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Abstract Fabricated by high elastic materials, soft
actuators provide a prominent solution for soft reha-
bilitation gloves, soft graspers and locomotion robots.
However, the control of soft actuators is a grant chal-
lenge due to dynamic modeling error and unavail-
able system states. This paper proposes an observer-
based continuous adaptive sliding mode controller for
soft actuators in the presence of system uncertain-
ties without knowledge of its upper bound in prior.
By exploiting a novel nonsingular fast terminal slid-
ing mode (NFTSM) surface and a high-order sliding
mode (HOSM) observer, the proposed control scheme
features adaptive-tuning gains, continuity, singularity-
free, stronger robustness and higher tracking accuracy.
The stability of the proposed controller is analyzed
by the Lyapunov method. Corresponding comparative
simulations and experiments of a soft pneumatic net-
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work actuator verify the effectiveness and related fea-
tures of the proposed controller.
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1 Introduction

Soft actuators bring a state-of-the-art solution for vig-
orous applications, such as soft gloves [1,2], knee assis-
tive devices [3] and soft bio-inspired fishes [4] due
to the inherent flexibility, safety and adaptivity [5].
In most applications, velocity is generally required by
feedback control laws for high-precision position con-
trol. In the case of rigid robots, the velocity information
can be accuratelymeasured by solid-state sensors, such
as tachometers, speedometers and gyroscopes. How-
ever, these rigid velocity sensors cannot be installed
on soft actuators due to the damage to their charac-
ters, such as flexibility, safety [6]. Moreover, the flex-
ibility, stepping from the high-dimensional continu-
ous deformation of soft materials, impedes an accurate
dynamic model of soft actuators. The system uncer-
tainties, including unmodeled dynamics, external dis-
turbance, should be practically considered in controller
design. Therefore, both lacking state information and
containing unavoidable uncertainties congregate on the
position control obstacles of soft actuators.
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The observer-based robust control method is one
of the most applicable control schemes for soft actua-
tors. Although some famous controllers and observers,
including neural network controller [7], online learn-
ing controller [8], the Luenberger observer [9], have
been successfully utilized on the soft actuators, slid-
ing mode controllers (SMCs) have captured particu-
lar attention due to well-known robustness [10–12].
For example, Khawwaf et al. adopted an extended
state observer to estimate lumped system uncertain-
ties, and then, a linear SMC and a nonsingular terminal
SMC were separately addressed to assure the system
robustness [13]. Wang et al. employed the radial basis
function neural network to estimate the unmodeled
dynamics and system states and proposed a linear SMC
for the trajectory tracking control for dielectric elas-
tomer actuators [14]. For better control performances,
existing observer-based SMCs remain vulnerable to be
improved by three aspects: continuity, adaptivity and
finite-time stability.

The discontinuous controller induces the chattering
phenomenon, and this phenomenon not only increases
the risk of equipment failure but also motivates the
unmodeled dynamics at high frequency. To eliminate
the chattering phenomenon, the super-twisting algo-
rithm (STA) enables second-order sliding mode con-
trollers one of the most applicable controllers due to
continuous control signal, finite-time convergence of
sliding variance and Lipschitz uncertainty/perturbation
compensation [15]. Due to these features, the STA is
widely used as controllers and observers, and it has
been successfully utilized as a direct torque controller
for a variable-flux memory machine [16] and a boost
inverter observer for a hybrid PV-battery system [17].
However, the continuity of the second-order sliding
mode control schemewill not be achieved if one simul-
taneously adopts an STA-based observer (STO) and an
STA-based controller (STC) [15,18].

The adaptivity of robust controllers releases the
prior knowledge of upper bounds of system uncertain-
ties, which is difficult to be priorly known in practice
[19,20]. The adaptivity of STC has been also investi-
gated to tackle this engineering problem lying in lots
of applications, such as automatic carrier landing of
aircraft [21], space debris capturing [22], projective
synchronization of flexible manipulator [23] and robot
manipulators [24]. Despite this, it is of great impor-
tance to employ the adaptive observer-based STC to
soft actuators for improving system performances.

Compared with asymptotically stable systems, the
finite-time stabilizing closed-loop systemsusually show
stronger robustness properties [25]. To improve con-
vergence rate on the sliding mode surface, a termi-
nal sliding mode surface [26] and a fast terminal slid-
ing mode (FTSM) surface [27] were, respectively,
employed for microgrid and spacecraft simulations.
Although the convergence rate of system states on the
(fast) terminal sliding mode surface is faster than the
linear sliding mode surface, the singularity may be
the biggest obstacle for physical applications [28]. To
tackle the singularity problem and meanwhile guaran-
tee the finite-time convergence of system states on the
sliding surface, a nonsingular terminal sliding mode
surface and a nonsingular FTSM (NFTSM) surface
have been investigated and utilized for various appli-
cations recently, such as noncooperative target space-
crafts [29], unmanned aircraft systems [30] and redun-
dantly parallel mechanism systems [31]. It should be
noted that the robustness of the sliding mode controller
mainly lies in the sliding phase, where the slidingmode
surface is insensitive to system perturbations and dis-
turbance [32,33]. But on the reaching phase, the robust-
ness of SMC is the same as other controllers. Along this
line of thought, the convergence rate of the sliding vari-
ance under the NFTSM is slowed down by a feedback
term, which induces that the robustness of the closed
loop is degraded [34,35]. Furthermore, the STA is dif-
ficult to be applied on the NFTSM surface.

To the authors’ best knowledge, the integration
of continuity, adaptivity and finite-time stability of
observer-based SMC schemes is still open. This paper
is focused on observer-based continuous adaptive slid-
ing mode control for soft actuators, and the main con-
tributions are summarized as follows.

• A novel tracking control scheme is proposed for
soft bending actuators, and it features continuity,
adaptivity, singularity-free, without velocity mea-
surements and stronger robustness.

• By exploiting a novel sliding mode surface s, an
improved STC is designed with adaptive-tuning
gains and a faster convergence rate of s, while the
upper bound of system uncertainties is not required
in prior.

• Tracking errors of the closed-loop system converge
to zero, rather than predefined manifold, and it is
proved by the Lyapunov method.
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• Corresponding comparative simulations and exper-
iments on a pneumatic network actuator verify the
effectiveness of the proposed control scheme.

The rest of the paper is organized as follows. Sec-
tion 2 presents the dynamic model of soft actuators
in the form of the Euler–Lagrangian equation and
describes the control problem. In Sect. 3, the pro-
posed control scheme is constructed, and the stability
is proved under the Lyapunov method. In Sect. 4, the
proposed control scheme is analyzed to show the corre-
sponding features. In Sect. 5, comparative simulations
and experiments show the effectiveness of the proposed
controller. Finally, Sect. 6 concludes this paper.

2 Model description and problem statement

Based on the Euler–Lagrangian method, the dynamic
model of soft bending actuators can be described as
[36,37],

M (q) q̈ + C (q, q̇) q̇ + G (q) = u + d0, (1)

where q, q̇ ∈ Rn×1 are the bending angle and veloc-
ity of the actuator, respectively.M (q) ,C (q, q̇) ,G (q)

are the inertia matrix, the centripetal and Coriolis
matrix and the gravitational force and stress matrix,
respectively. u is the control input, and d0 denotes
lumped system uncertainties including external distur-
bance, unmodeled dynamics and parameter variations.

As one of themechanical systems, soft actuators also
satisfy the following mechanical properties for each
q, q̇ [36,37].

Property 1 The inertia matrix M(q) is symmetrical
and positive definite.

Property 2 Ṁ (q) − 2C (q, q̇) is a skew-symmetric
matrix, such that xT

(
Ṁ (q) − 2C (q, q̇)

)
x = 0 for

each x ∈ R
n×1.

Property 3 Since C (q, q̇) is bounded in q and linear
in q̇ , then one has

||C(q, q̇)|| ≤ Kc||q||,
C (q, q̇) x = C (q, x) q̇, (2)

where Kc is a positive constant and || · || denotes the
Euclidean 2-norm.

To facilitate controller development, the following
assumptions and lemmas are given first.

Assumption 1 The desired trajectory qd is supposed
to be known, bounded and twice differential, which
implies that q̇d , q̈d exist.

Assumption 2 The lumped system uncertainty d0 is
assumed to be bounded and differentiable, yet the
knowledge of its upper bound is unknown in prior.

Lemma 1 [38] If there exists a continuously differ-
entiable positive definite function: V (x) : U → R
satisfying the following inequality,

V̇ (x) ≤ −αV (x) − βV γ (x) , tγ ≥ t0, V (x0) ≥ 0,(3)

where U is a domain U ∈ Rn that contains the origin
x = 0 and α, β > 0, 0 < γ < 1 are constants, then
the equilibrium point x = 0 is exponential stable with
the settle time

tγ ≤ 1

α(1 − γ )
ln

αV 1−γ (x0) + β

β
, (4)

where x0 is any given initial states.

According to Lemma 1, the sliding mode surface
and estimated errors will be proved to be finite-time
convergent in next section.

Plant:Defining system states as q1 = q, q2 = q̇ for
convenience, then the system (1) is reformed as
{
q̇1 = q2,
q̇2 = f (q1, q2) + τ + d1,

(5)

where f (q1, q2) = −M−1(q1)C (q1, q2) q2, d1 =
M−1(q1)d0, and τ = M−1(q1)(u −G(q1)) is an addi-
tional controller designed in the next section.

Submit tracking errors e1 � q1 − qd , e2 � q2 − q̇d
into the system model (5), one gets,
{
ė1 = e2,
ė2 = f (q1, q2) + τ − q̈d + d1.

(6)

Target: This paper is dedicated to constructing
an observer-based continuous adaptive SMC τ =
τ(t, q, qd , q̇d , q̈d) for the plant (6) in the presence of
system uncertainties without knowledge of its upper
bound in prior, such that system states can track the
desired trajectories.

Notation 1: A matrix K > 0 represents the matrix
is positive definite, and

λmin (K ) In ≤ K ≤ λmax (K ) In, (7)

in which λmin (·) , λmax (·) denote the minimal and
maximal eigenvalues of K , respectively.

Notation 2: For convenience, we denote x [a] =
|x |asign(x), where sign(·) is the sign function.
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Fig. 1 The proposed observer-based continuous adaptive SMC scheme

3 Observer-based continuous adaptive SMC
scheme

To achieve control target, the proposed observer-based
SMC scheme mainly consists of a high-order sliding
mode (HOSM) observer, an NFTSM and an STC as
illustrated in Fig. 1. First, the HOSM-based observer
is utilized to estimate unmeasurable states and further
construct a continuous controller. Second, an NFTSM
is employed for the finite-time stability of system states
on the surface, the nonsingularity of control inputs and
the robustness of the closed-loop system. Finally, an
adaptive controller is achieved by the STA.

3.1 Observer utilization

The HOSM-based observer is [29]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂q1 = −k11(q1 − q̂1)[
2
3 ] − k12(q1 − q̂1) + q̂2,

˙̂q2 = −k21(q1 − q̂1)[
1
2 ] − k22(q1 − q̂1)

+ f
(
q1, q̂2

)+ τ + q̂3,˙̂q3 = −k31sign(q1 − q̂1),

(8)

where q̂1, q̂2 and q̂3 are the estimation of angle
q1, velocity q2 and system uncertainties, respectively.
k11, k12, k21, k22, k31 are positive-definite diagonal
matrices. Noticing that the right-hand side of the above

equations is discontinuous, thus it means the Filippov’s
solution in this paper.

Defining estimated errors as q̃1 = q̂1 − q1, q̃2 =
q̂2 − q2, q̃3 = q̂3 − d1, then the model (8) is rewritten
as⎧
⎪⎪⎨

⎪⎪⎩

˙̃q1 = −k11q̃
[ 23 ]
1 − k12q̃1 + q̃2,

˙̃q2 = −k21q̃
[ 12 ]
1 − k22q̃1 + q̃3 + d2,˙̃q3 = −k31sign(q̃),

(9)

where d2 = f (q1, q̂2) − f (q1, q2) + d1 is a bounded
lumped uncertainties according to Assumption 2. The
estimated errors (9) have been proved to be finite-time
convergent in previousworks [29,39–41], and the proof
is omitted here for clarity.

3.2 Controller design

Inspired by [34,35,42], the sliding mode surface is
selected as

s = ê2 + λ11e1 + λ12φ(e1), (10)

where ê2 = q̂2 − q̇d is an estimated tracking error,
λ11, λ12 are positive constants, and

φ(e1) =

⎧
⎪⎨

⎪⎩

e[a]1 , if s̄ = 0,

e[a]1 , if s̄ �= 0 ∩ |e1| ≥ σ,

μ1e1 + μ2e
[b]
1 , if s̄ �= 0 ∩ |e1| < σ,

(11)
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in which s̄ = ê2 + λ13e1 + λ14e
[b2]
1 , 1

2 < a < 1, 1 <
b < 2, 0 < b2 < 1, μ1 > 0, μ2 > 0, σ > 0. There-
fore, the time derivative of φ(e1) is

φ̇(e1) =

⎧
⎪⎨

⎪⎩

a|e1|a−1ė1, if s̄ = 0

a|e1|a−1ė1, if s̄ �= 0 ∩ |e1| ≥ σ

μ1ė1 + μ2b|e1|b−1ė1, if s̄ �= 0 ∩ |e1| < σ

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a|e1|a−1(q̂2 − q̃2), if s̄ = 0,

a|e1|a−1(q̂2 − q̃2), if s̄ �= 0 ∩ |e1| ≥ σ,

(μ1 + μ2b|e1|b−1)(q̂2 − q̃2), if s̄ �= 0 ∩ |e1| < σ.

(12)

According to the sliding mode surface definition
(10), s, ṡ are continuous if and only if the following
conditions are satisfied,
{

σ [a] = μ1σ + μ2σ
[b],

a |σ |a−1 = μ1 + μ2b |σ |b−1 .
(13)

Therefore, one has
{

μ1 = b−a
b−1σ a−1,

μ2 = a−1
b−1σ

a−b.
(14)

The continuity of s and ṡ is a necessary condition for
the construction of a continuous controller.

Theorem 1 Consider the system (6) with Assump-
tions 1 and 2. The control target will be achieved if
the controller τ is constructed as

τ = k21q̃
[ 12 ]
1 + k22q̃1 − f

(
q1, q̂2

)− q̂3

+q̈d − λ11ê2 − λ12φ1(e1)

−ks1s
[ 12 ] − ks2s −

∫ t

0
kp1sign (s) − kp2sdtσ ,

(15)

where the sliding surface s is defined as (10), and

φ1(e1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a|e1|a−1q̂2, if s̄ = 0,

a|e1|a−1q̂2, if s̄ �= 0 ∩ |e1| ≥ σ,

(μ1 + μ2b|e1|b−1)q̂2, if s̄ �= 0 ∩ |e1| < σ.

(16)

The controller gains ks1, ks2, kp1, kp2 are updated by
⎧
⎨

⎩

ks1 = kz1
√
z, ks2 = kz2z,

kp1 = kz3z, kp2 = kz4z2,

ż = kzus[ 12 ],
(17)

where kzu is a positive constant, and kz1, kz2, kz3, kz4
should be properly selected to satisfy

− 9k2z1k
2
z3 − 8kz2k

2
z3 + 16kz2kz4 > 0. (18)

Proof The time derivative of s along the tracking error
system (6) is

ṡ = ˙̂e2 + λ11ė1 + λ12φ̇(e1)

= ˙̂q2 − q̈d + λ11e2 + λ12dm + λ12φ̇(e1)

= −k21|q̃|psign(q̃1) − k22q̃1 + f
(
q1, q̂2

)

+τ + q̂3 − q̈d + λ11e2 + λ12dm + λ12φ̇(e1)

= −ks1s
[ 12 ] − ks2s

−
∫ t

0
kp1sign (s) − kp2sdtσ + d3, (19)

where d3 = −λ11q̃2 + q̃3 + λ2d2 is differentiable, and
there exists an unknown positive constant D, such that
|d3| < D under Assumption 2. Therefore, the equation
(19) can be rewritten as
{
ṡ = −ks1s[ 12 ] − ks2s + ξ,

ξ̇ = −kp1sign (s) − kp2s + ḋ3,
(20)

where ξ is an auxiliary state. The finite-time stability of
the improved STA system (20) is proved in Appendix
A for brevity. Therefore, the sliding mode surface is
reached in finite time, i.e., s(t) = 0, t > ts , where ts is
the reaching time. Further, the system is then enforced
on the sliding surface in the rest of time since ṡs <

0,∀s �= 0.
As introduced inSubsection 3.1, the estimated errors

also converge to zero in finite time, and hence, ê2 con-
verges to e2 in finite time. Therefore, on the sliding
phase, the system is divided into three cases according
to the range of s̄.

Case 1: s̄ = e2 +λ21e1 +λ22e
[b2]
1 = 0, 0 < b2 < 1,

which induces that the tracking error converges to zero
in finite time.

Case 2: s̄ �= 0 ∩ |e1| ≥ σ , then s = e2 + λ11e1 +
λ12e

[a]
1 = 0, 1

2 < a < 1, which is also a fast terminal
sliding mode surface, and the tracking error converges
to zero in finite time.

Case 3: s̄ �= 0 ∩ |e1| < σ , then s = e2 + λ11e1 +
λ12μ1e1 +λ12μ2e

[b]
1 = 0, 1 < b < 2, and the tracking

error asymptotically converges to zero as time tends
to infinite. However, it should be noted that |e1| <

σ in this case, where σ is an arbitrary small positive
constant, and thus, the tracking error can be arbitrarily
small.

This completes the proof.

�

Remark 1 As illustrated in the proof, the estimated
error system and the tracking error system are both
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finite-time stable, i.e., the separation principle is satis-
fied, which enables us to design the observer and the
tracking control law separately [43,44].

Remark 2 Comparedwith the conventional STA,which
either does not contain or only has one damping term
ks2s [45], the improved STA (9) contains two damp-
ing terms ks2s, kp2s to take a shorter convergence time
and reduce the overestimation of error. As proved in
Appendix A, the extended damping term kp2 = kz4z2

is significantly important to guarantee the positive def-
inite matrices A4, A5, which is one of the key steps of
the proof.

Remark 3 The initial gains of the controller are prop-
erly chosen to satisfy the condition (18), while they
will increase adaptively according to the uncertainties
bound since the updated law is always positive except
s = 0 in (17). However, s may not exactly be zero due
to communication delays and measurement noises in
practice. The boundary layer technical can be used to
limit the updated law, i.e.,

ż =
{
kzus[ 12 ], if |s| > σs,

0, if |s| ≤ σs,
(21)

where σs is a positive constant.

Remark 4 The proposed control scheme consists of a
HOSM-based observer (8), an STA-based controller
(15) and an NFTSM (10). The observer is followed
by the previous work [29], and thus, the effect of the
parameters on the performance of the closed-loop sys-
tem is similar. For example, increasing damping gains
k12, k22 reduces overshoot and settle time, while it also
increases the risk of saturation controllers. For the con-
troller, damping gains k12, k22 are a trade-off between
dynamic performances and saturation risks, and other
parameters should satisfy the condition (18) to guar-
antee finite-time stability. For the sliding mode sur-
face, a smaller σ may bring in higher control precision
as indicated by (10) and (11). However, we can know
from (12) that an inappropriately small σ will drive the
system trajectory near the singularity point and result
in the degradation of the dynamic performances. For
the NFTSM, λ13, λ14 are related to the settle time of
tracking errors on the terminal sliding mode surface s̄
according to the finite-time stability lemma. Similarly,
λ13, λ14, μ1, μ2 make similarly effects on the surface
s. With above observations, the feedback gains of the
proposed controller can be suitably chosen after trial-
in-errors in the following simulations and experiments.

4 Discussion of control scheme

Compared with relevant control schemes, the proposed
scheme characterizes as continuity, singularity-free,
faster convergence rate and higher tracking accuracy.

4.1 Continuity

The improved STA can be also utilized as an observer
for the system (6), which takes a form as
{ ˙̂q1 = −k1aq̃[ 12 ] − k1bq̃ + q̂2,˙̂q2 = −k1csign(q̃) − k1d q̃ + f

(
q1, q̂2

)+ τ1.
(22)

Moreover, a LSM is chosen as

s1 = ê2 + λ1e1. (23)

Therefore, the time derivative of s1 is

ṡ1 = ˙̂e2 + λ1ė1 = ˙̂e2 + λ1e2

= ˙̂q2 − q̈d + λ1q̃2 + λ1ê2

= k1csign (q̃1) + k1d (q̃1) + f
(
q1, q̂2

)

+τ1 − q̈d + λ1q̃2 + λ1ê2. (24)

If the controller τ1 is constructed as

τ1 = − f
(
q1, q̂2

)+ q̈d − λ1ê2 − k1csign (q̃1)

−k1d q̃1 − k1es
[1/2]
1 − k1 f s1

−
∫ t

0
k1gsign (s1) + k1hs1dσ

−
∫ t

0
−λ1k1csign (q̃1) − λ1k1d q̃1dσ, (25)

and submitting the controller (25) into (24), then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṡ1 = −k1es
[ 12 ]
1 − k1 f s1 + ξ1,

ξ̇1 = −k1gsign (s1) − k1hs1
+λ1k21sign (q̃1) + λ1k22q̃1dσ + λ1 ˙̃q2

= −k1gsign (s1) − k1hs1 + λ1ḋ2,

(26)

where ξ1 is an auxiliary state.
Consequently, the plant is converted into an improved

STA scheme, but the controller (25) is discontinuous
since it contains the term k1csign(q̃1). By exploiting
the HOSM observer (8), the proposed controller (15)
is continuous.

4.2 Singularity-free

Toachieve a faster convergence rate on the slidingmode
surface as well as a continuity controller, a finite-time
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convergent FTSM surface is developed for the system
(6)

s2 = ê2 + λ21e1 + λ22e
a2
1 , (27)

where λ21, λ22 > 0, 0 < a2 < 1 are constants, and the
velocity is estimated by HOSM-based observer (8).

Therefore, the time derivative of s2 is

ṡ2 = ˙̂e2 + λ21ė1 + aλ2ė
a2−1
1

= ˙̂e2 + λ21e2 + aλ2e
a2−1
2

= ˙̂q2 − q̈d + λ21q̃2 + λ21ê2

+ a2λ22q̃
a2−1
2 + a2λ22ê

a2−1
2

= −k21q̃
[p]
1 − k22q̃1 + f

(
q1, q̂2

)− q̈d

+ τ2 + λ21ê2 + a2λ22ê
a2−1
2

+ λ21q̃2 + a2λ22q̃
a2−1
2 . (28)

If the robust controller τ2, instead of τ in (6), is con-
structed as

τ2 = k21q̃
[ 12 ]
1 + k22q̃1 − f

(
q1, q̂2

)+ q̈d

− λ21ê2 − a2λ22ê
a2−1
2 − k2es

[ 12 ]
2 − k2 f (s2)

−
∫ t

0
k2gsign (s2) + k2hs2dσ, (29)

and submitting τ2 into (28), then one gets
{
ṡ2 = − k2es

[ 12 ]
2 − k2 f s2 + ξ2,

ξ̇2 = − k2gsign(s2) − k2hs + ḋ4,
(30)

where ξ2 is an auxiliary state;d4 = λ21q̃2+a2λ22q̃
a2−1
2 .

Therefore, the system is also converted into the STA
scheme, but the controller τ2 should contain a term
êa2−1
2 , 0 < a2 < 1, which induces the singular problem
when ê2 = 0, e1 �= 0. In contrast, the proposed control
law (15) is nonsingular.

4.3 Robustness

An alternativemethod to deal with the singularity prob-
lem under the condition of finite-time convergence rate
on the sliding mode surface, except the proposed con-
troller, is to design a NFTSM as

s3 = e1 + λ31e
[a3]
1 + λ32ê

[b3]
2 , (31)

where λ31, λ32 > 0, 1 < b3 < 2, a3 > b3 are con-
stants, and the velocity is estimated by HOSM-based
observer (8). Therefore, the time derivative of s3 is

ṡ3 = ė1 + λ31a3|e1|a3−1ė1 + λ32b3|ê2|b3−1 ˙̂e2

= e2
(
1 + λ31a3 |e1|a3−1

)

+ λ32b3|ê2|b3−1
(
−k21q̃

[p]
1 − k22q̃1

)

+ λ32b3|ê2|b3−1 ( f
(
q1, q̂2

)+ τ3 + q̂3 − q̈d
)
,

(32)

where the controller τ3 is constructed as

τ3 = k21q̃
[ 12 ]
1 + k22q̃1 − f

(
q1, q̂2

)− q̂3 + q̈d

− 1

λ32b3
ê[2−b3]
2

(
1 + λ31a3 |e1|a3−1

)

− k3gs
[ 12 ]
3 − k3hs3. (33)

Submitting the controller (33) into (32), then

ṡ3 = λ32b3|ê2|b3−1
(
−k3gs

[ 12 ] − k3hs3
)

+ q̃2
(
1 + λ31a3 |e1|a3−1

)
. (34)

The stability of s3 under controller (33) has been
proved by the Lyapunov method [46]. Although the
convergence rate on the sliding phase is guaranteed by
theNFTSM, the convergence rate on the reaching phase
is slowed down by the term |ê2|b3−1, especially when
ê2 is small. For example, ê2 = 0.25, b3 = 1.5, and
then, |ê2|b3−1 = 0.5. The prolonged reaching phase
implies that the robustness of the controller is attenu-
ated. Besides, the STA is difficult to be utilized on this
sliding model surface for constructing adaptive-tuning
controllers.

4.4 Tracking accuracy

If the HOSM-based observer (8) is employed with a
LSM (23), the controller can be constructed as

τ4 = k21q̃
[ 12 ] + k22q̃1 − f

(
q1, q̂2

)+ q̈d − λ1ê2

− k4es
[ 12 ]
1 − k4 f s1

−
∫ t

0
k4gsign (s1) + k4hs1dσ ; (35)

therefore, one gets the same structure as (30). It is noted
that the singularity-free of τ4 and convergence rate of
s1 can be both guaranteed, but the biggest problem is
that the tracking error is asymptotically converged to
zero, which means the error will not be zero in finite
time.

The slidingmode surface (10) is inspired fromprevi-
ous works [34,35,42], but the tracking error converges
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to a predefined manifold, not zero and controllers in
previous works require the measurable velocity feed-
back. Thanks to the HOSM-based observer and STC,
both estimated and tracking errors of the closed-loop
systemwill either converge to zero or an arbitrary small
manifold in finite time, and it will tend to zero there-
after.

Although an STA-based controller is continuous, the
scheme consisted of an STA-based observer and an
STA-based controller is discontinuous. Furthermore,
system states on the LSM are asymptotically stable,
whereas tracking errors cannot converge into zero in
finite time. To achieve continuous inputs and finite-
time stability, an HOSM-based observer and an FTSM
are both utilized in the HOSM+FTSM scheme. How-
ever, the biggest challenge of the HOSM+FTSM lies
in the singular problem. An NFTSM is applied to
HOSM+NFTSM to eliminate the singular problem, but
the convergence rate of the surface is slowed down by
a feedback term, which implies that the robustness of
the system is degraded. The contradiction between the
singularity of FTSM and the degraded robustness of
NFTSM is solved by a novelNFTSM, and thus, the pro-
posed control scheme has nonsingularity and stronger
robustness. Furthermore, the proposed scheme is also
adaptive and continuous due to the STA-based con-
troller and the HOSM-based observer. The above dis-
cussion is shown in Table 2.

5 Verification

5.1 Dynamic model

As illustrated in Fig. 2a, a pneumatic network actuator
mainly consists of a bottom layer and a top layer. The
bottom layer is smooth, flexible but inextensible due
to an embedded inextensible layer (usually fabricated
by paper). In contrast, the top layer is concave–convex,
flexible and extensible attributing to deformable cavity
chambers. If the internal pressure increases, the neigh-
boring chamberswill be inflated and squeezed into each
other, but the bottom layer holds a constant length.Con-
sequently, the pneumatic network actuator is bent to an
angle as shown in Fig. 2b.

As shown in Fig. 2a, the total width, length and
height of the pneumatic network actuator are denoted
as W, L , H , respectively. In detail, W1 is the width of
the anterior wall. L1, L2, L3 denote the length of the

Fig. 2 A pneumatic network actuator with full structure param-
eters before and after inflating. (a) A schematic diagram of the
initial state of a pneumatic network actuatorwith full geometrical
parameters. (b) A pneumatic network actuator is vertically fixed
as shown on the top-left with three zoomed-in inflated chambers.
The fixed point, horizontal direction and vertical direction are set
as the coordinate origin, x-axis and y-axis, respectively

exterior wall, the distance between two exterior walls
of a chamber and the distance between exterior walls
of neighboring chambers. H1, H2, H3 are the height of
the top wall, the exterior wall and the bottom layer,
respectively.

Under the coordinate defined in Fig. 2b, the dynamic
model of the pneumatic network actuator is addressed
by exploring the Lagrangian method and Taylor expan-
sions of sine and cosine functions [47],

M (q) q̈ + C (q, q̇) q̇ + Gv (q̇) = τ + d0, (36)

where

M (q) = mL2
(

1

20
− q2

504

)
,

C (q, q̇) = −mL2qq̇

504
,

Gv (q) = mgLq

12
,

τ = kp p,

and m, g are the mass and gravity coefficient, respec-
tively. Since the pneumatic network actuator is actu-
ally driven by internal pressure p, the controller will
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be eventually converted into the pressure with an esti-
mated coefficient kp [47]. It should note that the
unmodeled dynamics and external disturbances are
seemed as system uncertainties, which are contained
in d0.

5.2 Simulation

To verify the effectiveness, continuity, singularity-free,
robustness and tracking accuracy, the proposed control
scheme is compared with four other control schemes.
For each control scheme, the related observer, sliding
mode surface and controller are presented in Table 1.
The gains of observers, sliding mode surfaces, con-
trollers are selected after trials and errors, seeAppendix
B for details. In addition, the geometrical parameters
of the simulated actuator are also omitted here and pre-
sented in Appendix B for brevity. The reference tra-

jectory is set as qd = 0.9 + 0.8 sin(0.2t − π

2
) (rad),

where the disturbance is d0 = sin(t). Corresponding
simulation results are, respectively, shown in Figs. 3–8.

5.2.1 Continuity and singularity-free

The continuity and singularity of comparative control
inputs are illustrated in Fig. 3, and details are zoomed
and shown in Fig. 4. As presented in Fig. 4a and b (the
red curve), the continuity of STC is not achieved if the
unavailable system states are estimated by STO, which
accords with the description of the control scheme
STO+LSM.

Although the HOSM+FTSM presents continuous
inputs on the sliding phase, the singularity problem
presents a high-gain oscillation phenomenon as pre-
sented in Fig. 3b. This problem is stepped from the
singular term in the controller (29), which leads to a
risk of the saturation controller and a great challenge
for practical applications.

5.2.2 Robustness

Comparative sliding mode surfaces among different
control schemes are shown in Fig. 5. All sliding mode
surfaces can converge to zero in finite time. However,
for the HOSM+NFTSM, the convergence time is sig-
nificantly prolonged by the term of |ê2|b−1 as depicted
in Fig. 5a (the black curve), where the reaching time is

(a)

(b)

Fig. 3 Comparative control input pressure among the five con-
trol schemes

(a)

(b)

Fig. 4 The insets of input pressure at t ∈ [0, 10] and t ∈
[28, 35], respectively
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Table 1 Comparative observers, sliding model surfaces and controllers

Name Observer Surface Controller

STO+LSM STO (22) LSM (23) STC (25)

HOSM+LSM HOSM (8) LSM (23) STC (35)

HOSM+NFTSM HOSM (8) NFTSM (31) STC (33)

HOSM+FTSM HOSM (8) FTSM (27) STC (29)

Proposed HOSM (8) NFTSM (10) STC (15)

(a)

(b)

Fig. 5 The results of sliding mode surfaces

about 6.46s. The prolonged reaching phase implies that
the control scheme HOSM+NFTSM posses weaker
robustness than other schemes. In comparison, the pro-
posed control scheme presents the shortest reaching
phase to verify the strongest robustness. The reaching
time of each control scheme is summarized in Table 2.

5.2.3 Tracking Accuracy

The root-mean-square error,

RMSE �

√√√√ 1

N

N∑

i=1

(xd(i) − x(i))2, (37)

is utilized to compare tracking accuracy among these
control results depicted in Figs. 6–8, where xd , x are a
desired and an actual value, respectively. According to
the definition, a smaller RMSE implies a better track-
ing accuracy, or vice versa. As illustrated in Fig. 6, the
control scheme HOSM+NFTSM has a slower conver-
gence rate of sliding mode surface than other control
schemes; meanwhile, its RMSE (3.32 degrees) is rela-
tively large among these control strategies. As analyzed
before, the term |ê2|b2−1 in HOSM + NFTSM not only
attenuates the system robustness but also enlarges the
RMSE. Although the control scheme STO + LSM has
a relatively smaller RMSE (2.87 degrees) than HOSM
+ NFTSM, its RMSE is still higher than other con-
trol schemes because of the chattering phenomenon
shown in the inset of Fig. 6b (the red curve). Besides,
the RMSE of the HOSM + LSM and the proposed
scheme are 2.11 degrees and 0.96 degrees, respectively,
because tracking errors under the HOSM + LSM are
asymptotically convergent on the sliding phase.As sep-
arately described in Fig.7, the singularity problem of
the HOSM+FTSM induces large tracking errors on the
reaching phase. Although the problem is eliminated
on the sliding phase, the RMSE is the largest (26.4
degrees) among the five control schemes.

Furthermore, the velocity can track the desired
velocity under different controllers as presented in Fig.
8. The velocity is more easily to be contaminated by
external disturbance compared with the bending angle
as compared between Figs. 6 and 8. Therefore, the
RMSEs of velocity tracking results under these con-
trollers are bigger than bending angles. It should note
that the control results under HOSM with FTSM also
present the singularity problem, which leads to a huge
RMSE, and they are omitted for brevity.

In conclusion, the related features of comparative
control schemes are presented in Table 2. Thanks to
the HOSM-based observer, the novel sliding mode sur-
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Fig. 6 Comparisons of position tracking control results between
different controllers. (a) shows tracking control results under dif-
ferent controllers with a zoomed-in inset at t ∈ [0, 3.5]. (b)
presents tracking errors, where an inset particularly shows errors
at t ∈ [40, 44]

Fig. 7 The control results (a) and tracking errors (b) under
HOSM with FTSM

Fig. 8 Velocity control results and errors under different con-
trollers

face and the STA-based controller, the proposed control
scheme possesses better performances than compara-
tive schemes.

5.3 Experiments

To further verify the proposed control scheme, an
experimental platform is designed and set up as shown
in Fig. 10. First, a pneumatic network actuator is fab-
ricated by Ecoflex 00-30 (Smooth-on, Inc, USA) and
vertically fixed on a metal framework. Second, a flex
sensor (SpectraSymbol, Inc, USA) is calibrated by a
high definition camera and the OpenCV toolbox of
MATLAB. Finally, two solenoid valves (VT307, SMC,
Inc, Japan) are utilized to control the air passages
of the actuator, and a pressure sensor (MPX5500DP,
Freescale Semiconductor, Inc, USA) measures the
internal pressure. An air pump (KZP-PE, Kamoer,
China) and an air cylinder are used to be a stable air
source. Meantime, a host computer and an STM32
development board (mini F103, Xingyi, Inc, China)
record the voltage change of the flex sensor.

Set the desired trajectory asqd = 0.8−0.4 cos(0.5t)−
0.4 exp(−0.5t)(rad). Due to the singularity problem,
the control scheme HOSM+FTSM is given up in the
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Table 2 Comparative simulation results under different control schemes

Control scheme Continuity Singularity-free Reaching time (s) RMSE of angle (deg) RMSE of velocity (deg/s)

STO+LSM NO YES 2.74 2.87 4.46

HOSM+LSM YES YES 3.42 2.11 4.13

HOSM+NFTSM YES YES 6.46 3.32 7.92

HOSM+FTSM YES NO 2.81 26.4 327.35

Proposed YES YES 1.52 0.96 2.64

Fig. 9 The experiment platform

physical experiment for safety consideration, and gains
of other control schemes are chosen after trial-in-errors
and shown inAppendixB for brevity. Thereafter, exper-
imental results are shown in Fig. 10. The slowest con-
vergence rate of tracking errors among these controllers
is HOSM + NFTSM, which presents the worst RMSE
(6.32 degrees). Among these control results, the chat-
tering phenomenon is significantly presented in the
control scheme of STO+LSM (the red curve in Fig.
10a), and the RMSE is 4.43 degrees. The RMSE of
HOSM+LSM is 4.039 degrees due to a slower conver-
gence rate on the sliding surface, whereas the small-
est RMSE is 3.169 degrees under the proposed control
scheme.

The observer is validated by experimental results
as presented in Figs. 11 and 12. (i) Figure 11 shows
errors between actual angles and estimated angles
in experiments. The control scheme HOSM+NFTSM
(green line) presents bigger estimated errors than other
schemes due to a slower convergence rate of sliding
mode surface and weaker robustness of the closed-
loop system. The STO+LSO (red line) shows a greater
chattering phenomenon than other schemes due to the

Fig. 10 The experiment results under four different control
schemes

discontinuous control inputs. The HOSM+LSM (blue
line) is smoother than STO+LSOand has smaller errors
than HOSM+NFTSM, but errors are slowly converged
into zero due to the asymptotic stability of system
states on the sliding mode surface. The proposed con-
trol scheme (magenta line) presents smaller errors and
a faster convergence rate than other schemes. (ii) Due
to unmeasurable velocity states in experiments, the
actual velocity information is obtained by numerical
differential on smoothed angles, and thus, estimated
errors are presented in Fig. 12. Features of estimated
velocity errors are basically identified with estimated
angle errors, such as bigger errors of HOSM+NFTSM,
greater chattering of STO+LSO. Since velocity is more
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Fig. 11 Angle errors between actual and estimated results in
experiments

Fig. 12 Estimated velocity errors in experiments

sensitive to external noise than position, estimated
errors of velocity are larger than the positions.

6 Conclusion and future work

This paper investigates a novel control scheme con-
sisting of a HOSM-based observer, a nonsingular fast
terminal sliding mode surface and an STA-based con-
troller to solve the control challenge of soft actuators.
By employing the observer, the unavailable system
states are estimated to stress the continuity of SMC.
The tracking errors of the closed-loop system are con-
verged to zero or a predefined set in finite time and tend
to zero thereafter under the proposed control scheme,

which presents higher tracking accuracy than the rel-
evant researches for soft actuators. The proposed con-
troller is analyzed by the Lyapunov method and com-
paredwith other schemes. In the future,multi-soft actu-
ators will be stabilized simultaneously for the applica-
tions of soft grippers and hands. Furthermore, a simple
control schema with the same properties as the con-
troller proposed is worth investigating for wider appli-
cations.
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Appendix A

According to the update law (17) and (20), some aux-
iliary variances are defined as

ρ1 = √
zs[ 12 ], ρ2 = s, ρ3 = ξ. (38)

Therefore,
z

|ρ1|ρ1ρ2 = ζρ1ρ1,
z

|ρ1|ρ2ρ2 = zρ1ρ2,

z

|ρ1|ρ2ρ3 = zρ1ρ3, (39)

and

ρ̇ �

⎡

⎣
ρ̇1
ρ̇2
ρ̇3

⎤

⎦ = − z

2 |ρ1|

⎡

⎣
kz1 kz2 −1
0 0 0

2kz3 0 0

⎤

⎦

︸ ︷︷ ︸
A1

⎡

⎣
ρ1
ρ2
ρ3

⎤

⎦

−
⎡

⎣
0 0 0

zkz1 zkz2 −z
0 kz4z 0

⎤

⎦

︸ ︷︷ ︸
A2

⎡

⎣
ρ1
ρ2
ρ3

⎤

⎦+

⎡

⎢⎢⎢
⎣

ż

2z
ρ1

ż

z
ρ2

d2

⎤

⎥⎥⎥
⎦

︸ ︷︷ ︸
A3

= − z

2 |ρ1| A1ρ − A2ρ + A3.

(40)

The candidate Lyapunov function is chosen as,

V1 = 1

2
ρT Pρ, (41)
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where P =
⎡

⎣
4kz3 + k2z1 kz1kz2 −kz1
kz1kz2 k2z2 + 4kz4 −kz2
−kz1 −kz2 2

⎤

⎦ is positive

definite.
The derivative of V1 with respect to time along with

equations (40) is,

V̇1 = − ζ

2 |ρ1|ρ
T P A1ρ − ρT P A2ρ + ρT P A3

= −ζρT

⎡

⎣
k2z1kz2 kz1k2z2 + 2kz1kz4 −kz1kz2

∗ kz2
(
k2z2 + 4kz4

) −k2z2 − kz4
∗ ∗ kz2

⎤

⎦ ρ

− ζ

2 |ρ1|ρ
T

⎡

⎣
k3z1 + 2kz3kz1 (k2z1 + kz3)kz2 −k2z1

∗ kz1k2z2 −kz1kz2
∗ ∗ kz1

⎤

⎦ ρ

+ ż

2z
ρT

⎡

⎢
⎣
4kz2 + k2z1

3

2
kz1kz3 −1

2
kz1

∗ 2k2z3 + 8kz4 −kz3
∗ ∗ 0

⎤

⎥
⎦

︸ ︷︷ ︸
A′
3

ρ

−kz1ρ1d2 − kz2ρ2d2 + 2ρ3d2︸ ︷︷ ︸
Δ

.

(42)

The time derivative of the V1 is further equal to

V̇1 = ζ̇

2ζ
ρT A′

3ρ + Δ

− ζρT

2 |ρ1|

⎡

⎣
k3z1 + 2kz3kz1 0 −k2z1

∗ 5kz1k
2
z2 + 8kz1kz4 −3kz1kz2

∗ ∗ kz1

⎤

⎦

︸ ︷︷ ︸
A4

ρ

−ζρT

⎡

⎢
⎣

2k2z1kz2 + kz3kz2 0 0

∗ kz2
(
k2z2 + 4kz4

)
−k2z2 − kz4

∗ ∗ kz2

⎤

⎥
⎦

︸ ︷︷ ︸
A5

ρ

= − ζ

2 |ρ1|ρ
T A4ρ − ζρT A5ρ + ζ̇

2ζ
ρT A′

3ρ + Δ.

(43)

The * in the matrices A4 and A5 denotes the symmet-
rical term of the matrix. The matrices A4 and A5 are
positive definite if the inequality (18) holds. Further,
noticing that the following inequalities are satisfied,

λmin{A′
3}||ρ||2 ≤ ρT A′

3ρ ≤ λmax {A′
3}||ρ||2,

λmin{A4}||ρ||2 ≤ ρT A4ρ ≤ λmax {A4}||ρ||2,
λmin{A5}||ρ||2 ≤ ρT A5ρ ≤ λmax {A5}||ρ||2,
λmin{Pa}||ρ||2 ≤ V1 ≤ λmax {Pa}||ρ||2, (44)

The derivative of the Lyapunov function V1 is

V̇1 = − z

2 |ρ1|ρ
T A4ρ − ρT A5ρ + ż

2z
ρT A′

3ρ + Δ

≤ − z

2 |ρ1|ρ
T A4ρ − ρT A5ρ + ż

2z
λmax {A′

3}ρT ρ

+
√
k2z1 + k2z2 + 4D||ρ||

≤ − z

2 |ρ1|λmin{A4}ρT ρ − λmin{A5}ρT ρ

+ ż

2z
λmax {A′

3}ρT ρ +
√
k2z1 + k2z2 + 4D||ρ||.

(45)

The time derivative of the V1 is further equal to

V̇1 ≤ − z

2|ρ1|λmin{A4}||ρ||2 +
√
k2z1 + k2z2 + 4D||ρ||

−λmin{A5}||ρ||2 + ż

2z
λmax {A′

3}||ρ||2.
(46)

In virtue of the well-known inequality (ρ2
1 + ρ2

2 +
ρ2
3 )

1
2 ≤ (|ρ1| + |ρ2| + |ρ3|), ||ρ||2 ≥ ||ρ1||2,

ρT ρ ≤ 2

λmin (Pa)
V1, −ρT ρ ≤ − 2

λmax (Pa)
V1, then

the derivative satisfies

V̇1 ≤ −
[
2λmin{A5}
λmax (Pa)

− ż
∣∣λmax {A′

3}
∣∣

zλmin (Pa)

]

V1

−
[
z

2
λmin{A4} −

√
k2z1 + k2z2 + 4D

]

×
√

2

λmax (Pa)
V 1/2
1 . (47)

Based on the update law ż ≥ 0, then z is
increased all the time except when q̃1 = 0, so ϕ1 =
2λmin{A5}
λmax (Pa)

− ż
∣
∣λmax {A′

3}
∣
∣

zλmin (Pa)
and ϕ2 = z

2
λmin{A4} −

√
k2z1 + k2z2 + 4D will be positive in a short adjust-

ing time. Then, V̇1 ≤ −ϕ1V1 − ϕ2V
1/2
1 . According

to Lemma.1, the estimated errors converge to zero in
finite time,

ts ≤ 2

ϕ1
ln

ϕ1V
1/2
1 (x0) + ϕ2

ϕ2
. (48)

This completes the proof. 
�

Appendix B

As discussed before, soft actuators are widely used
as soft gloves. To mimic a human middle finger, the
details of the simulated actuator are W = 1.5 ×
10−2m, L1 = 8×10−3m,W1 = 3×10−3m,W2 = 2×
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10−3m, H1 = 7× 10−3m, H3 = 1.1× 10−2m, L20 =
2 × 10−3m, N = 14, kp = 6.2 × 10−7,G = 2.387 ×
106Pa,m = 4 × 10−2kg.

In numerical simulations, gains are introduced as
follows. In the control scheme of STO+LSM, the gains
of the STO (22) are k1a = 7, k1b = 5, k1c = 4, k1d =
10, the gain of the LSM (23) is λ1 = 50, and the gains
of the STC (25) k1e = k1ez

√
z, k1 f = k11 f z, k1g =

k11gz, k1h = k11hz2 are updated by k1ez = 1.8, k11 f =
3, k11g = 0.05, k11h = 2, kzu = 0.5.

In the control scheme of HOSM+LSM, the gains of
the HOSM observer (8) are k11 = 7, k12 = 20, k21 =
10, k22 = 50, k31 = 20, and the gains of LSM (23)
and the updated law of controller are same to the
STO+LSM.

In the control scheme of HOSM+NFTSM, parame-
ters of NFTSM (31) are λ31 = 42, λ32 = 0.1, and feed-
back gains of the STC (33) are a3 = 2, b3 = 1.5, k3g =
6, k3h = 2.

In the control scheme of HOSM+FTSM, the param-
eters of FTSM (27) are λ21 = 14, λ22 = 2, and the
gains of STC (29) are updated by k2e = k02z

√
z, k2 f =

k02 f z, k2g = k02gz, k2h = k02hz2, where k02z =
1.8, k02 f = 3, k2g = 0.05, k02h = 2, kzu = 0.5.

In the proposed control scheme, the observer (8),
parameters of the NFTSM (10) are λ11 = 14, λ12 =
2, μ1 = 4, μ2 = 2, a = 0.75, b = 1.5, b2 = 0.5,
and the gains of proposed controller (15) are ks1 =
ks01

√
z, ks2 = ks02z, kp1 = kp01z, kp2 = kp02z,

where ks01 = 2, ks02 = 3, kp01 = 0.05, kp02 =
2, kzu = 0.5.

In experiments, gains are selected after trial-in-
errors. In the control scheme of STO+LSM, the gains
of the STO (22), the LSM (23) and the STC (25) are
k1a = 4, k1b = 7, k1c = 4, k1d = 6, λ1 = 12, k1ez =
0.6, k11 f = 2.1, k11g = 0.03, k11h = 1.2, kzu = 0.3.
In the control scheme of HOSM+LSM, the gains of
the HOSM observer (8) and the LSM (23) are k11 =
3, k12 = 12, k21 = 5, k22 = 13, k31 = 0.5, λ1 = 12.
In the control scheme of HOSM+NFTSM, parame-
ters of NFTSM (31) are λ31 = 9, λ32 = 0.08, and
feedback gains of the STC (33) are a3 = 1.8, b3 =
1.5, k3g = 4.5, k3h = 2.3. In the control scheme of
HOSM+FTSM, parameters of FTSM (27) and STC
(29) are λ21 = 9, λ22 = 2, k02z = 0.6, k02 f =
2.1, k2g = 0.03, k02h = 1.5, kzu = 0.3. In the
proposed control scheme, the observer (8), parame-
ters of the NFTSM (10) and the controller (15) are
λ11 = 11, λ12 = 2, μ1 = 3.5, μ2 = 2, a = 0.75, b =

1.5, b2 = 0.5, ks01 = 0.8, ks02 = 2.5, kp01 =
0.05, kp02 = 3, kzu = 0.3.
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