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Abstract The motion of a slender, clamped-free,

imperfect, electrically actuated microbeam is investi-

gated. Special attention is given to the influence of

imperfections and noise on the bifurcations and

instabilities of the structure, a problem not tackled in

the previous literature on the subject. To this end, a

geometrically nonlinear theory is adopted for the

microbeam retaining geometric nonlinear terms up to

the third order and considering in a consistent way the

effect of initial geometric imperfections. Also, addi-

tive white noise is considered to model forcing

uncertainties, and the Galerkin discretization method,

using as interpolating functions the linear vibration

modes, is used to obtain a modal stochastic differential

equation of Itô type, which is solved by the stochastic

Runge–Kutta method. A parametric analysis clarifies

the influence of geometric imperfections and noise

level on the natural frequencies, resonance curves, and

pull-in instability. Additionally, the global dynamics

is examined through the generalized cell mapping,

showing the effects of uncertainties on the attractor’s

probability density functions and basins of attraction.

Keywords Microbeam � Pull-in instability �MEMS �
Imperfection sensitivity � Noise � Uncertainties �
Stochastic analysis

1 Introduction

Microelectromechanical systems (MEMS) are impor-

tant devices with a broad range of applications [1–3].

Their theoretical analysis is diverse, with contribu-

tions from different fields, such as structural mechan-

ics, electrostatics and electrodynamics,

electromagnetism, piezoelectricity, electrothermal

effects, and optics, to name a few. Also, these systems

are rather flexible and can undergo large displace-

ments due to their small scale in the presence of

electrostatic and electrodynamic loads. Therefore,

MEMS requires complex multidisciplinary analysis

to correctly capture all the physical phenomena

involved. For this purpose, various techniques are

employed, for example, finite element and boundary

element methods [1, 4, 5], shooting method [6],

reduced-order models [7–10], and perturbation meth-

ods [11–13]. Notably, the multiple time-scales method

combined with a Galerkin procedure is a powerful

strategy in order to obtain theoretical internal reso-

nances, which has been validated by experimental

results [13]. Numerical techniques have also been

applied in the study of microbeams, such as pseudo-
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arclength continuation methods with nonlocal consti-

tutive relations [14–16]. These models are validated

by comparing their results with experimental results

and finite-element solutions available in the literature.

Younis and Nayfeh [11], Abdel-Rahman et al. [17],

and Younis et al. [18] studied through an analytical

approach and a reduced-order model (macromodel)

the behavior of electrically actuated microbeam-based

MEMS, with emphasis on their nonlinear resonant

behavior. They modeled the beam as a partial integro-

differential equation. Only nonlinearities due to mid-

plane stretching and electrostatic load were consid-

ered, with displacements assumed to be small [19]. It

is evident from the equation of motion that electro-

static loads result in strong nonlinearities with singu-

larities. The analysis is carried out by dividing the

actuation into a static part, due to the direct current

voltage Vdc, and a dynamic part, due to an alternating

current voltage Vac. The static problem is solved

numerically by the shooting method, and pull-in

voltages are obtained under varying axial force.

Natural frequencies are also obtained, and they

exhibited a good agreement with experimental results

even near the pull-in voltage. Forced vibration and

various internal resonance conditions were addressed

by the multiple scales method [11]. In [11, 17], the

dynamic problem is considered using different Taylor-

series expansion superimposed on the static solution.

However, they fail to represent the electric force at

voltages close to pull-in since the neglected terms in

the Taylor-series expansion become significant. You-

nis et al. [17, 18] proposed then an alternative

approach that is capable of describing the strong

nonlinearities exactly, which shows better agreement

with experimental data using fewer mode shapes.

The described analytic procedure is relevant to this

day, being applied to other MEMS problems, as

reported in a recent review paper by Hajjaj et al. [1],

such as arch resonators [12, 13], arches over flexible

supports [20], functionally graded viscoelastic

microbeams with imperfections [21], cantilever res-

onators [22–24], narrow microbeams subject to fring-

ing fields [4, 5, 25], and microscale beams described

by the modified couple stress theory

[6, 14–16, 19, 26–28]. Also, in a recent contribution,

Ilyas et al. [29] investigated the response of MEMS

resonators under generic electrostatic loadings theo-

retically. The qualitative resonant behavior was ana-

lytically demonstrated by the multiple scale method,

showing that the nonlinear electrostatic load leads to

softening-type nonlinearity. In a companion paper,

Ilyas et al. [30] investigated the simultaneous excita-

tion of primary and subharmonic resonances of similar

strength experimentally by using different combina-

tions of AC and DC voltages, and two potential

applications are experimentally demonstrated.

Several types of uncertainties may be found in

practical applications and may have a substantial

influence on the behavior of MEMS, given their multi-

physical nature. In [31], Vig and Kim enumerates

some noise sources, including fluctuations in temper-

ature, adsorbing/desorbing molecules, outgassing,

Brownian motion, Johnson noise, drive power, and

self-heating. The reduced dimension of the microbeam

intensifies all noise effects and instabilities that are

negligible in macro-scale devices. Experimental

investigations corroborate these conclusions

[9, 32, 33]. The global dynamic analysis was shown

to be a powerful tool to predict and quantify finite

instability, which considers, heuristically, uncertain-

ties in initial conditions as evidenced by the works of

Alsaleem et al. [33], Ruzziconi et al. [34], and Lenci

et al. [35]. The influence of material parameters and

their uncertainties on the nonlinear response has been

highlighted in [36–38], and the influence of uncer-

tainties in geometric nonlinearities in [39–41]. Para-

metric uncertainties are also of interest in the analysis

of MEMS [42, 43], such as geometric [12, 15, 16] and

constitutive [19] uncertainties, which can be investi-

gated through a Monte Carlo approach, stochastic

perturbation, or stochastic collocation. However, fur-

ther investigation is needed to investigate the effects of

uncertainties on the response of MEMs, particularly

on their global dynamics, where a stochastic frame-

work is still to be developed. The coupling between

global dynamics and parametric uncertainty in a

probabilistic framework is yet to be discussed.

To address these issues, in this paper an investiga-

tion has been conducted on an imperfect MEMS

device constituted of an imperfect clamped-free

microbeam electrostatically and electrodynamically

actuated with added noise. Using Hamilton’s princi-

ple, the nonlinear equation of motion is derived by

considering the nonlinear electrical load, the geomet-

ric nonlinearities up to the third order, and the

geometric imperfections. Additive white noise is

considered to model forcing uncertainties, and the

Galerkin modal discretization is employed to generate
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stochastic differential equations of Itô type, which are

solved by the stochastic Runge–Kutta method. Finally,

the global dynamics are investigated by the general-

ized cell mapping [44–46], through which transfer

operators are constructed. The effects of additive noise

on resonant and non-resonant solutions are observed,

changing the probability measures and basins of

attraction. Special attention is given to the effect of

imperfections and noise on the pull-in instability.

2 Nonlinear Euler–Bernoulli electrically actuated

microbeam

The planar flexural Euler–Bernoulli beam equation

with imperfections is derived through the extended

Hamilton’s principle. An elastic material is considered

with small elastic strains, and the classical capacitor

electrostatic load is assumed [2]. Three coordinate

systems are considered for the beam’s kinematic

definitions, which are the reference system (X, Z), the

undeformed coordinates of the imperfect beam con-

figuration (n0, f0), and the deformed configuration,

(n, f). The reference and undeformed systems are

Lagrangian frames of reference, with the former

corresponding to the perfect model. The deformed

axes define an Eulerian reference frame. The unde-

formed axes represent the imperfect model in a stress-

free configuration. A schematic of all three reference

frames is given in Fig. 1, where s and ~s measure the

undeformed and deformed arc-lengths, respectively,

and w0ðxÞ is the initial geometric imperfection.

The coordinates f0 and f represent the distance

between a fiber parallel to the cross-sectional centroid

in the undeformed and deformed configuration,

respectively. Given that the motions are restricted to

the plane (X, Z) and assuming small strains, the only

nonzero strain component is the axial deformation,

enn ¼ f �jg � jg0
� �

; ð1Þ

where the deformed and undeformed curvatures �jg
and jg0 are defined as derivatives of the cross-sectional

rotation angles �h and h0 with respect to the unde-

formed arc-length s,

�jg ¼ �h0; jg0 ¼ h00; ð2Þ

where ð Þ0 ¼ d=ds. The angles �h and h0 can be

understood as transformations from the reference axes

to the deformed and undeformed axes, respectively.

These geometric transformations are illustrated in

Fig. 2.

Finally, the rotation angles are assumed dependent

on the vertical and axial displacements, respectively,

w and u, and imperfection w0, see Fig. 1. The

expressions that relate rotations and translations are

obtained through differential geometry and are given

by

sin �h ¼ � �w0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

0

p
þ u0

� �2

þ �w02

r ;

cos �h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

0

p
þ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

0

p
þ u0

� �2

þ �w02

r
ð3Þ

sin h0 ¼ w0
0; cos h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w02

0

q
; ð4Þ

where �w ¼ wþ w0.

X

Z

s%

s 0w 0ζ

0ξ

w

ζ
ξ

u

Fig. 1 Orientation of imperfect undeformed and deformed

coordinate systems with respect to the reference system

Xi

Zi
0

,i iζ ζ

0,θ θ

0,θ θ 0
,i iξ ξ

Fig. 2 Transformation from the material axes to the deformed

and undeformed configuration
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By considering a linear elastic material, the strain

energy is

U ¼
Z

S

Dg

2
�jg � jg

� �2
ds; ð5Þ

where Dg is the flexural stiffness, the curvatures are

related to transversal displacement through Eqs. (2),

(3) and (4), and s is the undeformed arc-length. The

kinetic energy is defined as a function of the transla-

tional and rotational velocities, that is

T ¼
Z

S

1

2
m _u2 þ m _w2 þ Jg _h

2
� �

ds; ð6Þ

where ð Þ� ¼ d=dt,m and Jg are the linearly distributed

mass and rotational inertia, respectively, and _h is the

angular velocity, where h ¼ �h� h0 since the initial

rotation h0 is time-independent. Assuming an inex-

tensional model, the beam’s augmented Lagrangian,

L ¼ T � U þ R, is given by

L ¼
Z

s

1

2
m _u2 þ m _w2 þ Jg _h

2
� �

� Dg

2
h02 þ k

2
De

� �
ds;

ð7Þ

where k is a Lagrange multiplier and the axial

elongation is given by

De ¼
d~s� ds

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

0

q
þ u0

	 
2

þ �w02

s

� 1:

ð8Þ

By considering the extended Hamilton’s principle,

the functional

H ¼
Zt2

t1

LþWnc dt ð9Þ

is stationary, where Wnc represents the work of the

nonconservative forces, whose variation takes the

form

dWnc ¼ Qw � cw _wð Þdw; ð10Þ

where Qw is a distributed load, and cw is the damping

coefficient. From the variation of Eq. (9) and expan-

sion of the dependent variables in Taylor series up to

the third order, two coupled equations of motion are

obtained,

m €u ¼ Dg �w
0w000 � Jg �w

0 €w0 þ k
2

�w02

2
� 1

	 
� �0
ð11Þ

m €wþ cw _w� Qw ¼ �Dg �w0w00 �w00 þ w00
0

� �
þ w0w002

0

��

þw0w000
0 w0

0 þ
w0

2

	 

þ w000


þ Jg �w0 _w02 þ €w0� �

� k
2
�w0
�0
:

ð12Þ

By considering the axial elongation (8) equal to

zero, the model is assumed inextensional, and the axial

displacement u is defined as a function of the flexural

displacement w. Expanding Eq. (8) in Taylor series

and retaining nonlinear polynomial terms up to the

third order, the axial displacement is obtained as

u ¼ � 1

2

Zs

0

w02 þ 2w0w0
0s ð13Þ

Substituting Eq. (13) into Eq. (11), the Lagrange

multiplier is obtained as

k ¼ 2Dg �w0w000 � 2Jg �w0 €w0

þ 2m

Z s

L

Z s

0

_w02 þ �w0 €w0dsds: ð14Þ

Finally, the equation of motion is obtained by

substituting the Lagrange multiplier, Eq. (14), into

Eq. (12), resulting in the following integro-differential

equation of motion

m €wþ cw _w� Qw ¼ �Dg �w0w00 �w00 þ w00
0

� ���

þw0w002
0 þ w0w000

0 w0
0 þ

w0

2

	 

þ �w02 þ 1
� �

w000

:

þJg �w0 _w02 þ �w02 þ 1
� �

€w0� �

� m �w0
Z s

L

Z s

0

_w02 þ �w0 €w0ds dsg0:g

ð15Þ

A linear clamped-free Rayleigh beam is adopted,

and the associated boundary conditions are given by,

w 0; tð Þ ¼ w0 0; tð Þ ¼ 0;

w00 L; tð Þ ¼ Dgw
000 L; tð Þ � Jg €w

0 L; tð Þ ¼ 0:
ð16Þ

Considering a parallel plate capacitor with a

rectangular cross section, the electrostatic force Qw

can be written as [2]

Qw ¼ beV2

2 d � �wð Þ2
; ð17Þ
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where b is the beam width, d is the initial gap for a

perfect system, e is the free space permittivity and V is

the applied voltage.

Equation (15) is then nondimensionlized consider-

ing the following parameters

s� ¼ s=L; t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dg=ðmL4Þ

q
;

w� ¼ w=d; w�
0 ¼ w0=d; Q�

w ¼ QwL
3=Dg;

J�g ¼ Jg=mL2; c�w ¼ cwL
2=mDg;

e� ¼ eL2=Dg; d� ¼ d=L; b� ¼ b=L;

ð18Þ

resulting in

€wþcw _w�Qw¼ �d2 �w0w00 �w00þw00
0

� ���

þw0w002
0 þw0w000

0 w0
0þ

w0

2

	 

þ �w02þ 1

d2

	 

w000



þd2Jg �w0 _w02þ �w02þ 1

d2

	 

€w0

� 

�d2 �w0
Z s

1

Z s

0

�w0 _w0ð Þ�dsds
�0
:

ð19Þ

where * is dropped for brevity. The nondimensional

boundary conditions are

w 0; tð Þ ¼ w0 0; tð Þ ¼ 0;

w00 1; tð Þ ¼ w000 1; tð Þ � Jg €w
0 1; tð Þ ¼ 0;

ð20Þ

and the nondimensional electrostatic load is given

by

Q�
w ¼ beV2

2d3 1� �wð Þ2
; ð21Þ

with the singularity now at �w ¼ 1.

The total applied voltage is the sum of the direct

current (Vdc) and the time-dependent alternate current

(Vac), i.e.:

V tð Þ ¼ Vdc þ Vac tð Þ: ð22Þ

The displacement is, therefore, decomposed into its

dynamic and static parts,

w t; xð Þ ¼ wd t; xð Þ þ ws xð Þ: ð23Þ

Considering only the DC voltage in Eq. (19),

substituting Eqs. (22) and (23) into Eqs. (19) and

(21) and setting to zero all time-dependent variables,

the static displacement component ws is obtained from

the following nonlinear equilibrium equation

beV2
dc

2d3 1� �wsð Þ2
¼ d2 �w0w00 �w00 þ w00

0

� �
þ w0w002

0

�

þw0w000
0 w0

0 þ
w0

2

	 

þ �w02 þ 1

d2

	 

w000

�0
;

ð24Þ

where �ws ¼ ws þ w0.

The additional dynamic displacement wd t; xð Þ is

assumed as a perturbation from the static equilibrium

position, and the resulting equation of motion is

obtained by substituting Eqs. (22) and (23) into

Eqs. (19) and (21) and expanding in Taylor series of

wd up to the third order, resulting in

€wd þ cw _wd �
be
d3

2w3
dV

2
dc

1� �wsð Þ5
þ
w2
d 3V2

dc � 2VdcVac

� �

2 1� �wsð Þ4

"

þwd Vac þ Vdcð Þ2

1� �wsð Þ3
þ 2VdcVac þ V2

ac

2 1� �wsð Þ2

#

¼ �d2 �w02 þ 1

d2

	 

w000
d þ 1

2
w0
d �w0 þ �w0

s

� �
�w000
s þ w000

s

� �
��

þ �w0w00
d �w00 þ �w00

s

� �
þ w0

d �w
002
s

�

þ d2Jg �w0 _w02
d þ �w02 þ 1

d2

	 

€w0
d

� 

�d2 �w0
Z s

1

Z s

0

_w02
d þ �w0 €w0

ddsds

�0
;

ð25Þ

where �ws ¼ ws þ w0 and �w ¼ wd þ ws þ w0. The sum

of zeroth-order terms is set to zero since they

correspond to the static equilibrium position, Eq. (24).

The Galerkin method is employed to discretize the

equation of motion using as interpolation functions the

linear vibration modes. The assumed mode expansion

is derived from the boundary value problem consid-

ering the undamped linearized equation of motion

Table 1 Microbeam geometric and material nondimensional

parameters

Parameters Symbol Values

Width b� 0.25

Initial gap d� 0.0046

Free space permittivity e� 3.8268e-14

Damping c�w 0.05

Rotational inertia J�g 6.76875e-7
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€w� Jg €w
00 þ wiv ¼ 0; ð26Þ

together with boundary conditions (20). Equation (26)

corresponds to a Rayleigh beam, where the rotational

inertia is considered [47]. The solution of Eq. (26) is

given by

w s; tð Þ ¼
X1

i¼1

w ið Þ tð ÞFi sð Þ ð27Þ

where w(i) is the i-th time-dependent modal amplitude

and Fi is the i-th natural vibration mode. The natural

modes for the clamped-free beam are [47]

Fig. 3 Comparison of the

present analytical results for

the perfect and imperfect

microbeam under DC

actuation with the

experimental results

reported in [24]

(a) (b)

Fig. 4 Static response of the microbeam under DC actuation for selected levels of geometric imperfection a nonlinear equilibrium

paths b cusp catastrophe surface
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Fi sð Þ ¼ cosh Bi sð Þ � cos Ai sð Þ

� A2
i cos Aið Þ þ B2

i cosh Bið Þ
AiBi sin Aið Þ þ B2

i sinh Bið Þ

sinh Bi sð Þ � Bi

Ai
sin Ai sð Þ

� 
;

ð28Þ

where

Ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jg
2
x2

i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2g
4
x4

i þ x2
i

svuut
;

Bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� Jg
2
x2

i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2g
4
x4

i þ x2
i

svuut
;

ð29Þ

and the natural flexural frequencies are the roots of the

nonlinear transcendental equation

B4
i þ A4

i

� �
cos Aið Þ cosh Bið Þ

þ B2
i � A2

i

� �
Ai Bi sin Aið Þ sinh Bið Þ þ 2A2

i B
2
i

¼ 0: ð30Þ

In the Galerkin procedure, the geometric imperfec-

tion w0, the static deflection ws,, and the dynamic

deflection wd have the form of the first vibration mode,

leading to a sdof reduced-order model, an usual

procedure in the literature [2, 9, 10]. In the following

analysis, for simplicity, the symbols used for the

modal amplitudes are the same as those adopted for the

state variables.

3 Nonlinear equilibrium and deterministic local

dynamics

The nondimensional constants adopted here are the

same employed in [19, 24] and are summarized in

Table 1.

3.1 Static actuation

The equilibrium equation is obtained by multiplying

Eq. (24) by the denominator 1� �wsð Þ2 and then

applying the Galerkin method. The nonlinear equilib-

rium paths are obtained through a pseudo-arc-length

continuation procedure together with the Newton–

Raphson method [48, 49]. The stability of the static

solution is verified using the minimum energy crite-

rion. In Fig. 3, where the maximum deflection of the

beam, ws, is plotted as a function of the electrostatic

forcing, Vdc, the present results are compared with the

experimental results reported in [24]. Also, for com-

parison purposes the results for the imperfect beam

considering a small imperfection magnitude

(w0 ¼ �0:05) are also shown, clarifying the influence

of the imperfection uncertainties on the results. A

good agreement with the experimental results is

Fig. 5 Dependency of the static pull-in voltage on the

magnitude and sign of the geometric imperfection

Fig. 6 Natural frequency of vibration dependency against DC

voltage and imperfection w0

Table 2 Static deflection

as a function of the imper-

fection magnitude for

Vdc = 45 V

w0 ws

0 0.057977

0.01 0.060345

0.02 0.062895

0.03 0.065648

0.04 0.068636

0.05 0.071892
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observed up to pull-in [24]. Specifically, the perfect

system static pull-in actuation is 65.34, while the

experimental result is 68.5. The resulting ratio is

0.953, corroborating the accuracy of the present

model.

Figure 4a shows the nonlinear response of the beam

under DC actuation for selected levels of geometric

imperfection. Here, continuous lines correspond to

stable solutions, while dashed lines correspond to

unstable solutions. Figure 4b shows the typical cusp

catastrophe surface by introducing the imperfection

magnitude as a second control parameter. The two

limit points along the nonlinear equilibrium path are

rather sensitive to the imperfection magnitude and

sign, decreasing with positive imperfections and

increasing with negative imperfections.

The pull-in instability is present in all cases, being

the pull-in voltage particularly sensitive to the imper-

fection level and sign. The perfect system obtained

pull-in voltage is 65.341 V, being in good agreement

with the formula presented in [2], where the pull-in

voltage is 67.443 V for the constants adopted in

[19, 24]. The imperfection changes the pull-in voltage

band; for w0[ 0, the gap between the beam and the

actuator plate decreases, resulting in lower pull-in

voltages and a system more susceptible to this type of

instability. On the other hand, the pull-in load and

consequently the stability increases for w0\ 0. This

dependency is illustrated in Fig. 5.

The dependency of the natural frequency of vibra-

tion on the DC voltage is well known for microelec-

tromechanical beams [2]. In order to investigate the

combined influence of the DC voltage and geometric

imperfection magnitude on the natural frequencies,

Eq. (25) is linearized, and the damping coefficient and

AC voltage are set to zero, resulting in

(a)w0 = 0.00 (b)w0 = 0.01 (c)w0 = 0.02

(d)w0 = 0.03 (e)w0 = 0.04 (f)w0 = 0.05

Fig. 7 Frequency–response curves for selected values of AC actuation, with Vdc = 45. SN—saddle-node bifurcation, PD—period-

doubling bifurcation
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ð31Þ

where the influence of the imperfection and DC

voltage can be observed.

Figure 6 shows the influence of the imperfection

magnitude w0 and DC voltage on the lowest natural

frequency. As expected, the imperfection significantly

affects the natural frequency of vibration. Further-

more, in the region of the cusp catastrophe in Fig. 4b,

the system shows three distinct frequencies, two with

real values (x2[ 0) and one with imaginary value

(x2\ 0). The real frequencies correspond to stable so-

lutions, while the imaginary frequency corresponds to

the unstable solution. Also, for a threshold of approx-

imately w0[ 0.3, only one frequency persists for all

DC voltages, corroborating the result presented in

Fig. 5.

3.2 Dynamic actuation

For the dynamic analysis, a direct current voltage

Vdc = 45 V is adopted. Also, a periodic alternate

voltage between the beam and the substrate,

(a) w0 = 0.00 (b) w0 = 0.01 (c) w0 = 0.02

(d) w0 = 0.03 (e) w0 = 0.04 (f) w0 = 0.05

Fig. 8 Frequency–response curves for Vdc = 45 and Vac = 10. Pull-in bandwidth as a function of the imperfection magnitude. SN—

saddle-node bifurcation

Table 3 Duffing equation

parameters [54]
Symbol Values

g 0.085

a - 0.5

b 0.2

F 0.204

x 0.71
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Vac � �Vac cos X tð Þ: ð32Þ

is considered, where �Vac is the forcing magnitude and

X the forcing frequency.

Different values of static deflection ws can be

obtained depending on the imperfection magnitude, as

shown in the static analysis. The static deflection for

six selected levels of imperfection, varying from 0 to

0.05, is shown in Table 2.

Five different equations of motion are obtained

from Eq. (25) by applying the Galerkin expansion for

the values of Vdc, w0, and ws given in Table 2. For the

numerical integration of the equations of motion, the

fourth-order Runge–Kutta method is employed with a

time-step Dt ¼ T=4000; where T is the period of the

excitation, T = 2p/X. Resonance curves are obtained

through a pseudo-arc-length continuation of periodic

orbits [48, 49] for three values of the forcing

magnitude, namely �Vac = 1, 5, 10. The stability of

each solution is verified through the analysis of

Floquet multipliers (eigenvalues of the monodromy

matrix), which also allow the characterization of the

bifurcation type.

According to [19], the nonlinear response of the

microbeam can be either of the softening or hardening

type, depending on which type of nonlinearity pre-

vails. The load nonlinearity leads to a softening

behavior while the geometric nonlinearity, to a

hardening behavior. Figure 7 displays the resonance

curves of the microbeam for selected values of AC

actuation and increasing imperfection level w0 and

Vdc = 45. As in the static case, continuous lines denote

periodic attractor chaotic attractor(a) (b)

Fig. 9 Basins of attraction

for the deterministic Duffing

equation, r = 0

(a) σ = 0 (b) σ = 0.012

Fig. 10 Steady-state probability density distribution for the Duffing equation for selected values of r
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stable solutions and dashed lines, unstable solutions.

The nonlinear response is of softening type for all

values of w0 and �Vac for the chosen initial gap

d (Table 1), in agreement with the experimental results

in [24].

As �Vac increases, a pull-in bandwidth develops,

thus making the system more susceptible to dynamic

pull-in instability. The imperfection decreases the

values of �Vac for which the pull-in band appears and

increases the pull-in bandwidth as illustrated in Fig. 8

for �Vac = 10. Also of notice is, in all cases, the

resonant peak at a forcing frequency equal to half of

the natural frequency where a second pull-in band is

observed for w0 C 0.03. As the imperfection level

increases, the resonant peak at a third of the natural

frequency also increases, leading to an additional

(a)2D view, periodic attractor (b)2D view, chaotic attractor

(c) 3D view, periodic attractor (d)3D view, chaotic attractor

Fig. 11 Basins of attraction

for the Duffing equation, r =

0.012

Fig. 12 Steady-state

probability density

distribution for the Duffing

equation, r = 0.045
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resonance region that may influence the microbeam

dynamic response.

4 Global dynamics: stochastic vs deterministic

analysis

The global dynamics of the dynamically actuated

microbeam is now addressed. The Ulam method [50],

also known as the generalized cell-mapping [44–46],

is employed together with the equations of motion to

approximate the Perron–Frobenius operator Pt as a

probability transition matrix pij [50]. Then, following

Lindner and Hellmann [51], the discrete Koopman

operator Kt is considered to obtain the structure of the

stochastic basin of attraction in phase space [61]. A

detailed description of this procedure and the related

mathematical concepts are presented in the

‘‘Appendix’’.

Initially, the present implementation is first vali-

dated using the stochastically excited Duffing

equation,

€xþ g _xþ axþ bx3 ¼ F cos x tð Þ þ r _W ; ð33Þ

recently investigated in [52], where g is the viscous

damping parameter, a is the linear stiffness parameter,

b is the cubic stiffness parameter, F is the forcing

magnitude, x is the forcing frequency, r is the noise

amplitude and _W is the white noise, which is the time

derivative of the Wiener process W.

The first-order system in Langevin form is given by

dx ¼ v

dv ¼ �gv� ax� bx3 þ F cos x tð Þ
� �

dt þ rdW ;

ð34Þ

where dW is interpreted in the Itô sense. If the noise

amplitude is set to zero, the equation is reduced to the

deterministic Duffing equation. The chosen

(a)w0 = 0.01, σ = 0.00 (b)w0 = 0.01, σ = 0.01 (c)w0 = 0.01, σ = 0.02

(d)w0 = 0.02, σ = 0.00 (e)w0 = 0.02, σ = 0.01 (f)w0 = 0.02, σ = 0.02

Fig. 13 Microbeam stochastic basin of attraction for Vdc = 45, �Vac = 1, X = 2.8, low imperfection and noise levels. Light blue: non-

resonant attractor, black: pull-in

123

1736 K. C. B. Benedetti, P. B. Gonçalves



parameters are based on [54] and are reproduced for

completeness in Table 3. The phase space is restricted

to X ¼ x; _xð Þ ¼ �3:5; 3:5½ �2, which is divided into

300 9 300 cells for the global analysis. Twenty-five

points in each cell are integrated for one period of

excitation to obtain the transition probability matrix

pij. For these parameters, the deterministic Duffing

equation has two stable solutions, a periodic stable so-

lution with the same period as the forcing and a chaotic

solution, as illustrated in Fig. 9 through the basins of

attraction. The color bar varies from 0 to 1, where 0

indicates regions not belonging to the depicted

(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.02

Fig. 14 Microbeam stochastic basin of attraction for the non-resonant attractor, with Vdc = 45, �Vac = 1, X = 2.8, w0 = 0.05

(a) σ = 0.00, 2D view (b) σ = 0.00, 3D view

(c) σ = 0.01, 2D view (d) σ = 0.01, 3D view

Fig. 15 Microbeam

stochastic basin of attraction

for the resonant attractor,

with Vdc = 45, �Vac = 1,

X = 2.8, w0 = 0.05
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attractor, and 1 indicates regions belonging to the

depicted attractor. The boundary between these basins

is well defined, as expected in deterministic dynamical

systems. The Poincaré sections are identified by the

red dots. These results agree with those in [54],

showing that the implementation correctly addresses

the deterministic case.

Figure 10 shows the steady-state probability den-

sity distribution for the Duffing equation for two

values of the noise amplitude r. For r = 0, the

probability density distribution has two well-defined

(a) σ = 0.00, 2D view (b) σ = 0.00, 3D view

(c) σ = 0.01, 2D view (d) σ = 0.01, 3D view

(e) σ = 0.02, 2D view (f) σ = 0.02, 3D view

Fig. 16 Set of initial conditions leading to pull-in, with Vdc = 45, �Vac = 1, X = 2.8, w0 = 0.05
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separate regions, one corresponding to the periodic

attractor and another corresponding to the chaotic

attractor, as shown in Fig. 10a. Since there is no noise,

the dynamics is deterministic, and, therefore, each

phase space pair of initial conditions converges to only

one attractor. Next, the system with added noise is

investigated. For this, each of the 25 points per cell is

evaluated 100 times. Therefore, each cell is integrated

2500 times, for one period, to construct the transient

probability matrix. The attractors’ probability density

distribution for r = 0.012 is shown in Fig. 10 b, where

the noisy chaotic and periodic attractors can be

observed. As the noise amplitude increases, the

attractors spread over significant regions of the phase

space. Still, the two attractors are discernable from

each other. This is more evident when analyzing the

(a) σ = 0.00

(b) σ = 0.01

(c) σ = 0.02

Fig. 17 Microbeam time histories, phase space projections, and Poincaré sections for Vdc = 45, �Vac = 1, X = 2.8, w0 = 0.05 and

increasing noise level. Non-resonant attractor, initial condition w1; _w1ð Þ ¼ 0; 0ð Þ
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2D and 3D views of the coexisting basins of attraction,

Fig. 11, where two basins of attraction are identified,

with the steady-state response associated with any

initial conditions in the chaotic or periodic basin,

converging to their noisy chaotic attractor or a noisy

periodic attractor. However, the boundaries are no

longer well defined, being blurred due to the noise. In

these regions, the steady-state response of initial

conditions may converge to either attractor, depending

on the sampled noise. The color scale in this and the

following basins are related to the probability of the

response converging to each attractor, varying from 0

to 1, as clarified by the 3D views of each basin.

Finally, we consider the Duffing equation with

r = 0.045. This noise amplitude is high enough to

merge the two attractors’ probability density, as

illustrated in Fig. 12. Therefore, only one attractor

remains. Since only one global attractor remains, its

(a) σ = 0.00

(b) σ = 0.01

(c) σ = 0.02

Fig. 18 Microbeam time histories, phase space projections, and Poincaré sections for Vdc = 45, �Vac = 1, X = 2.8, w0 = 0.05 and

increasing noise level. Resonant attractor, initial condition w1; _w1ð Þ ¼ �0:1; 0:6ð Þ
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basin is the entire phase space. As the noise level

increases, jumps from the chaotic to the periodic

attractor occur until a threshold value of r = 0.05 is

reached. For higher noise levels, jumps between the

chaotic and periodic attractors in both directions can

occur. Again, the results are in agreement with those in

[52].

4.1 Microcantilever analysis

With the implementation validated, the global analysis

of the planar dynamics the electrostatically actuated

microbeam is now investigated considering the phase

spaceX ¼ �3; 3½ �2, with the boundaries assumed as of

the absorbing type. This region is discretized with

300 9 300 cells, with 5 9 5 initial conditions

uniformly distributed within each cell. The same

equations of motion used in the local dynamic analysis

are considered, with parameters given in Tables 1 and

2. However, an additive stochastic excitation r _W is

also considered resulting in stochastic differential

equations of Itô type. The white noise is added after

the modal decomposition through the Galerkin

method, directly into the modal equations of motion,

similar to the Duffing equation [54]. A stochastic

Runge–Kutta method of fourth order in drift and half

order in diffusion is employed, with a time-step Dt ¼
T=4000;where T is the period of excitation, T = 2p/X.
For the stochastic cases (r = 0), each initial condi-

tion is integrated 100 times, giving 2500 trajectories in

each cell. The time interval of integration corresponds

to one excitation period in all cases, resulting in a one-

(a) σ = 0.00 (b) σ = 0.01

(c) σ = 0.02

Fig. 19 Microbeam attractor’s probability density distribution for Vdc = 45, �Vac = 1, X = 2.8, high imperfection: w0 = 0.05
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period stochastic transition matrix pij. Probability

density distributions and (stochastic) basins of attrac-

tion are then obtained.

First, numerical simulations have been carried out

for the nonlinear system with Vdc = 45, �Vac = 1, and

X = 2.8. Six combinations of the parameters w0 and r
are considered with w0 = 0.01, 0.02, and r = 0, 0.01,

0.02. For these six cases, only one attractor exists, as

observed in Fig. 7a, b. The stochastic basin of

attraction is depicted for the selected values of w0

and r in Fig. 13, where the light blue region

corresponds to the periodic 1 T non-resonant attractor

and black to pull-in, i.e., zero probability of converg-

ing to the non-resonant attractor. This basin persists

for all noise levels, with minor changes near the saddle

region, suggesting that the attractor is resilient to noise

for small imperfection levels and noise magnitudes.

The noise effect is more evident in the attractor’s

distribution. As the noise increases, the Poincaré

section of the attractor spreads to larger regions in

phase space, as indicated by the red region in Fig. 13.

The next example demonstrates the effect of higher

imperfection levels on the results. As shown in Fig. 7,

the softening nonlinearity increases with the imper-

fection magnitude. Considering again Vdc = 45, �Vac-

= 1, X = 2.8 but w0 = 0.05, the deterministic

microbeam has non-resonant and resonant attractors,

as shown in Fig. 7f. Figure 14 shows the stochastic

basin of attraction of the non-resonant periodic

attractor for r = 0, r = 0.01, and r = 0.02, while

Fig. 15 shows the results for the resonant attractor and

Fig. 16 depicts the set of initial conditions leading to

pull-in. The non-resonant attractor overall size

decreases in comparison with the previous case,

Fig. 13. For r = 0.00, the basin boundary is well

defined, as shown in Figs. 14a, 15a, b, and 16a, with

the black regions corresponding to initial conditions

leading to pull-in, demonstrating the destabilizing

(a) σ = 0.010, ( ) ( )1 1, 0,0w w =& (b) σ = 0.010, ( ) ( )1 1, 0.1,0.6w w = −&

(c) σ = 0.015, ( ) ( )1 1, 0,0w w =& (d) σ = 0.015, ( ) ( )1 1, 0.1,0.6w w = −&

Fig. 20 Microbeam’s

histograms obtained from

the Monte Carlo simulation

for two initial conditions at

time t = 10,000 T integrated

5000 times. Vdc = 45,
�Vac = 1, X = 2.8,

w0 = 0.05. a, c non-resonant
initial condition, b,
d resonant initial condition
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effect of the geometric imperfections. As the noise

increases, the probability of the noisy response

converging to the resonant attractor decreases, and

its basin shrinks with only 10–20% of solutions

asymptotically converging to this region for

r = 0.01, as observed in Fig. 15c,d. In contrast, as

shown in Fig. 14b, most trials converge to the non-

resonant attractor. The pull-in region remains practi-

cally unaltered except for a small region near the

saddle. For r = 0.02, only the non-resonant solution

remains, comprising the regions initially occupied by

the non-resonant and resonant basins. The probability

density distribution evolution with the noise level

clarifies this, Fig. 18, showing the collapse of the

resonant solution and the spread of the noisy non-

resonant attractor. For r = 0.00, two well-defined

peaks are observed, while for r = 0.01, the noisy

resonant attractor spreads to a large region with low

probability and approaches noisy non-resonant attrac-

tor. Finally, for r = 0.02, the resonant attractor

completely disappears, while the remaining attractor

spreads over a larger region of the phase plane, see

Fig. 14c. However, the pull-in region remains largely

unaffected by noise.

In previous papers, for example, Orlando et al. [53],

Silva and Gonçalves [54], and Silva et al. [55], the

effect of noise on the global dynamics was investi-

gated using the Monte Carlo method, and the cells

where different samples led to different attractors were

identified and excluded from the safe basins of the

coexisting solutions. Here, a more refined analysis is

considered where not only these cells are identified but

also the probability of the ensuing response converg-

ing to one of the attractors is evaluated. Evaluation of

probability through Monte Carlo approach using a

large number of samples for each cell is a computa-

tionally demanding procedure. Here, the exact prob-

ability quantification of the basin boundaries and noisy

attractors allows the effect of noise to be addressed

more precisely and is important in various applications

including the dynamic integrity analysis [35, 56].

(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.012

(d) σ = 0.013 (e) σ = 0.014

Fig. 21 Evolution of the microbeam non-resonant stochastic basin of attraction as a function of the noise level Vdc = 45, �Vac = 5,

X = 2.8, w0 = 0, low noise level
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Figures 17 and 18 show the effect of increasing

noise on the time histories and Poincaré maps. The

initial condition ðw1; _w1Þ ¼ ð0; 0Þ in the non-resonant

region and the initial condition ðw1; _w1Þ ¼ ð�0:1; 0:6Þ
in the resonant region are adopted. Time histories for

initial conditions in the non-resonant region, Fig. 17,

display increasing irregularity as noise increases, as

illustrated by the spreading of the Poincaré map,

whose size is a function of the noise intensity. Time

histories for initial conditions in the resonant region,

Fig. 18, also exhibit increasing irregularity with noise.

For large noise levels, the response loses stability and

converges to the non-resonant attractor, Fig. 18c. The

probability density distribution evolution with the

noise illustrates this, Fig. 19, showing the collapse of

the resonant solution.

The limited phase space discretization for the Ulam

method can affect the quality of the results, requiring a

refinement analysis to check the convergence. To

verify the convergence of the stochastic response,

Monte Carlo experiments were conducted, where each

initial condition was integrated for 10,000 periods

5000 times, generating 5000 samples. The final

histograms for r = 0.01 and r = 0.015 are shown in

Fig. 20 for both attractors. For r = 0.015, the paths

starting in the resonant initial condition almost entirely

end in the non-resonant region, as correctly addressed

by the probability density distributions in Fig. 19.

Although the Monte Carlo experiments and the Ulam

method are conceptually different, the results are in

qualitative agreement, showing the potentiality of the

present strategy. Also, the present results demonstrate

that the decrease in the probability of a given region

directly influences its dynamic integrity [35, 56]

measures, and this must be taken into account in

systems with noise.

A system with a medium level of AC actuation,
�Vac = 5 and w0 = 0, is now considered to demonstrate

the noise impact in more detail. Again there are two

coexisting periodic attractors due to a region of

hysteresis (see Fig. 7). Figure 21 shows the non-

resonant stochastic basin of attraction for 0 B r

(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.012

(d) σ = 0.013 (e) σ = 0.014

Fig. 22 Evolution of the microbeam resonant stochastic basin of attraction as a function of the noise level for Vdc = 45, �Vac = 5,

X = 2.8, w0 = 0, low noise level
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B 0.014. There are little or no qualitative changes

observed in the basin area for these noise levels,

displaying the same behavior observed for �Vac = 1,

apart from spreading the Poincaré section, with the

low probability region restricted to the long tail.

However, the resonant stochastic basin, Fig. 22,

changes significantly, with finger-like regions leading

to pull-in (see Fig. 23) eroding the basin. These finger-

like regions are similar to those observed in the escape

equation due to a homoclinic tangle [57, 58]. The

probability of the resonant solution along the borders

of these finger-like regions decreases with the noise

(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.012

(d) σ = 0.013 (e) σ = 0.014

Fig. 23 Set of initial conditions leading to pull-in as a function of the noise level forVdc = 45, �Vac = 5,X = 2.8,w0 = 0, low noise level

(a) σ = 0.015 (b) σ = 0.02 (c) σ = 0.025

Fig. 24 Evolution of the microbeam stochastic basin of attraction as a function of the noise level for Vdc = 45, �Vac = 5, X = 2.8,

w0 = 0s
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level, as shown by the color scale, diffusing from the

boundary to the compact region. Also, a significant

spread of the attractor is observed, approaching the

basin boundary as the noise level increases. This also

affects the probability of pull-in, as shown in Fig. 23.

The color scheme is the same as in the previous

figures for �Vac = 1.

A drastic change occurs for r = 0.015, see Figs. 24a

and 25a. For this noise level, the two basins of

attraction cannot be distinguished from each other,

which indicates that jumps can happen between the

possible three outcomes. As the noise increases even

further (r = 0.02), no initial condition has more than a

50% probability of converging to the resonant region,

Fig. 24b. For the last noise level (r = 0.025), the

resonant solution no longer exists, merging with the

pull-in region, see Fig. 25c, with only the non-resonant

attractor remaining. Time histories for initial condi-

tions in the non-resonant and resonant regions together

with phase space projections and respective Poincaré

maps are shown in Figs. 26 and 27 to complement the

analysis. As expected, the pull-in occurs for

r = 0.025, considering the initial condition in the

resonant region. Furthermore, the time series with

r = 0.015, Fig. 26a, d, and r = 0.020, Fig. 26b, e,

remain separated for a long time.

The evolution of the probability density distribution

is depicted in Fig. 28. The first notorious change

happens between the deterministic case, Fig. 28a, and

the first stochastic case, Fig. 28b. The deterministic

case has well-defined attractors. This is expected for

deterministic systems, where point attractors or Poin-

caré sections possess Dirac delta distributions. As the

noise level increases, the resonant solution’s sensibil-

ity to noise is clearly observed, spreading the attractor

over the phase space. The last cases, Fig. 28g, h, show

the vanishing of the resonant solution due to the high

noise level. Again, Monte Carlo experiments were

conducted for verification, where each initial condi-

tion was integrated for 10,000 periods 5000 times;

generating 5000 sample paths, see Fig. 29. As

expected, the non-resonant attractor is stable for all

three noise levels, see Fig. 29a, c, e, agreeing with the

Ulam method results. The resonant attractor loses

stability for the last noise case, Fig. 29f, with even

some solutions converging to the non-resonant attrac-

tor. Escape is not depicted in the histogram because its

time response is not located in a limited-size phase

space. The percentage of escape is 81.78%, and only

11.54% of the sample are in the resonant region at time

t = 10,000 T, qualitatively agreeing with the Ulam

method.

5 Concluding remarks

The microfabrication process may produce relevant

geometric imperfections. Also, the presence of noise is

inevitable in real systems. Here, the theoretical

investigation has been conducted on an imperfect

MEMS device constituted of an imperfect clamped-

free microbeam electrostatically and electrodynami-

cally actuated with added noise. Using Hamilton’s

principle, the nonlinear equation of motion is derived

by considering the nonlinear electrical load, the

geometric nonlinearities, the geometric imperfections,

and noise. The continuous system is then discretized

(a) σ = 0.015 (b) σ = 0.02 (c) σ = 0.025

Fig. 25 Set of initial conditions leading to pull-in as a function of the noise level for Vdc = 45, �Vac = 5, X = 2.8, w0 = 0
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and reduced into a sdof system via the Galerkin

method. The investigation focuses on the static and

dynamic response of the microbeam in the neighbor-

hood of the first resonance region. After introducing

the formulation of the mechanical model, which takes

into account the most relevant imperfection, a single-

mode reduced-order model has been derived via the

Galerkin technique. Both the nonlinearity of the

electric force and the geometric nonlinearity of the

beam are taken into account. Then, the transfer

operators’ discretization used in the stochastic analy-

sis is presented, and the stochastic differential equa-

tion of Itô type is solved by the stochastic Runge–

Kutta method. Additionally, the global dynamics of

the stochastic system is examined through generalized

cell mapping,

The static nonlinear response of the microbeam

under DC voltage displays two limit points delimiting

(a)σ = 0.015

(b)σ = 0.020

(c)σ = 0.025

Fig. 26 Microbeam time histories, phase space projections, and Poincaré sections for Vdc = 45, �Vac = 5, X = 2.8, w0 = 0 and

increasing noise level. Non-resonant initial condition w1; _w1ð Þ ¼ 0; 0ð Þ
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the unstable branch of solutions that separates the two

stable branches, leading to a multistability range and

hysteresis. If the imperfection magnitude is added as a

second control parameter, the obtained surface

exhibits the typical cusp geometry, where one

stable solution may suddenly jump to an alternate

outcome due to the existence of competing solutions.

The prevailing solution is highly dependent on

imperfection and noise levels. The pull-in instability

is present in most cases, being the pull-in voltage

particularly sensitive to the imperfection level and

(a) σ = 0.015

(b) σ = 0.020

(c) σ = 0.025

Fig. 27 Microbeam time histories, phase space projections, and Poincaré sections for Vdc = 45, �Vac = 5, X = 2.8, w0 = 0 and

increasing noise level. Resonant initial condition w1; _w1ð Þ ¼ �0:4; 0:4ð Þ

cFig. 28 Microbeam attractor’s probability density distribution

as a function of the noise levels for Vdc = 45, �Vac = 5, X = 2.8,

w0 = 0
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(a) σ = 0.00 (b) σ = 0.01

(c) σ = 0.012 (d) σ = 0.013

(e) σ = 0.014 (f) σ = 0.015

(g) σ = 0.02 (h) σ = 0.025
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sign. When the imperfection decreases the gap

between the beam and the actuator plate, the pull-in

voltage decreases, and the system becomes more

susceptible to this type of instability. On the other

hand, the pull-in load increases when the gap

increases, and no static pull-in is observed after a

certain threshold value. Also, the lowest natural

frequency is significantly affected by the simultaneous

(a) σ = 0.015, ( ) ( )1 1, 0,0w w =& (b) σ = 0.015, ( ) ( )1 1, 0.4,0.4w w = −&

(c) σ = 0.020, ( ) ( )1 1, 0,0w w =& (d) σ = 0.020, ( ) ( )1 1, 0.4,0.4w w = −&

(e) σ = 0.025, ( ) ( ), 0,0w w =& (f) σ = 0.025, ( ) ( ), 0.4,0.4w w = −&

Fig. 29 Microbeam’s histograms obtained from the Monte Carlo simulation for two initial conditions at time t = 10,000 T integrated

5000 times for Vdc = 45, �Vac = 5, X = 2.8, w0 = 0. a, c, e non-resonant initial condition, b, d, f resonant initial condition
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effect of the DC voltage and geometric imperfection,

becoming zero at the limit points in the region of the

cusp catastrophe where it shows two distinct vibration

frequencies. The resonance curves of the imperfect

microbeam under AC actuation exhibit a softening

response due to the fact that the load nonlinearity

(which is of the softening type) is stronger than the

geometric nonlinearities (which is of the hardening

type) for small values of the initial gap. In these

resonant regions, the coexistence of a stable non-

resonant and a resonant branch is observed bending

toward lower frequencies regions. As the forcing

magnitude increases, it increases the multistability

range and the pull-in bandwidth, thus making the

system more susceptible to dynamic instability. The

imperfection decreases the values at which the pull-in

band is formed and increases the pull-in bandwidth.

Therefore, higher imperfections increase the vulner-

ability of the microbeam to dynamic pull-in instabil-

ity. Also of notice is in all cases, the resonant peak at a

forcing frequency equals to half the natural frequency,

also exhibiting a softening behavior and leading in

some cases to pull-in bandwidth. As the imperfection

level increases, the resonant peak at a third of the

natural frequency also increases, leading to an addi-

tional resonance region that may influence the

microbeam dynamic response. The formulation and

results for the noisy problem are tested, comparing the

results with those obtained for the Duffing equation in

[52], showing excellent agreement. For the

microbeam, the simulations reveal that the erosion of

the basins of attraction depends not only on the

amplitude and frequency of the AC voltage but also on

the imperfection level and the noise magnitude. As the

noise level increases, the probability density distribu-

tion along the basin boundaries spreads, which

dramatically increases the sensitivity of the

microbeam to initial conditions. The influence of

noise on the time response of competing attractors

may lead to complex responses with successive jumps

between the competing attractors. Both examples

show that attractors can disappear or merge depending

on the noise level, having a significant influence on the

nonlinear dynamics of the microbeam, and the

threshold value of the intensity for noise generating

a transition from the coexistence to extinction is

estimated. While the present investigation concerns a

specific structural system, the present framework can

be employed to examine the effect of noise and

uncertainties in other nonlinear problems, including

higher dimensional systems.
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Appendix: Stochastic dynamical systems

and transfer operators

In this appendix, some essentials concepts of stochas-

tic dynamical systems and transfer operators, neces-

sary to understand the methodology employed in this

work, are presented. Consider a measurable dynamical

system X;T;utð Þ over a phase space X (usually

Euclidean), naturally endowed with a Borel r-algebra
B Xð Þ, with a time set (additive semigroup) T,

continuous or discrete [59]. The flow is defined as

u : X� T ! X

x; tð Þ7!ut x;
ð35Þ

with the following properties

1: u0x ¼ idX;
2: us 	 utð Þx ¼ usþtx;
3: utx is measurable in B Xð Þ 
B Tð Þ;B Xð Þ:

ð36Þ

If the triplet X;B Xð Þ;Pð Þ defines a probability

space over the phase space, then P is its probability

measure. For deterministic dynamical systems, chao-

tic systems, or parametric uncertain dynamical sys-

tems, P is the Dirac measure. The Dirac measure is a

probability measure that represents, in terms of

probability, an almost sure outcome in the sample

space.

For the case of stochastic excitations, such as

random noise, the dynamical system is defined as

random, constituting a cocycle over the random noise

space. Therefore, differences between the invariant

measure structures of the deterministic and stochastic

case are substantial [60]. Considering a metric
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dynamical system X; ðF;PÞ;T; htð Þ, such as a stochas-
tic process, a random dynamical system ut has the

following properties:

1: u is measurable in F
B Tð Þ 
B Xð Þ;B Xð Þ;
2: ut xð Þx : X ! X form a cocyle over htx :

i: u0 xð Þx ¼ idX; 8x 2 X;
ii: usþt xð Þx ¼ us htxð Þ 	 ut xð Þð Þx; 8s; t 2 T; x 2 X:

ð37Þ

The property 2.ii is also termed the cocycle

property and can be rewritten as

usþt xð Þx ¼ us htxð Þut xð Þx. An important character-

istic of random dynamical systems is that they reduce

to measurable dynamical systems if ht is constant over
time.

The measures’ evolution of both deterministic and

stochastic dynamical systems is governed by the

Perron–Frobenius operator Pt and the Koopman

operator Kt. The Perron–Frobenius operator acts on

density distributions f and is defined as

Pt : Ln Xð Þ ! Ln Xð Þ;
Z

A

Pt fdl ¼
Z

u�1
t Að Þ

fdl;

8f � 0; f 2 Ln Xð Þ;A 2 G;

ð38Þ

where n C 1. The measure l can be the Lebesgue

measure or a more complicated structure, such as a

Dirac measure or a tensor product between the phase

space and the stochastic space [61]. The Koopman

operator is given by

Kt : L1 Xð Þ ! L1 Xð Þ
Ktg ¼ g 	 ut;

8g 2 L1 Xð Þ;
ð39Þ

acting on the real-valued observables g of the dynam-

ical system ut. The transfer operators are dual to each

other, i.e.:

Ptf ; gh il¼ f ;Ktgh il: ð40Þ

Therefore, one operator can be obtained from the

other without further difficulties.

The Perron–Frobenius operator Pt defines a func-

tional linear dynamical system over ut. It follows an

ensemble of trajectories, where ut is the evolution of

only one trajectory. Complicated nonlinear flows, both

deterministic and stochastic, can be represented in this

manner, with each particular topology of ut having a

counterpart of Pt [59].

The discretization of the transfer operators is

obtained by the generalized cell mapping [44–46].

Guder and Kreuzer [50] proved that the generalized

cell mapping is identical to the Ulam method, which

approximates Pt by a zero-order Galerkin method.

The phase space is discretized into a disjoint collection

of k sets, {b1,…,bk}, and Pt is approximately given by

Pt � pij ¼
l u�1

t bið Þ \ bj
� �

l bj
� � ; ð41Þ

where pij are elements of a stochastic matrix [pij].

Briefly, each element pij corresponds to the probability

of the system ut evolving from set bj to set bi. In this

work, these probabilities are approximated by aMonte

Carlo sampling, as in the generalized cell mapping.

Also, the Koopman operator approximation is

obtained by the transpose of [pij], [kij] = [pij]
*, due

to the dual relation in Eq. (40).

Lindner and Hellmann [51] demonstrated that the

fixed space of [kij] could be used to approximate the

basin structures of ut. This result is explored in this

study, and stochastic basins of attractions are obtained

by adopting the concept of 0-absorption stability as the

infinity time convergence of dynamical systems.

Absorbing boundary conditions have been developed

for various types of problems to truncate infinite

domains in order to perform computations.
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of initial geometric imperfections on the 1:1:1:1 internal

resonances and nonlinear vibrations of thin-walled cylin-

drical shells. Thin-Walled Struct. 151, 106730 (2020).

https://doi.org/10.1016/j.tws.2020.106730

41. Fina, M., Weber, P., Wagner, W.: Polymorphic uncertainty

modeling for the simulation of geometric imperfections in

probabilistic design of cylindrical shells. Struct. Saf. 82,
101894 (2020). https://doi.org/10.1016/j.strusafe.2019.101894
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Instabilidade Dinâmica de Cascas Cilı́ndricas. http://www.

maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=

resultado&nrSeq=2061@1 (2001)

50. Guder, R., Kreuzer, E.J.: Using generalized cell mapping to

approximate invariant measures on compact manifolds. Int.

J. Bifurc. Chaos 07, 2487–2499 (1997). https://doi.org/10.

1142/S0218127497001667

51. Lindner,M., Hellmann, F.: Stochastic basins of attraction and

generalized committor functions. Phys. Rev. E. 100, 022124
(2019). https://doi.org/10.1103/PhysRevE.100.022124

52. Agarwal, V., Yorke, J.A., Balachandran, B.: Noise-induced

chaotic-attractor escape route. Nonlinear Dyn. 65, 1–11
(2020). https://doi.org/10.1007/s11071-020-05873-3
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