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Abstract This paper focuses on the problem of

nonlinear system identification by proposing an

improved approach for existing frequency-domain

nonlinear identification through feedback of the out-

puts (NIFO) method via separation strategy.

Suitable excitation level is difficult to select for the

existing NIFOmethod, and coupling errors are usually

caused by the large differences in the numerical

magnitude between the excitation forces and the

nonlinear description functions when both of them

are simultaneously considered as an input vector. In

this work, a nonlinear separation identification

through feedback of the outputs (NSIFO) method is

proposed to avoid the limitation of the selection range

of the excitation level and reduce coupling errors of

the existing NIFO method. The proposed method

needs two excitation tests including the low-level

excitation test and the high-level excitation test. The

underlying linear frequency response function matrix

is firstly identified under low-level excitation, and only

nonlinear description functions are considered as an

input to identify nonlinear parameters under high-

level excitation by using separation strategy. Two

numerical structural examples and a three-story

experimental structure are, respectively, used to

validate the effectiveness and feasibility of the

proposed method via a comparative study focused on

the identification of nonlinear systems. Numerical and

experimental identification results finally demonstrate

the superior achievable accuracy and stability of the

proposed method compared to the existing NIFO

method.

Keywords Nonlinear system identification �
Frequency-domain identification � Separation strategy

1 Introduction

Nonlinear systems exist widely in the real world, and

their intrinsic nonlinear behavior is usually

inevitable in engineering practices. For example,

freeplay nonlinearity is inevitable for deployable

structures due to the factors such as mismachining

tolerance, assembly errors and abrasion [1–3]. Friction

nonlinearity caused by contact and sliding between

bodies with respect to each other exists widely in

mechanical systems [4–6]. With the practical need of

engineering applications, more and more researchers

pay attention to the identification of nonlinear systems.

Kerschen et al. [7] and Noël et al. [8] reviewed the

research progress of nonlinear system identification in
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structural dynamics over the past decades and pre-

sented a critical survey of parameter estimation

methods including linearization, time-domain, fre-

quency-domain, time–frequency analysis, nonlinear

modal analysis, black-box modeling and model

updating methods. In recent years, frequency-domain

methods have been widely used in parameter estima-

tion of nonlinear systems. The reason is that process-

ing data in the frequency domain can sometimes

provide the possibility to focus on easier calculations

and more intuitive interpretation [7]. In addition,

frequency-domain processing can make it easier to

focus on a specific frequency range, which can

substantially reduce the computational burden

involved in identification and thus accurately calculate

a great number of nonlinear parameters [8].

In the frequency domain, the nonlinear identifica-

tion through feedback of the outputs (NIFO) method

was pointed out as a promising method in Ref. [7, 8].

Adams and Allemang completed the early research of

the NIFO method. In 1999, Adams and Allemang [9]

introduced a new and important perspective of non-

linearity as internal feedback forces that act together

with the external excitation forces to generate the

response of a nonlinear system and derived a new

matrix formula of frequency response functions

(FRFs) by introducing the dynamic equation of the

nonlinear system in the frequency domain. Based on

the frequency response relationships proposed in the

previous article, they further proposed a new method

of characterizing nonlinear structural dynamic sys-

tems in Ref. [10]. Thereafter, Adams and Allemang

[11] developed the NIFO method by using internal

feedback to consider the nonlinearity and viewing the

nonlinear term as the additional excitation applied to

the underlying linear system. In 2006, Spottswood and

Allemang [12] extended the NIFO method to estimate

nonlinear parameters by using experimental data in the

reduced order space, and the nonlinear parameters are

used in the assembly of reduced order models as a

means of the predictive research before the formal

experiments. Considering that the NIFO method treats

the nonlinear forces as feedback inputs so that the

inputs are larger than the outputs, Haroon and Adams

[13] developed an modified H2 algorithm with

stronger robustness based on the NIFO method, which

makes the amount of inputs equal to the amount of

outputs by adding the correlated outputs equal in

number to the nonlinear feedback forces to the original

output vector of the system. Furthermore, Haroon et al.

[14] developed a nonlinear system identification

method in the absence of input measurements by

coupling the NIFO and restoring force surface (RFS)

methods, which was used to identify a cantilever beam

system with adjustable clearance and contact stiffness

in Ref. [15].

On the one hand, the NIFO method has the

advantages of simultaneous estimation of underlying

linear FRFs and multiple nonlinear parameters in a

single step [11]. Besides, the linear and nonlinear

parameters are naturally decoupled by feedback

formulation, and the method is able to estimate

nonlinear parameters at unforced as well as forced

degrees-of-freedom (DOFs) with good adjustment and

computational efficiency [11]. The NIFO method has

been applied to a vehicle suspension system in Ref.

[16] and has shown good capability of encoding

frequency dependence in the parameters. On the other

hand, the NIFO method also has some limitations. For

instance, a priori form of the nonlinearity has to be

specified before using this method [16]. The root mean

square (RMS) value of Gaussian random excitation

needs to be specified in order to ensure that the

nonlinear factor is weak to medium [11], and the

selection of the excitation RMS value has great

influence on the identification results of underlying

linear FRFs and nonlinear parameters.

In addition to the NIFO method mentioned above,

several nonlinear identification methods have been

recently developed based on the idea of treating

nonlinear forces as feedback inputs [8], such as time-

domain subspace method [17] and frequency-domain

subspace method [18]. Regarding these methods based

on the feedback perspective, the excitation forces

(corresponding to the linear part) and the nonlinear

description functions (corresponding to the nonlinear

part) are simultaneously considered as an input vector,

which may result in coupling errors due to large

numerical magnitude differences in case the nonlinear

feedbacks are not properly scaled. Furthermore, it is

difficult to choose an appropriate excitation level to

obtain accurate identification results. In order to

reduce the coupling errors, Liu et al. [19] proposed a

separation strategy by, respectively, identifying the

underlying linear FRFs under low-level excitation and

nonlinear parameters under high-level excitation in

two steps and enhanced the capability of the time-

domain subspace method by implementing the
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separation strategy. Besides, a two-stage time domain

method was proposed to identify the linear part and the

nonlinear part by conducting two tests under low-level

excitation and high-level excitation to alleviate pos-

sible numerical problems [20]. This work aims to

propose an improved NIFO method by using the idea

of the separation strategy, in order to reduce the

coupling errors, avoid the limitation of the selection

range of the excitation level, and improve the iden-

tification accuracy of the existing NIFO method.

The paper begins by reviewing the existing NIFO

method in Sect. 2 and proposing a novel improved

NIFO method via separation strategy in Sect. 3. The

proposed method is numerically validated by identi-

fication of two nonlinear structural systems in Sect. 4.

In Sect. 5, a three-story experimental structure with

clearance nonlinearity is built to conduct identification

experiments and further validate the capability of the

proposed method. Section 6 summarizes the study.

2 Existing NIFO method

As a frequency-domain method for nonlinear system

identification, the existing NIFO method is able to

identify FRFs of the underlying linear system and

nonlinear parameters in one step by treating the

nonlinearity term as the feedback forces [11]. Before

proposing the improved NIFO method via separation

strategy, we begin by reviewing the existing NIFO

method in this section.

The equation of motion of a structural system with

h DOFs with general localized nonlinear structure can

be expressed in the following form

M€zðtÞ þ Cv _zðtÞ þ KzðtÞ þ
Xp

j¼1

ljLnjgjðtÞ ¼ fðtÞ

¼ LfFðtÞ ð1Þ

whereM,Cv andK are, respectively, the mass, viscous

damping and stiffness matrices. zðtÞ, _zðtÞ and €zðtÞ
denote, respectively, the displacement, velocity and

acceleration vectors, and f ðtÞ is the force vector, both
of dimension h. FðtÞ is the external excitation, and Lf

is the location vector of the external excitation. The

nonlinear term
Pp

j¼1 ljLnjgjðtÞ is expressed as the sum
of p components and each of them depending on the

scalar nonlinear function gjðtÞ, which indicates the

type of the nonlinearity, through a location vector Lnj,

which indicates the location of the nonlinear element.

Lf and Lnj are constants whose values are -1, 0 and 1.

ljgjðtÞ is the local nonlinearity and lj is the nonlinear
parameter to-be-identified.

By moving the nonlinear term to the right-hand side

of (1), we have

M€zðtÞ þ Cv _zðtÞ þ KzðtÞ ¼ LfFðtÞ �
Xp

j¼1

ljLnjgjðtÞ

¼ f ðtÞ þ f nlðtÞ ð2Þ

Equation (2) represents the idea of the NIFO

method, that is, the nonlinear term is viewed as the

underlying additional excitation [11]. In other words,

the measured outputs of a nonlinear system can be

regarded as outputs produced by a underlying linear

model of the system acted together with the external

excitation forces fðtÞ and the internal feedback forces

f nlðtÞ.
The frequency-domain version of (2) is obtained by

taking the following Fourier transforms

ðK þ ixCv � x2MÞZðxÞ ¼ FðxÞ

�
Xp

j¼1

ljLnjGjðxÞ ¼ FðxÞ þ FnlðxÞ
ð3Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
. In this equation, capital letters denote

Fourier transforms, and the Fourier transform can

transform time-domain data into frequency-domain

data, i.e., ZðxÞ ¼ FðzðtÞÞ,FðxÞ ¼ Fðf ðtÞÞ,FnlðxÞ ¼
Fðf nlðtÞÞ and GjðxÞ ¼ FðgjðtÞÞ.

The underlying linear FRF matrix is

HLðxÞ ¼ ðK þ ixCv � x2MÞ�1 ð4Þ

Equation (3) can be rewritten into

BLðxÞZðxÞ ¼ FðxÞ �
Xp

j¼1

ljLnjGjðxÞ

¼ FðxÞ þ FnlðxÞ ð5Þ

where BLðxÞ is the linear impedance matrix.

Multiplying both sides of (5) on the left by the

underlying linear FRF matrix HLðxÞ, and separating

the measured and unmeasured quantities, we have the

set of linear equations at each frequency as follows
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ZðxÞ ¼ HLðxÞ HLðxÞl1Ln1 HLðxÞl2Ln2½

� � � HLðxÞlpLnp

�

FðxÞ

�

G1ðxÞ
G2ðxÞ

..

.

GpðxÞ

0
BBBB@

1
CCCCA

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð6Þ

Equation (6) is similar to a multiple input multiple

output (MIMO) linear model in the frequency domain,

which is the kernel equation of the NIFO method. It

follows that the NIFO method has the ability to handle

multiple nonlinearities simultaneously. Therefore, the

extended input vector of the MIMO system becomes

FEðxÞ ¼ FðxÞ �G1ðxÞ �G2ðxÞ � � � �GpðxÞ½ �T

ð7Þ

The extended FRF matrix of the MIMO system

becomes

HEðxÞ ¼ HLðxÞ HLðxÞl1Ln1 HLðxÞl2Ln2HLðxÞlpLnp

� �

ð8Þ

Equation (6) at each frequency can be written as

ZðxÞ ¼ HEðxÞFEðxÞ ð9Þ

By running the measurement Navg repeatedly or

dividing a measurement into Navg parts [17], Eq. (9)

can be assembled as

Z1ðxÞ Z2ðxÞ � � � ZNavgðxÞ
� �

¼ HEðxÞ � F1
EðxÞ F2

EðxÞ � � � F
Navg

E ðxÞ
h i

ð10Þ

By solving the set of equations using the best least-

squares estimate, HEðxÞ can be obtained

HEðxÞ ¼ Z1ðxÞ Z2ðxÞ � � � ZNavgðxÞ
� �

� F1
EðxÞ F2

EðxÞ � � � F
Navg

E ðxÞ
h iy

ð11Þ

where the symbol � denotes pseudoinverse.

Once HEðxÞ has been estimated, the underlying

linear FRF matrix HLðxÞ and nonlinear parameter lj
can be obtained from Eq. (8) according to the

reciprocity of the linear FRF matrix. The existing

NIFO method needs to select the input level so that the

nonlinear factor is weak to medium [11], resulting in a

limited selection of the input range. In case the

nonlinear factor is relatively weak, FRFs of the

underlying linear system may be well identified at

the price of poor identification accuracy of nonlinear

parameters. Stronger nonlinear factor helps to better

identify nonlinear parameters, but it does this at the

expense of reducing the identification accuracy of the

underlying linear FRFs. The reason is that the coupling

errors occur in the calculation process when the

numerical magnitude of the excitation forces and the

nonlinear description functions differ greatly [19]. It

also means that if the selection of the input level is not

appropriate, the identification results of the underlying

linear FRFs and nonlinear parameters cannot be

guaranteed simultaneously. Therefore, it is usually

not easy to implement this method when dealing with

nonlinear system identification of real structures.

3 Improved NIFO method via separation strategy

In order to overcome the deficiency of the existing

NIFO method, a novel improved NIFO method via

separation strategy, referred to as nonlinear separation

identification through feedback of the outputs

(NSIFO) method, is proposed in this section. The

key idea of the separation strategy is to identify the

underlying linear FRFs and nonlinear parameters

separately [19, 21–23]: Firstly, the underlying linear

FRF matrix is identified under low-level excitation, as

the weaker the nonlinearity caused by the excitation,

the closer the frequency response recognition is to the

true value. Generally, this is valid for stiffness

nonlinearity as the corresponding nonlinear behavior

is weaker for low-amplitude motions, but not for the

nonlinearity dominated by low-level excitation, such

as friction nonlinearity. Secondly, the nonlinear

parameters are identified under high-level excitation,

as larger applied forces are necessary to well excite the

nonlinearity of the system. By using the separation

strategy, the coupling errors can be reduced and hence,

the proposed NSIFO method is able to achieve

superior accuracy than the existing NIFO method,

even if the numerical magnitude of the inputs and the

nonlinear description functions differ greatly.

The proposed NSIFO method needs to conduct two

tests of low-level excitation and high-level excitation,

respectively. Firstly, low-level excitation is applied to

the nonlinear system to obtain the underlying linear

FRF matrix. Secondly, high-level excitation is applied
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to the same nonlinear system and its response is

divided into linear response parts and nonlinear

response parts by using the separation strategy. The

nonlinear system can be viewed as the combination of

the nonlinear part and underlying linear part. Accord-

ing to the principle of nonlinear identification through

outputs feedback, the excitation forces and feedback

forces in the extended input vector can be regarded as

acting on the underlying linear system simultaneously

[19].

Equation (6) can be rewritten as

According to (12), the output response in frequency

domain can be regarded as the linear response ZLðxÞ
caused by the action of the excitation forces and the

nonlinear response ZNLðxÞ caused by the action of the
feedback forces.

The implementation of proposed NSIFO method

can be divided into three steps:

Firstly, the underlying linear FRF matrix HLðxÞ of
a nonlinear system is obtained by using linear

estimation methods and the linear response part of

the nonlinear system is calculated. In this work, the

underlying linear FRFmatrixHLðxÞ is obtained by the
linear least squares approach under low-level excita-

tion, as follows

HLðxÞ ¼ ZlowðxÞFlowðxÞy ð13Þ

For the underlying linear system, HLðxÞ is only

related to the intrinsic characteristics of the system

itself (such as mass, damping, stiffness matrices). It

also means that HLðxÞ is an invariant matrix regard-

less of the type and level of excitation. The response of

the nonlinear system under high-level excitation is

separated into two parts: the linear response part

caused by the excitation forces and the nonlinear

response part caused by the feedback forces. Once

HLðxÞ is known, the linear response part of the

nonlinear system can be calculated by the following

general frequency-domain linear model

ZLðxÞ ¼ HLðxÞFhighðxÞ ð14Þ

Secondly, once the linear response part ZLðxÞ of

the nonlinear system has been obtained, the nonlinear

response part ZNLðxÞ can be computed as follows

ZNLðxÞ ¼ ZhighðxÞ � ZLðxÞ ð15Þ

Finally, the nonlinear parameters are estimated by

using the existing NIFO method. The nonlinear

describing functions and the nonlinear response part

become new extended input and output vector,

respectively. Accordingly, the kernel equation of the

NIFO method can be rewritten as

ZNLðxÞ ¼ HLðxÞl1Ln1 HLðxÞl2Ln2½

� � � HLðxÞlpLnp

�
�

G1ðxÞ
G2ðxÞ

..

.

GpðxÞ

0

BBBB@

1

CCCCA

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð16Þ

As a result, the new extended input vector becomes

~FEðxÞ ¼ �G1ðxÞ �G2ðxÞ � � � �GpðxÞ½ �T

ð17Þ

The new extended FRF matrix becomes

~HEðxÞ ¼ HLðxÞl1Ln1 HLðxÞl2Ln2 � � � HLðxÞlpLnp

� �

¼ HLðxÞ l1Ln1 l2Ln2 � � � lpLnp

� �

ð18Þ

By solving the set of equations using the best least-

squares estimate, ~HEðxÞ can be estimated by

~HEðxÞ ¼ ZNLðxÞ � ~FEðxÞy ð19Þ

ZhighðxÞ ¼HLðxÞFhighðxÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ZLðxÞ

þHLðxÞl1Ln1 � ð�G1ðxÞÞ þHLðxÞl2Ln2 � ð�G2ðxÞÞ þ � � � þHLðxÞlpLnp � ð�GpðxÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZNLðxÞ

¼ZLðxÞ þ ZNLðxÞ
ð12Þ
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Similar to the existing NIFO method, once the

extended FRF matrix ~HEðxÞ has been estimated,

nonlinear parameters can be finally identified.

As given by (11), the existing NIFO method

involves only one matrix inversion operation, and

the proposed NSIFO method needs to perform the

similar matrix inversion operation twice, as given by

(13) and (19). However, the computational complexity

of the NSIFO method is lower, as the dimensionalities

of the input vectors in (13) and (19) are, respectively,

FlowðxÞ 2 Rh�1 and ~FEðxÞ 2 Rp�1, which are smaller

than FEðxÞ 2 RðhþpÞ�1 in (11). The reason is that the

excitation forces and nonlinear description functions

are, respectively, used as the input vector in (13) and

(19), but they are simultaneously considered as the

input vector in (11).

As mentioned in the previous sections, the main

steps of the existing NIFO method are summarized in

Fig. 1. It can be found that the existing NIFO method

consists of only one step and the high-level excitation

is directly used to arouse the nonlinear factors. As a

contrast, Fig. 2 shows the main steps of the proposed

NSIFO method. It can be seen that the new method

includes two steps, namely low-level excitation test

and high-level excitation test. The separation strategy

of the NSIFO method divides the nonlinear response

into the linear response part and nonlinear response

part and is able to reduce the coupling errors when a

large magnitude difference is caused by simultane-

ously processing the excitation forces and the nonlin-

ear forces [19]. In other words, the selection of the

input level is no longer strictly limited, and the

proposed NSIFO method is able to achieve superior

accuracy by using the separation strategy.

It should be further stressed that the first step of

proposed NSIFO method is to obtain the linear

response part of the nonlinear system, while the key

of obtaining the linear response part is to obtain the

underlying linear FRF matrix. Both finite element

analysis and vibration testing on the dynamic system

can be utilized to obtain characteristic matrices of

underlying linear system, but these methods may be

difficult to apply in practice due to some factors, such

as modeling errors, the coupling relationship of

components and so on [19]. Fortunately, the nonlinear

factor is usually weak enough under low-level exci-

tation for some nonlinear types, and the nonlinear

system can be regarded as an underlying linear system

to calculate the underlying linear FRF matrix. In

particular, the dynamic behavior of the system is linear

when the nonlinearity is a clearance type and the

excitation is small enough, in case the maximum

displacement at the nonlinear position is less than the

clearance value.

4 Numerical validation

4.1 Example 1: three DOFs structure

with clearance nonlinearity

As a common nonlinear phenomenon, clearance exists

widely in many mechanical structures. The presence

of clearance changes the normal dynamic response

and may lead to difficulties in predicting the dynamic

response and result in low precision and short lifetime

in engineering structures. Therefore, it is very critical

to identify the clearance value and the relevant

nonlinear parameters, which is also a necessary

condition to eliminate and control the clearance [24].

In this section, a numerical example with clearance

nonlinearity is used to illustrate the procedure and

performance of the proposed NSIFO method.

A three DOFs structure with clearance nonlinearity

is shown in Fig. 3, whose dynamic equation can be

described as follows

M€zðtÞ þ Cv _zðtÞ þ KzðtÞ þ lLngðtÞ ¼ f ðtÞ ¼ LfFðtÞ
ð20Þ

Fig. 1 Flow diagram of the existing NIFO method
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whereM,Cv andK are, respectively, the mass, viscous

damping and stiffness matrices of the three DOFs

structure. zðtÞ, _zðtÞ and €zðtÞ denote, respectively, the

displacement, velocity and acceleration vectors, and

f ðtÞ is the force vector. FðtÞ is the external excitation,
and Lf¼ 0 1 0½ �T is the location of the external

excitation.

The nonlinear force vector f nlðtÞ is described by

f nlðtÞ ¼ lLngðtÞ ¼ kc

0

1

0

2
4

3
5gðtÞ ð21Þ

where l ¼ kc is contact stiffness of clearance nonlin-

earity, Ln¼ 0 1 0½ �T is the location of the clearance
nonlinearity, and gðtÞ is the nonlinear description

function.

The clearance nonlinear description function can be

defined as

gðtÞ ¼ z2ðtÞ � dc; z2ðtÞ[ dc
0; z2ðtÞ� dc

�
ð22Þ

where dc is clearance value.

Fig. 2 Flow diagram of the proposed NSIFO method

Fig. 3 A three DOFs structure with clearance nonlinearity

Table 1 System parameters of the numerical example

m1¼m2 ¼ m3ðkgÞ k1 ¼ k2 ¼ k3ðN/mÞ c1 ¼ c2 ¼ c3ðN � s/mÞ kcðN/mÞ dcðmÞ

1.3 2 9 104 5 1 9 106 0.001
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The above numerical system is utilized to verify the

reliability of the proposed NSIFO method. System

parameters are summarized in Table 1. By numerical

integration of the equation of motion using the Runge–

Kutta method with a time step of Dt¼ 10�3s, response

samples with the length of 105 are generated after a

total time of T = 100s with zero-mean Gaussian

random excitation being the input.

On the one hand, the low-level and high-level

excitation cannot be described quantitatively from the

perspective of method derivation. But, the most

important principle for choosing excitation magnitude

is that nonlinearity should be weak enough under low-

level excitation and well excited under high-level

excitation. On the other hand, the excitation magni-

tude can be reasonably chosen on a case by case basis.

For example, the dynamic behavior of the numerical

system is linear when the nonlinearity is a clearance

type and the excitation is small enough. In such case,

the excitation magnitude can be easily determined by

comparing the maximum displacement at the nonlin-

ear position and the clearance value. The maximum

displacement at the nonlinear position should be

smaller than the clearance value under low-level

excitation, so as to obtain the underlying linear FRFs

with good accuracy. In contrast, the maximum

displacement at the nonlinear position should exceed

the clearance value under high-level excitation to well

arouse the clearance nonlinearity.

The displacement responses of the numerical

example are, respectively, obtained under high-level

excitation and low-level excitation and denoted by the

blue-solid and green-dotted lines, as shown in Fig. 4,

where the red-dashed line is the position of the

clearance value. As we can see from Fig. 4, the

displacement response under low-level excitation is

small and within the range of clearance, which means

the system is linear without any nonlinear factors. In

case high-level excitation is applied, the displacement

response exceeds the clearance, and the nonlinear

factor of the system is aroused.

Regarding the above nonlinear system with clear-

ance, parameters to-be-identified include clearance

value and contact stiffness, and the identification of

clearance value is the premise of identifying contact

stiffness. The accuracy of clearance value identifica-

tion is very important, because a small error in

clearance value identification will lead to a large error

in contact stiffness identification [24]. At present,

many methods for clearance identification have been

developed, including the derivative plot of probability

density function (DPPDF) method [24], the trilinear

function method [17] and the RFS method [15], etc. In

this section, the DPPDFmethod is used to estimate the

clearance value, as this method can avoid the

cumbersome and repeated procedure of determining

nonlinear description functions. Li et al. [24] indicated

that the distribution of response around the clearance

value is unique due to the presence of the clearance;

hence, concavity or convexity exists near the clear-

ance value in the probability density function (PDF)

plot. The concavity or convexity in the PDF plot is

hard to directly estimate the exact clearance value. But

Fig. 4 Displacement responses at the clearance position under

high-level excitation and low-level excitation

Fig. 5 The second derivative plot of the PDF of the

displacement response at the clearance location
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by taking the second derivative of the PDF, the

clearance value can be determined by choosing the

horizontal axis value of the turning point. As shown in

Fig. 5, the clearance value of the numerical example is

identified as d̂c ¼ 0:0009656 m with the error of 3.4%

based on the displacement response at the clearance

location under high-level excitation. Generally, the

DPPDF method can further improve the accuracy of

the identified clearance value by adjusting the sam-

pling frequency and the excitation forces [24]. If there

is no prior information about the nonlinear description

function, the polynomial method [25] and the spline

adaptive nonlinear identification method [26, 27] may

be referred.

The excitation and response signals are divided into

Navg segments with the overlap of each segment being

91%, which helps to decrease the random error in the

estimates when using the data that is attenuated due to

the windowing technique [11]. And then, the time-

domain data are converted to the frequency domain by

fast Fourier transform. The RMS values of the high-

level excitation force and low-level excitation force

are, respectively, 14.4750 N and 0.5136 N. The H1

estimation method is directly utilized to calculate the

FRFs of the numerical example under high-level

excitation and low-level excitation, respectively. The

FRF H33 curve of the numerical example is repre-

sented by blue-solid and green-dotted lines, respec-

tively, as shown in Fig. 6, where the red-dashed line

represents the true underlying linear FRF H33 curve.

The first subscript of H33 represents the location of the

measured displacement, and the second subscript

represents the location of the applied excitation force.

It can be seen that the estimated FRF curve is distorted

with the increase in nonlinear factors under high-level

excitation. However, the estimated FRF curve is

almost identical to the true underlying linear FRF

curve under low-level excitation, as the displacement

response is smaller than the clearance value and the

system can still be regarded as a linear system without

nonlinear behavior.

The existing NIFO method and the proposed

NSIFO method are used to estimate the underlying

linear FRFs and nonlinear parameters. Regarding theFig. 6 The FRF H33 curve of the first example under high-level

excitation and low-level excitation

Fig. 7 The underlying linear FRF H33 curve of the first

example: NIFO estimate (blue-solid line), NSIFO estimate

(green-dotted line) and true underlying linear FRF (red-dashed

line)

Fig. 8 The underlying linear FRF H23 curve of the first

example: NIFO estimate (blue-solid line), NSIFO estimate

(green-dotted line) and true underlying linear FRF (red-dashed

line)
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existing NIFO method, the excitation force and the

nonlinear description function are simultaneously

processed as the input vector and their RMS values

are, respectively, 14.4750 N and 3.2037� 10�5 m. It

can be found that the two numerical magnitudes differ

greatly and larger coupling errors may be caused in the

identification progress. Figures 7 and 8 show the

whole and local plots of the underlying linear FRF

curve of the numerical example identified by the NIFO

and NSIFO method, respectively. It can be observed

that the identification results of the two methods

approximately coincide with the true values except for

the peak positions. But the identification results of the

NSIFO method are much closer to the true values and

evidently better than those of the NIFO method at the

peaks, which indicate that the proposed NSIFO

method is able to achieve superior identification

accuracy of underlying linear FRFs. It should be

noted that direct outputs of both NIFO and NSIFO

method are the underlying linear FRFs instead of the

underlying modal parameters. Currently, there are

many well-known methods (such as least squares

complex frequency domain method) to extract modal

parameters from FRFs, which is beyond the scope of

this work. As we know, better estimation of the

underlying linear FRFs by the NSIFO method than the

NIFO method means better estimation of the under-

lying modal parameters, because the procedure from

FRFs to modal parameters for the two methods is

same.

The real and imaginary parts of contact stiffness

identified by the NIFO and NSIFO method are,

respectively, shown in Fig. 9. Real and imaginary

parts come from the identification methodology,

which gives the nonlinear parameters essentially as a

ratio between FRFs. As we know, the contact stiffness

in the numerical system is constant with the true value

of kc ¼ 106N/m, which means the estimated real part

should be close to the true value and the estimated

imaginary part should be close to zero. The nonlinear

parameter l of the numerical example is constant and

should not change with the frequency. Evidently, the

identified value by the proposed NSIFO method is

significantly smoother than its counterpart by the

NIFO method. In order to quantify the accuracy of

contact stiffness identification results, the evaluation

index of errors is introduced as

Error ¼ 100�
k̂c � kc
� �

kc
% ð23Þ

where k̂c represents estimated value of contact stiff-

ness of clearance nonlinearity, kc represents the true

value in the numerical example. The estimation errors

of the contact stiffness are displayed in Fig. 10, which

further demonstrate that the proposed NSIFO method

is able to achieve better accuracy in identifying

nonlinear parameters.

In addition, the mean value and standard deviation

of the real part of contact stiffness identified by the

NIFO method are 1.0036 9 106 N/m and

1.2023 9 105 N/m in Fig. 9, where the mean value

and standard deviation of the real part of contact

stiffness identified by the NSIFO method are

Fig. 9 Real and imaginary parts of the estimated contact

stiffness kc of the first example: NIFO estimate (blue-solid line),

NSIFO estimate (green-dotted line) and true value (red-dashed

line)

Fig. 10 Estimation errors of the contact stiffness kc: NIFO
estimate (blue-solid line), NSIFO estimate (green-dotted line)
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1.0011 9 106 N/m and 1.5743 9 104 N/m. Although

the mean values of the estimates by the two methods

are relatively close, the standard deviation of the

estimates by the NSIFO method is significantly

smaller than the NIFO method. In other words, the

estimates by the NSIFO method have smaller fluctu-

ation and variance. Figure 11 illustrates the clearance

nonlinear characteristic curves reconstructed based on

mean values of the real part of contact stiffness, which

indicate that both methods can reconstruct the accurate

nonlinear characteristics, but the proposed NSIFO

method may have better accuracy and higher stability

by taking the smaller variance of the contact stiffness

estimates into consideration.

The performance of the proposed NSIFO method is

further illustrated by considering the noise effects.

Displacement responses are here contaminated by

noise with the signal-to-noise ratio (SNR) being

40 dB. The NIFO and NSIFO method is, respectively,

used to identify the nonlinear system based on data

contaminated by noise. Figures 12 and 13 show the

estimated underlying linear FRF H33 curve and real

and imaginary parts of contact stiffness of the

numerical example with noise contamination, respec-

tively. Compared to the identification results in Figs. 7

and 9, both the NIFO and NSIFO methods obtain

worse results after adding noise to the displacement

Fig. 11 Reconstruction of the clearance nonlinear characteris-

tic curve: NIFO estimate (blue circles), NSIFO estimate (green

crosses) and true value (red dots)

Fig. 12 The underlying linear FRF H33 curve of the first

example with noise contamination: NIFO estimate (blue-solid

line), NSIFO estimate (green-dotted line) and true underlying

linear FRF (red-dashed line)

Fig. 13 Real and imaginary parts of the estimated contact

stiffness kc of the first example with noise contamination: NIFO

estimate (blue-solid line), NSIFO estimate (green-dotted line)

and true value (red-dashed line)

m3 m2 m1

c3 c2 c1

k3 k1k2

kc

z1z2f , z3

kn

Fig. 14 A three DOFs structure with clearance and cubic

stiffness nonlinearity
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responses. However, the enhanced capability of the

proposed NSIFOmethod is also validated in such case,

as it can achieve much better identification results than

the existing NIFO method.

4.2 Example 2: three DOFs structure

with clearance and cubic stiffness nonlinearity

In this section, clearance and cubic stiffness nonlin-

earity are simultaneously included in the nonlinear

numerical example. The performance of the proposed

NSIFO method is here illustrated when the system has

multiple sources of nonlinearity.

A three DOFs structure with clearance and cubic

stiffness nonlinearity is shown in Fig. 14, whose

dynamic equation can be described as follows

M€zðtÞ þ Cv _zðtÞ þ KzðtÞ þ l1Ln1g1ðtÞ þ l2Ln2g2ðtÞ
¼ f ðtÞ ¼ LfFðtÞ ð24Þ

where l1 ¼ kc is contact stiffness of clearance

nonlinearity, Ln1¼ 0 1 0½ �T is the location of the

clearance nonlinearity, and g1ðtÞ is the clearance

nonlinear description function; l2 ¼ kn is stiffness of

cubic nonlinearity, Ln2¼ 0 0 1½ �T is the location of
the cubic nonlinearity, and g2ðtÞ is the cubic nonlinear
description function.

The nonlinear force vectors f nl1ðtÞ and f nl2ðtÞ are,
respectively, described by

l1Ln1g1ðtÞ ¼ kc

0

1

0

2
64

3
75

z2ðtÞ � dc; z2ðtÞ[ dc

0; z2ðtÞ� dc

�
;

l2Ln2g2ðtÞ ¼ kn

0

0

1

2
64

3
75z23ðtÞ ð25Þ

As given by Table 1, the system parameters are the

same as the first example in Sect. 4.1 and the value of

the cubic stiffness is kn ¼ 5� 106N/m3. Figure 15

shows the estimated underlying linear FRF H33 curve

of the numerical example identified by the NIFO and

NSIFO method, against their true counterpart. It can

be observed that the identification results of the

NSIFO method are much closer to the true values

and evidently better than those of the NIFO method at

the peak positions, which indicate that the proposed

NSIFO is able to achieve superior identification

accuracy of underlying linear FRFs for system with

multiple sources of nonlinearity.

The real and imaginary parts of contact stiffness

and cubic stiffness identified by the NIFO and NSIFO

method are, respectively, shown in Figs. 16 and 17.

For both contact stiffness and cubic stiffness, the

identified values by the proposed NSIFO method are

Fig. 15 The underlying linear FRF H33 curve of the second

example: NIFO estimate (blue-solid line), NSIFO estimate

(green-dotted line) and true underlying linear FRF (red-dashed

line)

Fig. 16 Real and imaginary parts of the estimated contact

stiffness kc of the second example: NIFO estimate (blue-solid

line), NSIFO estimate (green-dotted line) and true value (red-

dashed line)
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better than their counterparts by the NIFO method.

Their estimation errors are, respectively, displayed in

Figs. 18 and 19, which further demonstrates that the

proposed NSIFO method is able to achieve better

accuracy in identifying nonlinear parameters. Differ-

ent nonlinear characteristic curves are, respectively,

reconstructed based on mean values of the real part of

contact stiffness and cubic stiffness, as shown in

Figs. 20 and 21.

Displacement responses are here contaminated by

noise with the SNR being 40 dB. The NIFO and

NSIFO method is, respectively, used to identify the

nonlinear system based on data contaminated by noise.

Figure 22 shows the estimated underlying linear FRF

H33 curve of the numerical example with noise

contamination, which indicates that the identification

Fig. 17 Real and imaginary parts of the estimated cubic

stiffness kn of the second example: NIFO estimate (blue-solid

line), NSIFO estimate (green-dotted line) and true value (red-

dashed line)

Fig. 18 Estimation errors of the contact stiffness kc: NIFO
estimate (blue-solid line), NSIFO estimate (green-dotted line)

Fig. 19 Estimation errors of the cubic stiffness kn: NIFO

estimate (blue-solid line), NSIFO estimate (green-dotted line)

Fig. 20 Reconstruction of the clearance nonlinear characteris-

tic curve: NIFO estimate (blue circles), NSIFO estimate (green

crosses) and true value (red dots)

Fig. 21 Reconstruction of the cubic nonlinear characteristic

curve: NIFO estimate (blue circles), NSIFO estimate (green

crosses) and true value (red dots)
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results of the proposed NSIFO method are superior to

the NIFO method. The estimated real and imaginary

parts of contact stiffness and cubic stiffness of the

numerical example with noise contamination are

shown in Figs. 23 and 24, respectively. Compared to

the identification results in Figs. 16 and 17, both the

NIFO and NSIFO methods obtain worse results after

adding noise to the displacement responses, but the

proposed NSIFO method seems to achieve much

better identification results than the existing NIFO

method in the low frequency range.

5 Experimental validation

In this section, a three-story experimental structure

with clearance nonlinearity is built to validate the

Fig. 22 The underlying linear FRF H33 curve of the second

example with noise contamination: NIFO estimate (blue-solid

line), NSIFO estimate (green-dotted line) and true underlying

linear FRF (red-dashed line)

Fig. 23 Real and imaginary parts of the estimated contact

stiffness kc of the second example with noise contamination:

NIFO estimate (blue-solid line), NSIFO estimate (green-dotted

line) and true value (red-dashed line)

Fig. 24 Real and imaginary parts of the estimated cubic

stiffness kn of the second example with noise contamination:

NIFO estimate (blue-solid line), NSIFO estimate (green-dotted

line) and true value (red-dashed line)

m1

m2

m3

z1

z2

f,z3

kc

Fig. 25 Schematic diagram of the three-story structure with

clearance nonlinearity
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proposed NSIFO method by identifying its underlying

linear FRFs and nonlinear characteristics of the

clearance. Figures 25 and 26, respectively, illustrate

the schematic diagram and experimental setup of the

three-story structure with clearance nonlinearity. An

exciter is arranged in the first floor, and the clearance is

arranged in the second floor. In this experiment, the

zero-mean Gaussian random excitation is generated

and applied to the first floor of the structure, and in the

meantime three eddy current sensors are used to

measure the displacement response of each floor, as

shown in Fig. 26.

Obviously, the nonlinear behavior of the system can

be aroused, in case the positive displacement of the

second floor exceeds the clearance value under

relatively larger excitation. In other words, the selec-

tion of the excitation level depends on whether enough

clearance nonlinear factors are aroused. In this section,

high-level excitation test and low-level excitation test

are, respectively, conducted, with the RMS values of

the high-level excitation force and low-level excita-

tion force being 6.0462 N and 1.2814 N. Force and

displacement signals are measured and sampled at

103 Hz, producing 105 sample-long versions of vibra-

tion signals after a total time of 100 s. Figure 27

illustrates the excitation force and displacement

response at the clearance location under high-level

excitation, respectively. The clearance nonlinear fac-

tor is observed from Fig. 27, where positive values of

the displacement signal are obviously truncated.

Based on the measured excitation force and

displacement response signals, the existing NIFO

method and the proposed NSIFO method are, respec-

tively, used to identify the underlying linear FRFs and

nonlinear characteristics of the clearance. First of all,

the DPPDF method is used to identify the clearance

value of the experimental structure by considering 105

response samples under high-level excitation. The

DPPDF result is shown in Fig. 28, and the clearance is

identified with the value of 0.0002117 m by choosing

the horizontal axis value of the turning point. And

Fig. 26 Experimental setup of the three-story structure with

clearance nonlinearity

Fig. 27 The excitation force and displacement response at the

clearance location Fig. 28 The DPPDF result at the clearance location
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then, the time-domain data are converted to the

frequency domain by fast Fourier transform, and the

existing NIFO method and the proposed NSIFO

method are used to identify the underlying linear

FRFs and the contact stiffness based on the identified

clearance value.

The RMS values of the high-level excitation force

and the nonlinear description function are 6.0462 N

and 7.0959� 10�6 m, respectively. It can be found

that the two numerical magnitudes differ greatly and

larger coupling errors may be caused for the existing

NIFO method. Figures 29 and 30 display the

underlying linear FRF H33 and H23 curve of the

three-story experimental structure identified by the

NIFO, NSIFO method and their baseline counterparts

by linear H1 estimation method, respectively. Evi-

dently, the identification results of the proposed

NSIFO method are superior to the existing NIFO

method, especially around peak positions, which

demonstrates that the proposed method is able to

achieve better identification accuracy of the underly-

ing linear FRFs.

Figure 31 shows the real and imaginary parts of the

estimated contact stiffness kc. The imaginary parts are

almost zero, and the real parts can be regarded as the

contact stiffness. Obviously, the identification results

of the NSIFO method exhibit smaller fluctuations and

are much smoother than its counterparts by the NIFO

method. Note that the peak protruding at 18.92 Hz is

the anti-resonant frequency, while the peak protruding

at 50 Hz is due to the influence of alternating current

frequency for the identification results of the NSIFO

method.

Additionally, the mean value and standard devia-

tion of the real part of contact stiffness identified by

the NIFO method are 3.1132 9 105 N/m and

2.5462 9 105 N/m in Fig. 31, where the mean value

and standard deviation of the real part of contact

stiffness identified by the NSIFO method are

Fig. 29 The underlying linear FRF H33 curve of the three-story

experimental structure: NIFO estimate (blue-solid line), NSIFO

estimate (green-dotted line) and baseline underlying linear FRF

(red-dashed line)

Fig. 30 The underlying linear FRF H23 curve of the three-story

experimental structure: NIFO estimate (blue-solid line), NSIFO

estimate (green-dotted line) and baseline underlying linear FRF

(red-dashed line)

Fig. 31 Real and imaginary parts of the estimated contact

stiffness kc of the three-story experimental structure: NIFO

estimate (blue-solid line), NSIFO estimate (green-dotted line)
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3.3281 9 105 N/m and 1.5406 9 105 N/m. Com-

pared to the existing NIFO method, the proposed

NSIFO has a smaller standard deviation with smaller

fluctuations by inspecting the results above. The

reconstruction of the clearance nonlinear characteris-

tic curve is shown in Fig. 32 by using Eq. (21). Note

that mean values of the identification results by the two

methods are, respectively, selected as the contact

stiffness of clearance nonlinearity. Both methods can

obtain similar nonlinear characteristics, but from the

perspective of the smaller standard deviation, the

proposed NSIFO method has the capability of better

accuracy and higher stability.

6 Conclusions

In this work, a novel improved approach for fre-

quency-domain nonlinear identification through feed-

back of the outputs by using separation strategy is

proposed. The underlying linear FRFs of a nonlinear

system are identified under low-level excitation, and

its nonlinear parameters are identified under high-

level excitation. Compared to the existing NIFO

method, the proposed NSIFO method is able to avoid

the limitation of the selection range of the excitation

level and reduce coupling errors caused by the large

differences in the numerical magnitude between the

excitation forces and the nonlinear description func-

tions when both of them are simultaneously consid-

ered as an input vector. Numerical and experimental

identification results further demonstrate the superior

achievable accuracy and stability of the proposed

method for identification of nonlinear systems.

It should be noted that the proposed method in this

paper is suitable for the stiffness nonlinearity, but not

for the nonlinearity dominated by low-level excitation,

such as friction nonlinearity. In such cases, the

nonlinear factors caused by the forces under low-level

excitation may affect the underlying linear system and

cannot be ignored. Fortunately, the proposed method

is still applicable if the underlying linear system can be

obtained in advance by using other methods instead of

the estimation manner used in this paper.
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