stochastic differential equation

ϕ(t, ω) =
(
m1uε1+r2ϕ(t, ω)

)
dt+σ2ϕ(t, ω)dB2(t, ω)

(23)

with initial value ϕ(0, ω) = X2(0, ω). The solution of
(23) is

ϕ(t, ω) = ϕ(0, ω) exp

{(
r2 − 1

2
σ 2
2 + σ2

B2(t, ω)

t

)
t

}

+ m1uε1

∫ t

0
exp

{(
r2 − 1

2
σ 2
2 + σ2

B2(t, ω) − B2(s, ω)

t − s

)(
t − s

)}

ds.

By virtue of (7), we see that there is a constant T2 > 0
such that

∣
∣
∣
∣
B2(t, ω) − B2(s, ω)

t − s

∣
∣
∣
∣ < ε1, t − s > T2 a.s. (24)

Without losing generality, it is assumed that (24) holds
for any ω ∈ Ω1. Hence, for all t > T2,

ϕ(t, ω) ≤ ϕ(0, ω)eL1t + m1uε1

(

I1 + eL1t − eL1T2

L1

)

,

(25)

where

I1 =
∫ T2

0
exp

{(
r2 − 1

2
σ 2
2

)
v

+ σ2

(
B2(t, ω) − B2(t − v, ω)

)}

dv,

L1 = r2 − 1

2
σ 2
2 + σ2ε1 < 0. (26)
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From the Kolmogorov Theorem [35], for all t ≥ T2,
there is a positive constant M1 such that

I1 ≤ M1. (27)

Therefore, taking the superior limit of (25) and accord-
ing to (26) and (27), we get

lim sup
t→+∞

ϕ(t, ω) ≤ m1uε1

(

M1 − eL1T2

L1

)

.

From the arbitrariness of ε1 and the comparison theo-
rem, we obtain that for all ω ∈ Ω1

lim sup
t→+∞

X2(t, ω) = 0.

According to P(Ω1) = 1, we conclude that

lim
t→+∞ X2(t) = 0 a.s.

(iii) Now, let us show that androgen-independent
cells X2 will be persistent in mean when (18) and (20)
occur. Applying Itô’s formula to ln X2(t) and then inte-
grating from 0 to t yields

ln
X2(t)

X2(0)
=
(
r2 − 1

2
σ 2
2

)
t − r2β

K

∫ t

0
X1(s)ds

− r2
K

∫ t

0
X2(s)ds + m1u

∫ t

0

X1(s)

X2(s)
ds

−
∫ t

0

e2T (s)

g2 + X1(s) + X2(s)
ds + σ2B2(t).

(28)

Theorem 1 implies that there exists t0 > 0 such that
T (t) ≤ H for all t > t0, where H is given in (3). It is
from (22) that for any ω ∈ Ω1 and t > T 1 := T1 ∨ t0,

ln
X2(t, ω)

X2(0, ω)
≥
{

r2
(
1 − βε1

K

)
− 1

2
σ 2
2 − e2

g2
H

}

t

− r2
K

∫ t

0
X2(s, ω)ds + σ2B2(t).

ByLemma2 and (20),we can obtain that for allω ∈ Ω1

lim inf
t→+∞

1

t

∫ t

0
X2(s, ω)ds ≥

r2
(
1 − βε1

K

)
− 1

2
σ 2
2 − e2

g2
H

r2
K

.

Due to the arbitrariness of ε1 and P(Ω1) = 1, we get

lim sup
t→+∞

1

t

∫ t

0
X2(s)ds > 0 a.s.

This completes the proof. �

Theorem 4 If the following condition is satisfied,

R −U − 1

2
σ 2
1 − e1

g1
H > 0,

then androgen-independent cells X2 are persistent in
mean.

Proof We will complete the proof by contradiction.
Suppose that X2 are not persistent in mean, that is to

say, for Ω2 =
{
ω ∈ Ω : 〈X2(ω)〉∗ = 0

}
, P(Ω2) > 0

holds. Therefore, in view of ω ∈ Ω2, for any small ε2,
there is a T3 > 0 such that

〈X2(ω)〉 < ε2, t > T3. (29)

Notice that

dX1 ≥
{
R −U − e1

g1
T − αR

K
X2 − R

K
X1

}
X1dt

+σ1X1dB1(t) a.s.

According to the comparison theorem for stochastic
differential equations,

X1(t, ω) ≥
exp

{

t
(
R −U − 1

2
σ 2
1 − e1

g1

〈
T (t)

〉− αR

K

〈
X2(t)

〉+ σ1
B1(t)

t

)}

1

X1(0)
+ R

K

∫ t
0 exp

{

s
(
R −U − 1

2
σ 2
1

)
− e1

g1

∫ s
0 T (θ)dθ − αR

K

∫ s
0 X2(θ)dθ + σ1B1(s)

}

ds
,
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almost surely, and then we have

1

X1(t, ω)
≤ 1

X1(0)
exp

{

− t

(

R −U − 1

2
σ 2
1 − e1

g1

〈
T (t)

〉

− αR

K

〈
X2(t)

〉
+ σ1

B1(t)

t

)}

+ R

K

∫ t

0
exp

{(
t − s

)

(
− R +U + 1

2
σ 2
1 + σ1

B1(s, ω) − B1(t, ω)

t − s

)

+ e1
g1

∫ t

s
T (ξ1)dξ1 + αR

K

∫ t

s
X2(ξ1)dξ1 (30)

almost surely. It follows from (7) that for the ε2, there
exists a large T4 > 0 such that

∣
∣
∣
∣
B1(t, ω) − B1(s, ω)

t − s

∣
∣
∣
∣ < ε2, t − s > T4 a.s. (31)

It is general to suppose that (31) is valid for anyω ∈ Ω2.
Substituting (29) and (31) into (30), we see that for

all t > T 2 := t0 ∨ T3 ∨ T4 and ω ∈ Ω2,

1

X1(t, ω)
≤ 1

X1(0)
eL2t + R

K

{

I2 + eL2t − eL2T 2

L2

}

,

where

L2 = −R +U + 1

2
σ 2
1 + e1

g1
H + (σ1 + αR

K
)ε2 < 0,

I2 =
∫ T 2

0
exp

{

v
(

− R +U + 1

2
σ 2
1

)

+ σ1

(
B1(t − v, ω) − B1(t, ω)

)

+ e1
g1

∫ v

0
T (ξ2)dξ2 + αR

K

∫ v

0
X2(ξ2, ω)dξ2

}

dv.

From the Kolmogorov Theorem, we obtain that there
exists a constant M2 > 0 such that

I2 ≤ M2, t > T 2,

and then for all ω ∈ Ω2,

lim sup
t→+∞

1

X1(t, ω)
≤ R

K

(

M2 − eL2T 2

L2

)

.

Thus, there exists a positive constant κ1 such that

X1(t, ω) ≥ κ1, t > T 2. (32)

In view of Theorem 2, we have that there exists positive
constants M3 and T5 such that for all t > T5,

X1(t) ≤ M3 a.s. and X2(t) ≤ M3 a.s.

Therefore, for all t > T 3 := t0 ∨ T5 ∨ T 2 and ω ∈ Ω2,
we get

dX2(t, ω) ≥
{(

r2(1 − βM3 + M3

K
) − e2

g2
H
)
X2 + m1uκ1

}

dt

+σ2X2dB2(t),

thus,

X2(t) ≥ X2(0) exp

{

t
(
r2(1 − βM3 + M3

K
) − e2

g2
H

− 1

2
σ 2
2 + σ2

B2(t)

t

)}

+ m1uκ1

∫ t

0
exp

{(
t − s

)(
r2(1 − βM3 + M3

K
)

− e2
g2

H − 1

2
σ 2
2 + σ2

B2(t, ω) − B2(s, ω)

t − s

)}

ds.

According to (7), we have that for the ε2, there is a T6
such that
∣
∣
∣
∣
B2(t, ω) − B2(s, ω)

t − s

∣
∣
∣
∣ < ε2, t − s > T6 a.s. (33)

In general, it is assumed that (33) is valid for any ω ∈
Ω2. Therefore, for all t > T 4 := T6 ∨ T 3 and ω ∈ Ω2,

X2(t) ≥ m1uκ1

∫ t

T 4
eL3vdv,

where

L3 := r2(1 − βM3 + M3

K
) − e2

g2
H − 1

2
σ 2
2 + σ2ε2.

If L3 = 0, then for all t > T 4

X2(t, ω) ≥ m1uκ1(t − T 4).

If L3 �= 0, then for all t > T 4,

X2(t, ω) ≥ m1uκ1

L3

(
eL3t − eL3T 4

)
.

As a result, if L3 ≥ 0, then

lim inf
t→+∞ X2(t, ω) = +∞,

and if L3 < 0, then

lim inf
t→+∞ X2(t, ω) ≥ −m1uκ1

L3
eL3T 4

,

which contradicts the previous hypothesis. So X2 are
persistent in mean. �
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Theorem 5 The androgen-dependent cells X1 will
become extinct if one of the following two conditions is
satisfied,

(i) R −U − 1

2
σ 2
1 − αR

r2

(
r2 − 1

2
σ 2
2 − e2

g2
H
)

< 0 and

αβ ≤ 1.

(ii) R −U − 1

2
σ 2
1 − R

r2β

(
r2 − 1

2
σ 2
2 − e2

g2
H
)

< 0 and

αβ > 1.

Proof Divide both sides of (28) by t to get

1

t
ln

X2(t)

X2(0)
= r2 − 1

2
σ 2
2 − r2β

K

〈
X1(t)

〉
− r2

K

〈
X2(t)

〉

+ m1u
〈 X1(t)

X2(t)

〉

−
〈 e2T (t)

g2 + X1(t) + X2(t)

〉
+ σ2

B2(t)

t
.

(34)

For case (i), computing (21)−αR

r2
(34) yields

t−1 ln
( X1(t)

X2(t)αR/r2

)

= t−1
(
ln X1(0) − αR

r2
ln X2(0)

)

+
(
R −U − 1

2
σ 2
1

)
− αR

r2

(
r2 − 1

2
σ 2
2

)

− R

K

(
1 − αβ

)〈
X1(t)

〉
− αRm1u

r2

〈 X1(t)

X2(t)

〉

−
〈 e1T (t)

g1 + X1(t) + X2(t)

〉

+ αR

r2

〈 e2T (t)

g2 + X1(t) + X2(t)

〉
+ σ1

B1(t)

t
− σ2

αR

r2

B2(t)

t
,

(35)

and then,

t−1 ln
( X1(t)

X2(t)αR/r2

)

≤ t−1
(
ln X1(0) − αR

r2
ln X2(0)

)
+ R

−U − 1

2
σ 2
1 − αR

r2

(
r2 − 1

2
σ 2
2

)

+ αR

r2

e2
g2

〈
T (t)

〉
− R

K
(1 − αβ)

〈
X1(t)

〉
+ σ1

B1(t)

t

− σ2
αR

r2

B2(t)

t
. (36)

Taking the superior limit on both sides of (36), and then
according to (6) and the conditions of (i), we get

lim sup
t→+∞

(

t−1 ln
( X1(t)

X2(t)αR/r2

))

≤ R −U

−1

2
σ 2
1 − αR

r2

(
r2 − 1

2
σ 2
2 − e2

g2
H
)

< 0 a.s.

Hence,

lim sup
t→+∞

X1(t)

X2(t)αR/r2
= 0 a.s.

Theorem 2 indicates that there exists a upper bound M3

of X2(t), therefore,

0 ≤ X1(t)

MαR/r2
3

≤ X1(t)

X2(t)αR/r2
a.s. (37)

Taking the superior limit on both side of (37) yields

lim sup
t→+∞

X1(t)

MαR/r2
3

= 0 a.s. (38)

For case (ii), computing (21)− R

r2β
(34) yields

t−1 ln
( X1(t)

X2(t)R/(r2β)

)

≤ t−1
(
ln X1(0) − R

r2β
ln X2(0)

)
+ R

−U − 1

2
σ 2
1 − R

r2β

(
r2 − 1

2
σ 2
2

)

+ R

r2β

e2
g2

〈
T (t)

〉
− R

Kβ

(
αβ − 1

)〈
X2(t)

〉

+ σ1
B1(t)

t
− σ2

R

r2β

B2(t)

t
. (39)

Taking the superior limit on both sides of (39), and
applying (6) and the conditions of (ii) gets

lim sup
t→+∞

(

t−1 ln
( X1(t)

X2(t)R/(r2β)

))

≤ R −U − 1

2
σ 2
1 − R

r2β

(
r2 − 1

2
σ 2
2 − e2

g2
H
)

< 0 a.s.

Using the same method as in case (i), we obtain

lim sup
t→+∞

X1(t)

MR/(r2β)
3

= 0 a.s. (40)
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According to (38) and (40), in both cases (i) and (ii),

lim
t→+∞ X1(t) = 0 a.s.

This completes the proof. �

Theorem 6 If the following conditions are satisfied,

R−U− 1

2
σ 2
1 − e1

g1
H− αR

r2
(r2− 1

2
σ 2
2 ) > 0, r2− 1

2
σ 2
2 − e2

g2
H > 0,

(41)

then androgen-dependent cells X1 are persistent in
mean.

Proof We make use of reduction to absurdity in the
following proof process. Supposing that the androgen-
dependent cells are not persistent in mean, then we

have that P(Ω3) > 0 holds for Ω3 =
{
ω ∈ Ω :

〈X1(ω)〉∗ = 0
}
. Thus, in view of ω ∈ Ω3, for any

small ε3, there is a T7 > 0 such that

〈X1(ω)〉 < ε3, t > T7. (42)

Noting that

dX2(t) ≥
{
r2 − r2β

K
X1 − e2

g2
T − r2

K
X2

}
X2(t)dt

+σ2X2dB2(t) a.s.,

we obtain

X2(t, ω) ≥
exp

{

t
(
r2 − 1

2
σ 2
2 − r2β

K

〈
X1(t)

〉
− e2

g2

〈
T (t)

〉
+ σ2

B2(t)

t

)}

1

X2(0)
+ r2

K

∫ t
0 exp

{
∫ s
0 [r2 − 1

2
σ 2
2 − r2β

K
X1(θ) − e2

g2
T (θ)]dθ + σ2B2(s)

}

ds

almost surely, thus,

1

X2(t, ω)
≤ 1

X2(0)
exp

{

− t
(
r2 − 1

2
σ 2
2 − r2β

K

〈
X1(t)

〉

− e2
g2

〈
T (t)

〉
+ σ2

B2(t)

t

)}

+ r2
K

∫ t

0
exp

{(
t − s

)(
− r2 + 1

2
σ 2
2

+ σ2
B2(s, ω) − B2(t, ω)

t − s

)

+ e2
g2

∫ t

s
T (ξ3)dξ3 + r2β

K

∫ t

s
X1(ξ3)dξ3

}

ds (43)

almost surely. It follows from (7) that for the ε3, there
exists a large T8 > 0 such that

∣
∣
∣
∣
B2(t, ω) − B2(s, ω)

t − s

∣
∣
∣
∣ < ε3, t − s > T8 a.s. (44)

It is supposed that (44) is valid for any ω ∈ Ω3 in
general. Substituting (42) and (44) into (43), we see
that for all t > T 5 := t0 ∨ T7 ∨ T8 and ω ∈ Ω3,

1

X2(t, ω)
≤ 1

X2(0)
eL4t + r2

K

{

I3 + eL4t − eL4T 5

L4

}

,

(45)

where

L4 = −r2 + 1

2
σ 2
2 + e2

g2
H + (σ2 + r2β

K
)ε3 < 0,

I3 =
∫ T 5

0
exp

{

v
(

− r2 + 1

2
σ 2
2 + σ2

B2(t − v, ω) − B2(t, ω)

v

)

+ e2
g2

∫ v

0
T (ξ4)dξ4 + r2β

K

∫ v

0
X1(ξ4, ω)dξ4

}

dv.

According to the Kolmogorov Theorem, there exists a
constant M4 > 0 such that

I3 ≤ M4, t > T 5,

and then for all ω ∈ Ω3,

lim sup
t→+∞

1

X2(t, ω)
≤ r2

K

(

M4 − eL4T 5

L4

)

.

Therefore, there exists a positive constant κ2 such
that

X2(t, ω) ≥ κ2, t > T 5. (46)
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Substituting (46) into (35) yields that for all t > T 5

and ω ∈ Ω3,

1

t
ln X1(t, ω) − αR

r2

1

t
ln X2(t, ω)

≥ 1

t

(
ln X1(0) − αR

r2
ln X2(0)

)
+
(
R −U − 1

2
σ 2
1

− e1
g1

H
)

− αR

r2

(
r2 − 1

2
σ 2
2

)

−
( R

K
− αβR

K
+ αRm1u

r2κ2

)〈
X1(t)

〉
+ σ1

B1(t, ω)

t

− σ2
αR

r2

B2(t, ω)

t
. (47)

From (46) and boundedness of X2(t), we get that

lim
t→+∞

ln X2(t)

t
= 0 a.s.

Notice that

lim
t→+∞

ln X1(t)

t
≤ 0 a.s.

As a consequence, taking the limit on both sides of (47)
leads to

0 ≥ R −U − 1

2
σ 2
1 − e1

g1
H − αR

r2

(
r2 − 1

2
σ 2
2

)
> 0,

where a contradiction occurs. So the androgen-
dependent cells X1(t) are persistent in mean. �


Remark 1 In model (2), when the parameters e1 and e2
are equal to zero and there is no pulse DC vaccination,
model (2) becomes model (1), and Theorem 4.8, (i)
and (iii) of Theorem 4.9 in reference [12] become the
special cases of Theorem 3, Theorem 4 and Theorem 5
of this article, respectively. Therefore, our model is an
extension of reference [12].

4 Numerical simulations

In this section, we use numerical simulations for model
(2) to show the effects of intercellular competition,
random disturbance and the cancer treatment combin-
ing ADT and immunotherapy on tumor dynamics. In
order to show approximate solutions with initial condi-
tions, we use the Milstein’s higher order method [36].

Rewrite (X1, X2, T, A, D) as (x, y, z, p, q) for con-
venience and get the discretization equations of model
(2) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk +
[
r1 pk

(
1 − xk + αyk

K

)

−
(
d1 + m1

)(
1 − pk

a0

)
− e1zk

g1 + xk + yk

]
xk�t

+ σ1xk
√�tζk + 1

2
σ 2
1 xk (ζ

2
k − 1)�t,

yk+1 = yk +
[
r2
(
1 − βxk + yk

K

)
yk

+ m1

(
1 − pk

a0

)
xk − e2zk yk

g2 + xk + yk

]
�t

+ σ2yk
√�tξk + 1

2
σ 2
2 yk (ξ

2
k − 1)�t,

zk+1 = zk +
( e3qk
g3 + qk

− μzk
)
�t,

pk+1 = pk +
(
γ (a0 − pk ) − γ a0u

)
�t,

qk+1 = qk − cqk�t,

where the step size �t = 0.01. At the impulsive point
series {nτ }n∈Z+ , the corresponding program is xk+1 =
xk+1, yk+1 = yk+1, zk+1 = zk+1, pk+1 = pk+1 and
qk+1 = qk+1 + h.

The parameter values are shown in Table 1, and
the initial values are set as X1(0) = 15 × 106 cells,
X2(0) = 0.1 × 106 cells, T (0) = 0 cells, A(0) = 30
nmol/L, D(0) = 0 cells [18,20]. Making use of the
numerical simulation method given above and apply-
ing parameters in Table 1, we verify the main results in
Sect. 3 and get some interesting conclusions.

Firstly, the inhibitory effect of stochastic perturba-
tion on cell proliferation is indicated by Fig. 1. We fix
u = 0.5, α = 0.9, β = 0.8, h = 40 × 106 (unit: cells)
and τ = 30 (unit: days), and the values of σ1 and σ2 are
labeled at the top of each subgraph. For each subgraph,
we calculate that the following conditions hold,

(a) R−U− 1

2
σ 2
1 − e1

g1
H− αR

r2
(r2− 1

2
σ 2
2 ) = 0.0152 >

0, r2 − 1

2
σ 2
2 − e2

g2
H = 1.4172× 10−4 > 0. Theo-

rem 6 indicates the persistence of AD cancer cells;

(b) R−U − 1

2
σ 2
1 = −0.027 < 0, r2 − 1

2
σ 2
2 − e2

g2
H =

1.4172 × 10−4 > 0. The conditions (iii) of Theo-
rem 3 show that AI cancer cells are persistent;

(c) R−U − 1

2
σ 2
1 = −0.027 < 0. The condition (i) of

Theorem 3 illustrates the extinction of AD cells;

123



2658 H. Yang, Y. Tan

Table 1 Parameter values

Parameters Biological Meaning Value Source

r1 Proliferation rate of AD cancer cells 0.025/day [18]

r2 Net proliferation rate of AI cancer cells 0.006/day [18]

d1 AD cancer cell proliferation rate 0.064/day [18]

m1 Maximum mutation rate from AD to AI cancer cells 0.00005/day [18]

K Tissue capacity for cancer cells 11 × 109 cells [18]

e1 Max killing rate of T-cells to AD cancer cells 0.75/day [18]

e2 Max killing rate of T-cells to AI cancer cells 0.75/day [18]

e3 T-cell max activation rate 20 × 106cells/day [18]

g1 AD cancer cell saturation level for T-cell kill rate 10 × 109cells [18]

g2 AI cancer cell saturation level for T-cell kill rate 10 × 109cells [18]

g3 DC saturation level for T-cell activation 400 × 106cells [18]

μ T-cell death rate 0.03/day [18]

γ Androgen clearance and production rate 0.08/day [18]

a0 Base level androgen concentration 20 nmol/L [14]

u The efficacy of ADT 0–1 [12]

c DC death rate 0.14/day [18]

Fig. 1 Inhibitory effect of
random disturbance of
environment on
proliferation of PCa
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Fig. 2 Treatment effect under different efficacy of ADT

(d) R − U − 1

2
σ 2
1 = −0.027 < 0, r2 − 1

2
σ 2
2 =

−0.014 < 0. The conditions (i i) of Theorem 3
demonstrate that AI cells go to extinction.

By comparing subfigures (a) and (c), subfigures (b) and
(d) of Fig. 1, it is obvious that random disturbance can
inhibit two types cancer cell proliferation, and when
the stochastic perturbation reaches a certain intensity,
it will even lead to the complete elimination of cancer
cells.

Secondly, Fig. 2 illustrates the influence of efficacy
of ADT on the development of cancer. We fix α = 0.9,
β = 0.8, h = 40 × 106 (unit: cells), τ = 30 (unit:
days), σ1 = 0.04 and σ2 = 0.02, change the value
of u to explore the efficacy of ADT on the develop-
ment of cancer. When 0.1 ≤ u ≤ 0.5, the graph shows
the persistence of AD and AI cancer cells, and that
the AI cancer cells are at a controllable level. How-
ever, as the value of u continues to increase from 0.5,
the AD cancer cells tend to be extinct, while the AI

cancer cells increase rapidly, which means that can-
cer has developed into more fatal metastatic castration-
resistant prostate cancer (mCRPC). Therefore, in this
simulation, u = 0.5 is the approximate optimal value
to control both AD and AI cancer cells, and AI cancer
cells cannot turn over AD cancer cells until more than
8 years when u ≤ 0.5.

Next, Fig. 3 implies the therapeutic effect of dif-
ferent frequency of DC vaccination. We fix u = 0.5,
h = 500×106 (unit: cells),α = 0.9,β = 0.8,σ1 = 0.7
and σ2 = 0.05 such that the condition (i) of Theorem
3 is satisfied (R −U − 1/2σ 2

1 = −0.027 < 0) and the
AD cancer cells go to extinction. We change the value
of τ to observe how the number of AI cancer cells
would evolve under different injection frequencies. It
is clear from Fig. 3 that more frequent DC vaccination
leads to the extinction trend of AI cancer cells. On the
other hand, by calculation, we gain that the value of
r2 − 1/2σ 2

2 equals 0.0047 in the three subfigures (a),
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Fig. 3 Treatment effect
under different frequency of
the DC vaccine injection

0 500 1000 1500 2000 2500 3000

Time(days)

0

1

2

AI
 c

el
ls

105 (a) =40

0 500 1000 1500 2000 2500 3000

Time(days)

0

1

2

AI
 c

el
ls

105 (b) =30

0 500 1000 1500 2000 2500 3000

Time(days)

0

1

2

AI
 c

el
ls

105 (c) =20

(b) and (c) and the values of r2 − 1/2σ 2
2 − e2H/g2 are

−0.0231, −0.0232 and −0.0238, respectively. There-
fore, this simulation shows that when the case 0 ≤
r2 − 1/2σ 2

2 ≤ e2H/g2 occurs, the AI cancer cells may
eventually become extinct.

Finally, through the comprehensive analysis of
Figs. 4, 5 and 6, we will obtain the effects of α and β

for the remission of mCRPC. Here, we fix u = 0.5,
h = 40 × 106 (unit: cells), τ = 30 (unit: days),
σ1 = 0.6 and σ2 = 0.05. It is obvious from Fig. 4
that larger α and smaller β can promote the reduction
in AD cancer cell number. However, at the stage of
mCPRC, the extinction of AD cancer cells wouldmean
the more fatal androgen independent cancer. In order
to more clearly get how the number of AI cancer cells
changes when α and β vary, respectively, in according
to Fig. 5, we draw the AI cancer cell quantity differ-
ences between different situations as in Fig. 6, which
indicates that in the process of decreasing the value of
α (see the subfigures (a) and (c)) or increasing the value
of β (see the subfigures (b) and (d)), the number of AI
cancer cells always tends to decrease. From Figs. 4, 5

and 6, it is apparent that smaller α and larger β may
play a role in delaying the occurrence of mCRPC and
improving the quality of life of patients.

5 Conclusion

In this paper, we study an impulsive stochastic model
for prostate cancer (PCa) with androgen depriva-
tion therapy (ADT) and dendritic cell (DC) vaccine
immunotherapy. In addition to the effects of differ-
ent competition intensities and random interference on
the proliferation of PCa cells are considered, the pulse
effect of periodic injection of DC vaccine is also taken
into consideration. The sufficient conditions of extinc-
tion and persistence inmean for cancer cells are derived
by using the Itô’s formula and the comparison theorem
of stochastic differential equation.

According to the sufficient conditions of cancer cell
extinction and persistence and Fig. 1 in numerical sim-
ulation, we can obtain that the higher the intensity of
environmental disturbance, the greater the inhibitory
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Fig. 4 AD cancer cell
densities versus time in days
under different values of α

and β
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Fig. 5 AI cancer cell
densities versus time in days
under different values of α

and β
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Fig. 6 Smaller α and larger
β can promote the reduction
in AI cancer cells in the
treatment of mCRPC

effect on the development of PCa. Then, from Fig. 2,
there is an optimal treatment efficacy of ADT, which
makes AD and AI cancer cells be well controlled and
prevents cancer from developing into a more terrifying
resistant cancer.Moreover, by combining the definition
of H = e3h/μ[g3(1− e−cτ )+ h] in theoretical results
andFig. 3 in numerical simulation,we can illustrate that
more frequent injections of theDC vaccine can prolong
the survival time of the patient with ADT. Finally, the
time series diagrams of Figs. 4 and 5 and the histogram
of Fig. 6 show that the greater the competitiveness β of
AD cancer cells or the smaller the competitiveness α of
AI cancer cells may delay the occurrence of metastatic
castration-resistant prostate cancer.

6 Discussion

Here are some discussions of our model and results
by comparing with some existing research and putting
forward the future work worthy of study. Firstly, our
model considers the DC vaccination by constructing
an impulsive differential equation to describe the pulse
effect of cell transient increase after vaccine injection,

which makes up for the lack of modeling the pulse
vaccination of PCa in current research.

Secondly, our theoretical results show that when the
parameters representing the lethality of T-cells to both
AD and AI cancer cells are equal to 0, the correspond-
ing conclusions about the extinction and persistence of
PCa cells in [12] can be obtained obviously. In addition,
from the sufficient conditions of extinction and persis-
tence of AD and AI cancer cells and the definition of
H = e3h/μ[g3(1−e−cτ )+h], one can see that a small
τ means the possibility of cancer cell extinction, which
is in accordance with the assert obtained by numera-
tion simulation in reference [18] that the more frequent
injections improve the survival time of the patient.

Thirdly, Theorem 3 shows that under the assump-
tion that R−U −1/2σ 2

1 < 0, the AI cancer cells go to
extinctionwhen r2−1/2σ 2

2 < 0whilewill be persistent
in mean when r2 −1/2σ 2

2 − e2H/g2 > 0. Our theoret-
ical analysis does not get the dynamic behavior of AI
cancer cells under the case 0 ≤ r2 − 1/2σ 2

2 ≤ e2H/g2
due to the complexity of tumor immune response with
pulse effect. But Fig. 3 shows that the AI cancer cells
will eventually become extinct in a certain period of
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timewhen0 ≤ r2−1/2σ 2
2 ≤ e2H/g2. The correspond-

ing theoretical analysis and more detailed numerical
simulation are remained for our future research.

Finally, another issue worth discussing is that
besides the small disturbances in the internal environ-
ment, there are some large perturbations that can also
affect the cancer cell proliferation. For example, if a
patient’s mood suddenly collapses due to certain stim-
ulation, it may lead to faster growth and spread of can-
cer cells, correspondingly, the parameters inmodel will
switch from the original value to another. Liu and his
coauthors point out that such switch canbedescribedby
the region-switching system and investigate the effects
of regional switch on cancer cell growth [37,38]. There-
fore, it is interesting to extend ourmodel by introducing
region-switching system and observe how the similar
fluctuations influence cancer cell growthwithADT and
pulse immunotherapy.
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