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Abstract In this paper, weighted link entropy (WLE)
andmultiscale weighted link entropy (MWLE) are pro-
posed as novelmeasures to quantify complexity of non-
linear time series. MWLE is different from traditional
weighted permutation entropy (WPE) in that its pro-
posal is based on the combination of symbolic ordinal
analysis and networks. Besides, the analysis of MWLE
takes into accountmultiple time scales inherent in com-
plex systems. The advantages of the proposed methods
are investigated by simulations on synthetic signals
and real-world data. Based on the study of synthetic
data, we find that a significant advantage of WLE is
its reduced sensitivity to noise. WLE shows the trend
of more chaotic of system as the variance of Gaussian
white noise increases. In addition, WLE has a wider
range of variations when the system is in a chaotic
state and can detect minute changes of complexity in
complex systems as control parameters vary. To fur-
ther show the utility of MWLE and WLE methods, we
provide new evidences of their application in financial
time series. By comparing WLE with the mean and
variance of closing price data, WLE can predict the
occurrence of financial crisis in advance. Furthermore,
MWLE is capable of helpingmark off different regions
of stock markets, detecting their multiscale structure
and reflects more information containing in financial
time series.
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1 Introduction

Extracting internal structural features in complex sys-
tems has been of constant concern to researchers. As
an important information carrier of complex systems,
time series is widely studied. The complexity of time
series is closely related to a variety of dynamic charac-
teristics of time series, such as long-range correlation
[1], multifractal characteristics [2], chaotic characteris-
tics [3] and so on. The existence of these characteristics
makes time series show varying degrees of complexity.
Researchers hope to reveal the dynamic evolution of
complex systems by analyzing the dynamic patterns of
time series. In order to study the dynamic characteris-
tics of time series,manymethods have been put forward
so far, such as Lyapunov index [4], fractal dimension
[5], complex network [6], and information entropy [7].
The research on the complexity of time series has been
the focus of researchers for a long time. And it is of
significant importance to study the complexity of time
series. Many researchers have applied time series anal-
ysis in various fields, such as climate systems [8,9],
eco-epidemiological system [10] and economic system
[11].

Among many methods, symbolic time series anal-
ysis and information entropy have attracted the atten-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-06599-6&domain=pdf
http://orcid.org/0000-0002-1088-7296


542 Y. Chen, A. Lin

tion of scholars. Symbolic time series analysis includes
symbolization of time series [12–14] and analysis of
symbolic sequence, and it is a fast, simple and effec-
tive signal processing method [15]. By reducing the
interference of some data information and capturing
large-scale features of data sequence, high-resolution
data can be converted into low-resolution data to extract
dynamic characteristics and reduce noise sensitivity of
signal analysis. Permutation analysis [7], one of com-
mon symbolic methods, has been applied to time series
to quantify appearance already. It is computed with
an ordinal symbolization rule by comparing neigh-
boring values in time series. Then, complexity mea-
sures have been proposed to characterize the resulting
symbolic sequence, a very popular one being the per-
mutation entropy (PE). However, the main disadvan-
tage of permutation entropy (PE) is that no informa-
tion is retained other than ranking when ordinal pattern
of each time series is extracted. Therefore, weighted
permutation entropy is proposed [16]. The weighting
method makes it possible to detect sudden changes in
data and assign more weights to conventional spike
patterns. In addition, the traditional entropy algorithm,
which is based on a single scale, does not consider
the inherent multiple time scales of complex systems
[17]. Hence, Costa proposes a new method called mul-
tiscale entropy (MSE) to calculate entropy atmultiscale
[18]. For a given discrete time series {xi }Ni=1, multiple
coarse-grained time series are constructed by averag-
ing the data points within nonoverlapping windows of
increasing length s. Entropy can represent dynamic sys-
tems from different perspectives, and plays an impor-
tant role in measuring the complexity of time series
[19–21].

In the field of nonlinear time series research, it is
highly praised to use the complex network method
[6,22] to describe the dynamic characteristics of time
series. The idea of transforming time series into com-
plex network also opens up a new river of nonlinear
time series research. This idea connects the research
of time series with the method of graph theory, which
makes it possible to apply graph theory to the study
of dynamic pattern of time series. A key problem to
be solved in the research of sequential network is how
to transform the dynamic evolution of time series into
complex networks.

Different complex network construction methods
determine that the dynamic information of time series
at different levels is mapped to the network topology.
Masoller uses symbolic ordinal analysis and network
representation to characterize the evolution of dynamic
systems in 2015 [13]. Moreover, it has been proved
that correlation charts [23,24], recurrence charts [25–
27] and visibility charts [28–31] can provide relevant
information, such as qualitative changes and sudden
changes in early warning indicators.

In this study, we use the transition graph method to
construct temporal network. Sequential network itself
is a directed graph, but each link in the network has
no weight added, so amplitude information is often
ignored when capturing dynamic information of time
series.We get the dynamic information of the sequence
by adding weight in the link. In addition, the tradi-
tional entropy method is only a measure of uncertainty.
Higher entropy only means higher uncertainty (or ran-
domness), but does not mean higher complexity of sys-
temdynamics. Therefore, themultiscalemethod is used
to research the coarse grain sequence instead of the
original time series for measuring the complexity.

In this paper, a new method combining symbolic
time series analysis and complex network is proposed,
which is called weighted link entropy (WLE). The
main contribution of this paper is to construct weighted
digraph in sequential network to obtain the dynamic
information about amplitude of time series. We extend
the permutation analysis to complex networks to com-
pute node entropy and link entropy, which are defined
from the perspective of network construction. In addi-
tion, weighted link entropy is extended to multiscale
weighted link entropy (MWLE), thus studying multi-
ple inherent scales of complex systems through coarse
grain time series. We analyze multiscale weighted link
entropy of Shangzheng, Shenzheng, HSI, S&P500,
DJI, NQCI, FTSE, FCHI and GDAXI stock closing
prices. In order to accurately test the validity of the
proposed method, we consider time series generated
by logistic map, tent map, Gaussian-modulated sinu-
soidal pulses model and Binomial multifractal model.

The rest of this paper is organized as follows. Sec-
tion 2presentsmethods adopted in this study. InSects. 3
and 4, results of simulation data and empirical data are
presented respectively. Section 5 gives the conclusions.
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2 Methodologies

2.1 Permutation entropy and weighted permutation
entropy

Weconsider the embedded representation of time series
{xt }Tt=1 and the embedded expression of its time delay
Xm,τ

j = {
x j , x j+τ , . . . , x j+(m−1)τ

}
, j = 1, 2, . . . T −

(m−1)τ , wherem represents the embedding dimension
and τ represents the timedelay.Eachvector in N = T−
(m− 1)τ sub-vector will generate m! ordinal symbols,
so the m! order permutation entropy is defined as
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where 1A(u) denotes the indicator function of set A
defined as 1A(u) = 1 if u ∈ A and 1A(u) = 0 if
u /∈ A. Obviously, 0 ≤ H(m, τ ) ≤ log(m!).

In general, the ordinal representation s(t) of x(t) has
M different symbols. According to the dynamics of the
system, not all possible symbols will appear in the sign
sequence s(t), because dynamics does not allow the
appearance of some ’forbidden mode’ [32,33], or the
length of time series x(t) is limited, so there will be
no ’missing mode’ [34]. Therefore, the symbol type
M that actually appears in the symbol sequence is less
than or equal to m!.

However, the main disadvantage of permutation
entropy (PE) is that it does not retain any information
except the order structure when the order pattern of
each time series is extracted, so the amplitude infor-
mation of most time series could be lost [16]. In order

to overcome this defect, weighted permutation entropy
(WPE) is proposed by Fadlalah in 2013. The procedure
of calculating the WPE is briefly described as follows:
Each vector Xm

j is weighted with the weight value w j ,
instead of being weighted uniformly. The weighted rel-
ative frequencies are calculated as
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) = 1. The weight value w j is
the variance of each vector Xm

j as
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where X̄m
j is the arithmetic mean:
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WPE is then computed as
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2.2 Network construction

We transform a time series x(t) into a sequence of sym-
bols s(t) by using the ordinal pattern representation
with symbols of length m. In this case, symbols are
defined by considering groups ofm consecutive values
in the time series. For example, form = 2 there are two
ordinal patterns: x(t) < x(t+1) gives symbol ′01′ and
x(t) > x(t + 1) gives symbol ′10′.

Weight of a node i is the relative number of times
symbolioccurs in sequence s(t):

pi = 1

L

L∑

t=1

n[s(t) = i] (8)

where n is the count of occurrence times of node i , L is
length of sequence s(t), pi is standardized,

∑M
i=1 pi =
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1. sp is entropy of the distribution of node weights:

sp = −
M∑

i=1

pi log pi (9)

In sequence s(t), the relative degree of symbol i fol-
lowes by symbol j is the weight of a link wi, j :

wi j =
∑L−1

t=1 n[s(t) = i, s(t + 1) = j]
∑L−1

t=1 n[s(t) = i] (10)

Since
∑M

j=1 wi j = 1,∀i , we can calculate entropy of
the weight distribution of each link:

si = −
M∑

j=1

wi j logwi j (11)

Then the heterogeneity of network is represented by
the distribution of si value. We propose to use the first
moment of si value distribution, namely, the average
node entropy of network:

sn = 1

M

M∑

i=1

si (12)

If all nodes have only one outgoing link, then si = 0,
sn = 0, sign j that comes after sign i is completely pre-
dictable. The largest si = logM occurs in sn = logM ,
where the sign sequence is completely random, any
sign in sequence follows sign i with the same proba-
bility 1

M . Therefore, 0 ≤ sn ≤ logM .

2.3 Weighted link entropy and multiscale weighted
link entropy

2.3.1 Weighted link entropy

However, when link entropy extracts information in
time series, only ordinal pattern is considered, so ampli-
tude information could be lost. For example, Fig. 1
shows how the same ordinal link pattern can originate
from different m + τ dimensional vectors. Therefore,
we define weighted link entropy (WLE) in the follow-
ing steps.

Fig. 1 Two examples of possible patterns corresponding to the
same link, m = 3, τ = 1

First, we define weighted node entropy (WNE).
Each vector Xm

j is weighted with the weight value w j ,
instead of being weighted uniformly.

Step 1 Equation 8 can be expressed as follows:

pi =
∑L

t=1 n[s(t) = i]
∑L

t=1
∑M

i=1 n[s(t) = i] (13)

Step 2 We add weights to the nodes,

wpi =
∑L

t=1 n[s(t) = i]wt
∑L

t=1
∑M

i=1 n[s(t) = i]wt
(14)

Step 3 wt is defined in Eqs. 5, 6, and then the weighted
node entropy (WNE) can be calculated as

wsp = −
M∑

i=1

wpi logwpi (15)

Thenbasedon the concept ofweightednode entropy,
we propose weighted link entropy (WLE):

Step 1 Equation 10 can be written as

wi j =
∑L−1

t=1 n[s(t) = i, s(t + 1) = j]
∑L−1

t=1
∑M

j=1 n[s(t) = i, s(t + 1) = j] (16)

Step 2 We add weights to links:

wpi j =
∑L−1

t=1 n[s(t) = i, s(t + 1) = j]
(

wt+wt+1
2

)

∑L−1
t=1

∑M
j=1 n[s(t) = i, s(t + 1) = j]

(
wt+wt+1

2

)

(17)
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Fig. 2 The produce of weighted node andweighted link,m = 3,
τ = 1

Step 3 The entropy of weighted link distribution is cal-
culated as

hwpi = −
M∑

i=1

wpi j logwpi j (18)

Step 4 Using the first moment of hwpi distribution, the
weighted link entropy wsn is calculated as

wsn = 1

M

M∑

i=1

hwpi (19)

The produce of weighted node and weighted link
can be seen in Fig. 2. The embedding dimension is set
to 3 and time delay τ = 1, each sub-vector {x(t), x(t+
1), x(t+2)}will generate 6 ordinal symbols. Therefore
the network is allowed to build 6 nodes and 36 links.We
assign weights wi to each node, and {(wi + wi+1)/2}
to each link.

2.3.2 Multiscale weighted link entropy

The coarse-grained time series is constructed by using
the following equation.

y(s)
j = 1

s

js∑

i=( j−1)s+1

xi (20)

where s represents the scale factor and 1 ≤ j ≤ N/s.
The length of each coarse-grained time series is equal
to the length of original time series divided by the scale
factor s. We calculate entropy of each coarse-grained
time series as a function of scale factor s and then plot
as a function of the scale factor. In the sense of multi-
scale, the weighted link entropy (WLE) we calculate is
extended tomultiscaleweighted link entropy (MWLE).

Fig. 3 Analysis of the logistic map, parameter range 3.5 ≤ r ≤
4, subgraphes from top to bottom are bifurcation diagram of
logistic model, the diagram of Lyapunov index, weighted node
entropy and weighted link entropy, respectively

3 Simulated data results

3.1 Logistic model and tent model

We start by presenting the results of the analysis of
simulated time series for the logistic map and the tent
map [35]. The equations and parameters are:

– logistic map:xi+1 = r xi (1 − xi )
– Tent map:xi+1 = r xi if xi < 0.5, xi+1 =
r (1 − xi ) if xi ≥ 0.5

The analysis is performedwith a time series of length
L = 6000 and patterns of length m = 3. When ana-
lyzing empirical data, we focus on the different per-
formance of weighted node entropy and weighted link
entropy.

Both logistic map and tent map have similar bifur-
cation sequences (except for the periodic windows in
the logistic map). Thus, assuming similar bifurcation
sequence gives rise to similar dynamical behaviors,
similar symbolic networks which depend on control
parameters will be obtained. In several previous stud-
ies, Lyapunov index (LE) can well measure the chaotic
state of logistic map and tent map. The system is
in chaotic motion when the Lyapunov index (LE) is
positive. The trends of wsp and wsn , which change
with parameters are essentially similar to Lyapunov
index’s. In the visibility diagram, the direct relation-
ship between network entropy and LE is established
by identifying Pesin [4]. Therefore, these results show
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Fig. 4 Analysis of the tent map, parameter range 1 ≤ r ≤ 2,
subgraphes from top to bottom are bifurcation diagramof logistic
model, the diagram of Lyapunov index, weighted node entropy
and weighted link entropy, respectively

that the above network entropy can indeed capture non-
trivial properties of dynamics.

Indeed, it is observed in Figs. 3 and 4 that wsn dis-
plays more informatioin on the complexity inside sys-
tems. For example, wsn has a wider range of varia-
tions when the system is in a chaotic state and can
detect minute changes of the complexity of systems.
The trend of wsn is more similar to that of LE , which
can be understood in the following terms. On the one
hand, wsp only represents the distribution of weighted
nodes, but on this basis wsn contains weighted link
which increases the connection between two nodes, so
that a more robust network structure is built. So the val-
ues of wsn will change more greatly when the system
is chaotic, and subtle fluctuation in the systems will be
also detected. On the other hand, with the increase of
map parameters, new patternswill appear in the symbol
sequence, which produce new nodes and links in sym-
bol network. Althrough the frequency of occurrence
of the new ordinal patterns is small in the initial state
and their appearance does not produce mutation vari-
ations in wsp, the new links will not necessarily have
small entropies. Therefore, they can induce mutation
variations in the average link entropy.

3.2 Gaussian-modulated sinusoidal pulses model

In order to study the different performances of WLE
and WNE in signals with noise, we try a series of

Fig. 5 Node entropy, weighted node entropy, link entropy and
weighted link entropy in Gaussian sine pulse (left) and Gaussian
sine pulse with Gaussian white noise (right)

sinusoidal pulses with Gaussian modulation amplitude
attenuation and sinusoidal pulses has Gaussian white
noise which has mean μ = 0 and variance σ 2 = 0.2.
Gaussian-modulated sinusoidal train with a frequency
of 10 kHz, a pulse repetition frequency of 1 kHz and an
amplitude attenuation rate of 0.9. It’s sampling rate is
50 kHz. The value of τ is set to 1 and m is set to 4. We
use the window length of 50 and the window moving
length of 10.

In the left figure of Fig. 5, when Gaussian white
noise is not added to the Gaussian sinusoidal pulse sig-
nal, node entropy and link entropy do not well rep-
resent amplitude attenuation characteristics of signal,
which means that information about amplitude is lost
when ordinal structure is extracted separately. How-
ever, WNE and WLE always discard the part of the
signal displaying the pulse, which can clearly distin-
guish the burst and stagnation regions of the pulse train.
In the right figure of Fig. 5, after adding gaussian white
noise with variance σ 2 = 0.2, WNE is greatly affected
and changes dramatically, showing an obvious upward
trend, since the system tends to be more chaotic. In this
case, the amplitude information is not themain factor to
determine the value of WNE. On the contrary, WLE is
relatively robust and stable. Therefore, whether to add
noise or not does not affect the value of MLE. Entropy
value remains at a relatively stable level, which can
well measure the change of amplitude.

Table 1 records the mean and variance of node
entropy, weighted node entropy, link entropy and
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Table 1 The mean and variance of NE, WNE, LE andWLE in Gaussian sine pulse and Gaussian sine pulse with Gaussian white noise

Gaussian sine pulse Gaussian sine pulses with white noise

Sp Mean 2.9580 4.2952

Var 1.0508e–04 0.0097

WSp Mean 1.7975 2.4112

Var 0.0083 0.0636

Sn Mean 0.1699 1.0671

Var 4.7995e–06 0.0136

WSn Mean 0.0927 0.6866

Var 4.3588e–05 0.0157

Fig. 6 PE,WPE andWLE values for different variance of Gaus-
sian white noise added in Gaussian sinusoidal pulse. The signal
used is the same as that described in Fig. 5

weighted link entropy in Gaussian sinusoidal pulse
and Gaussian sinusoidal pulse with Gaussian white
noise. After adding Gaussian white noise, the system
tends to be more chaotic. Its randomness and uncer-
tainty increase, which is in line with the reality that the
mean of all entropy value increases significantly in a
more chaotic system. The variance of weighted entropy
are larger than that of general permutation entropy on
account of the fact that adding weight can capture more
amplitude information of ordinal pattern.What’s more,
the weighted link entropy WSn fluctuates in a smaller
range, compared with the weighted node entropyWSp
in both two sets of signals.

To observe the change of entropy under different
SNR, we change the variance of Gaussian white noise
added in Fig. 6. As expected, all of three entropy mea-

sures increase with the increase of the SNR since the
effect of noise contributes to more complexity. WLE
increases at a higher pace than WPE, which reflects a
better robustness when noise is added.

3.3 Binomial multifractal series

The binomial multifractal time series, which is very
popular due to it’s spike structures, is suitable for study
in complexmodels [36]. The binomialmultifractal time
series contains some spiky portions as shown in Fig. 7.
The given series of N = 2nmax numbers i with i =
1, 2, ..., N is defined by

xi = an(i−1)(1 − a)nmax−n(i−1) (21)

where 0.5 < a < 1 is a parameter and n(i) is the num-
ber of digits equal to 1 in the binary representation of
the index i . In the following study, we generate bino-
mial multifractal series with a = 0.75, and the length
of {xi } is set to be 210 and 216.

Then, multiple inherent dynamics of time series
based on multiscale analysis is explored. We estimate
the multiscale WNE and multiscale WLE of xi for dif-
ferent embedding dimension m = 3, 4 and different
length N , which are presented in Fig. 8. Some impor-
tant observations can be found from the subplots: (i)
the value of wsp is always larger than that of wsn ,
but their changing trend is similar. And the changing
range of wsp is larger than that of wsn on multiple
time scales. The calculation of WLE is based on net-
work and its links, which helps to weaken the influence
of small fluctuations (which may be caused by noise).
Also, it gives weight to regular patterns, which leads
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Fig. 7 The sample of binomial multifractal series with a = 0.75
of length 216

Fig. 8 MWPE and MWLE analysis of different embedding
dimension m and different length N of two time series

to higher predictability. (ii) the MWNE of time series
when m = 4 is always larger than that of m = 3, but
the change of MWLE is not obvious at different m. On
the contrary, neither of them changes significantly in
different length N of time series.

4 Empirical data results

4.1 Research on the complexity of time series during
financial crisis

The financial market is a complex system with vari-
ous interactions [37] and has a strong self-organization
ability. It is still a huge challenge to study its nonlin-
earity and uncertainty. Financial markets often exhibit
unexpected phenomena, such as systemic breakdowns.
In the past 20 years, the global currency crisis in 1998,
the dotcom crash in 2001, the global financial crisis in
2008, the European debt crisis in 2012, the Chinese cri-
sis in 2015–2016 and theUS stockmarket crisis in early
2019 are all tipical financial crisis events. Therefore, it
is of great significance to quantify the changes of com-
plexity before, during and after the crisis in financial
systems, providing early warning indicators of qualita-
tive changes. The key idea is how to quantify some pat-
terns of complex systems, which subsequently indicate
the changes of internal complexity of system. A signif-
icant advantage of this approach is that it can be com-
pared with the corresponding time series to monitor
and detect key changes. Furtherfore these quantitative
measures of complexity can be used in the diagnosis
process and in the prediction of future changes.

We use the daily closing price data of Shanghai
Composite Index from January 1, 2006 to Decem-
ber 29, 2016. We collect the original sample data
fromfinance of yahoo (http://finance.yahoo.com/). The
length of sliding window is set to 100, and the win-
dow moving length is 30. In practice, the normalized
log-returns are considered. When the stock indes is
denoted as x(t), the log-returns is defined as g(t) =
log(x(t))− log(x(t−1)), and then the normalized log-
returns are R(t) = (g(t) − 〈g(t)〉)/σ , where σ is the
standard deviation of the series g(t). And < ∗ > is
the time average of the series g(t). We obtain the data
covering 3647 days as shown in Fig. 9.

In this time series, there are two distinct mutation
periods, corresponding to the global financial crisis of
2008 and the China crisis of 2015–2016, resprctively.
Under the framework of sliding window algorithm,
the specific time of the two mutation periods can be
observed through the mean value and variance. Cor-
respondingly, the entropy changes of weighted node
entropy and weighted link entropy can also be seen
when these two mutation events occur. We determine
the point in time of mutation by comparing the aver-
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Fig. 9 Daily closingprices andnormalized log-returns ofShang-
hai Composite Index

age change of entropy in time period. It can be seen in
Table 2 that period 2 and period 5 are smaller than the
average of their two adjacent time periods obviously.
Significantly, the change of WLE and WNE is noted
much earlier than the actual crisis event time, which
provides an early warning. It can be explained that
the internal structure of systems changes before cer-
tain sudden changes, and entropy is an effective tool
to quantify these structural patterns. In addition, the
range of entropy change is different due to the differ-
ent impact degree of these two crisis events. Measures
of complexity can be used as indicators or precursors
of the phenomenon of crisis if they show a clear pattern
across all crises, such as a decrease or increase in the
early stages of the crisis (Fig. 10).

4.2 Multiscale research on different stock markets

The financial time series we use is daily closing prices
of nine stock indexes: three American stock indexes
S&P500, DJI and NQCI, three Chinese stock indexes
Shangzheng, Shenzheng and HSI together with three
European stocks indexes FTSE100, FCHI andGDAXI.
The data are recorded from January 1, 2006 to Decem-
ber 31, 2020. After removing asynchronous data, we
obtain data covering 3647 days as shown in Fig. 11.
We collect the original sample data from finance of
yahoo (http://finance.yahoo.com/).

By observing the closing prices of nine indexes in
Fig. 11 and the normalized log-returns of nine indexes

Fig. 10 The closing price, mean value, variance, weighted node
entropy, weighted link entropy of Shangzheng stock index from
January 1, 2006 to December 31, 2016

in Fig. 12, we can find that there are three obvious
oscillations in given time interval, which are the global
financial crisis in 2008, theEuropean debt crisis in 2012
and the China crisis in 2015–2016. The three stocks
of American stock market fluctuat greatly in the 2008
financial crisis, followed by the European debt crisis,
and the 15–16China crisis has the least impact on them.
In comparison, the three stocks of China’s stock mar-
ket show a great degree of volatility in 2008 financial
crisis and the 15–16 China crisis. However, they do not
showanyobvious change inEuropean crisis exceptHSI
index. In addition, the three stocks of European stock
market show volatility at all three corresponding time
points, but the degree is not obvious compared with the
other two stock markets in 2008 and 2015, which can
be regarded as being affected by the stock markets of
two other regions.

When the embedding dimension m = 3, WLE of
these three stock markets at multiple scales and of pair-
wise comparison is analyzed. Stock data has strong
noise interference. Even so, there are some interesting
conclusions that can be found on multiple time scales.
(i) The Shangzheng and Shenzheng indexes have sim-
ilar trends on multiple scales, while the HSI index is
similar to several indexes in the US and European stock
markets. HSI index is greatly influenced by the interna-
tional stock market from 2006 to 2020. (ii) In Chinese
stock market and American stock market, the general
trends of these three stocks we use are generally sim-
ilar, while the three indexes of European stock market
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Table 2 The mean of four indicators in pre crisis, mid crisis, post crisis respectively

Mean Var WSP WSN

Period.1 1.9241e+05 3.0135e+03 2.2223 1.1902

Period.2 3.2595e+05 4.7102e+03 2.0430 1.0121

Period.3 2.1772e+05 2.9661e+03 2.2209 1.0173

Period.4 5.8994e+04 2.3878e+03 2.2027 1.1797

Period.5 2.5252e+05 3.6911e+03 1.9991 1.0176

Period.6 6.0485e+04 3.1739e+03 2.1653 1.2656

Fig. 11 Closing prices of nine stock indexes

Fig. 12 Normalized log-returns of nine stock indexes

are obviously different. These three stocks in European
stock market come from different countries. The con-
clusion about the difference of similarity is basically
consistent with the fact above (Figs. 13, 14, 15).

Fig. 13 WLE of six stocks in Chinese and American stock mar-
kets at different time scales, embedding dimension m = 3

Fig. 14 WLE of six stocks in Chinese and European stock mar-
kets at different time scales, embedding dimension m = 3
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Fig. 15 WLE of six stocks in American and European stock
markets at different time scales, embedding dimension m = 3

Then, we study the influence of different embed-
ding dimensions on the results, setting m = 4 and then
m = 5. When m = 4, there are 24 nodes and 576 links
in the network. When m = 5, the network allows 120
nodes and 14,400 links to be built. Rich links tend to
make the network more robust and not be vulnerable
to extreme values and noise. In Fig. 16, a very obvi-
ous phenomenon is that the entropy of FTSE 100 and
FCHI indexes is obviously different from other stocks,
which is more pronounced in Fig. 17. In multiple time
scales, it is easy to distinguish the sequences with dif-
ferent features in the same cluster. In large time scales,
multiscale entropy can better extract the intrinsic char-
acteristics of information, which further demostrates
the necessity of applying multiple scales to MLE.

The similarity of stock markets in different regions
can be measured better in a larger embedding dimen-
sion. In the analysis of embedding dimension m = 5,
European stock market and American stock market are
completely separated, while Chinese stock market is
between them. When the embedding dimension is 4,
although the stock markets in different regions can be
roughly distinguished, the effect is not obvious in some
time scales. However, when the embedding dimension
is large, it requires longer length of time series and
takes longer time to run. Therefore, how to select an
appropriate embedding dimension needs to be further
solved.

Fig. 16 WLEof nine stocks inChinese,American andEuropean
stockmarkets at different time scales, embeddingdimensionm =
4

Fig. 17 WLEof nine stocks inChinese,American andEuropean
stockmarkets at different time scales, embeddingdimensionm =
5

5 Conclusion and discussion

In this paper, we propose a hybrid method which
combines symbolic time series analysis and complex
networks to measure the complexity of nonlinear sys-
tem. On the basis of traditional permutation entropy,
this paper puts forward the concept of node and link,
and then proposes weighted link entropy. Compared
with traditional permutation entropy, the WLE can
measure amplitude information since addingweights in
temporal networks. What’s more, the research extends
WLE to multiple scales. Therefore, WLE retains most
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Fig. 18 a A simple example to explain how the sequential net-
work predicts the next most probable symbol in the symbol
sequence through transitions, thus inferring the variations of val-

ues in ordinal time series, and Wi j stands for different links.
b A simple example of the two periodic time series which can
eventually be mapped to the same class of regular networks

of characteristics of weighted permutation entropy, and
also takes into account themultiple time scales inherent
in complex systems.

Through numerical simulation experiments, we
prove the superiority of the WLE method. In previous
studies, Lyapunov exponent is a good indice to show the
chaotic characteristics of nonlinear dynamic system.
Our research shows that weighted link entropy is not
only very similar to it, but also can identify themutation
of dynamic systems. Moreover, the robustness ofWLE
when noise is added is further demonstrated. Hence,
these results show that network entropy can capture
the nontrivial characteristics of dynamics.

In the empirical analysis, we find that WLE can pre-
dict the occurrence of financial crisis and effectively
measure the inherent complexity of major events in the
financial market in the framework of moving window
algorithm. In multiple scales, the focus of our research
is the similarity of different regions of stock markets.
And the results demostrate that multiscale entropy can
measure the similarity of different stock markets.

In summary, the complexity of time series is stud-
ied by weighted time series network in this paper.
The proposed method can indeed quantify the dynamic
pattern information of time series in simulation and
real data applications. Compared with the traditional

weighted permutation entropy, our method can obtain
more dynamic information of time series and has better
anti-noise ability. In addition, in studying the mutation
behavior of financial stock markets and measuring the
similarity of stock markets, we arrive at a conclusion
that our proposed method is effective. However, how
to choose the appropriate embedding dimension needs
to be further solved in practical application.

Our approach can identify changes in the symbolic
dynamics of these systems, for example, the appear-
ance of new symbols or the appearance of new tran-
sitions, which result in variations of the network mea-
sures. What’s more, it provides additional predictive
power for time series analysis, as identifying nodes
with one outgoing link will allow us to identify the
symbol sequence, those for which we know which is
the next most probable symbol in the symbol sequence.
And then in time series analysis, entropy is used tomea-
sure the uncertainty of these symbols and transitions,
thereby indicating the change of system chaos. How-
ever, some time series can eventually be mapped to the
same class of regular networks, such as periodic and
irregular time series. It means that it is of significant
importance to choose symbolization methods. These
above conclusions are explained in Fig. 18. Therefore,
further studies should be performed to determine the
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correspondence between different network character-
istics and different types of dynamics as well.
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