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Abstract Nonlinear vibration isolation systems with

both stiffness and damping nonlinearities are promis-

ing for a broad-band and high-efficient isolation

performance. In this research, a novel nonlinear

isolator is proposed via a compliant mechanism with

negative stiffness and wire ropes with hysteretic

damping. The compliant mechanism consists of two

pairs of tilted flexure beams, and the nonlinear

restoring force is modelled based on a beam constraint

model. The hysteretic restoring force of the wire ropes

is characterized by a Bouc–Wen model. A dynamic

model of the nonlinear isolator is established, and a

semi-analytical method is adopted to analyze the

model. Generalized equivalent stiffness and a gener-

alized equivalent damping ratio are defined, respec-

tively, for dynamic systems with multiple

nonlinearities. The compliant mechanism exhibits

negative stiffness in a limited stroke and endows the

isolator with a lower resonant frequency and a smaller

resonant amplitude. The complaint mechanism with a

symmetric restoring force is more preferred for a

broader band of vibration isolation and fewer har-

monics in the responses. The wire ropes improve the

high-frequency isolation efficiency at the cost of a

higher resonant frequency. The incorporation of the

compliant mechanism and the wire ropes is beneficial

for vibration isolation. Furthermore, the influences of

the dimensions of the complaint mechanism on the

negative-stiffness stroke, load capacity and vibration

isolation performances of the nonlinear isolator are

revealed.

Keywords Nonlinear vibration isolation �
Compliant mechanism � Wire rope � High-static-low-
dynamic-stiffness � Hysteretic damping

1 Introduction

Nonlinear vibration isolation systems [1–5] have

shown great promise in broad-band and high-efficient

vibration isolation performances. An isolation system

with high-static-low-dynamic-stiffness (HSLDS)

characteristics exhibits a low resonant frequency

without large static deflections. Thus the low-fre-

quency vibration isolation is enhanced. An isolation

system with nonlinear damping can effectively sup-

press the resonances without deteriorating the high-

frequency vibration isolation provided that the non-

linear damping is appropriately designed. Investiga-

tions on nonlinear vibration isolators have drawn

considerable attentions.

Generally, an HSLDS system is composed of a

positive-stiffness element and a negative-stiffness

element [6]. The positive-stiffness element enhances
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the stability and the load-bearing capacity of the

system, and the element is usually in the form of coil

springs. The negative-stiffness element reduces the

dynamic stiffness of the system and can be facilitated

by pre-deformed springs [7–11], pre-bulked beams

[12–16], convexities [17, 18] and magnetics [19, 20].

The three-spring structure is the most studied model

with the negative stiffness resulting from two hori-

zontal/oblique pre-compressed springs. Lu et al. [9]

extended the structure to a two-stage vibration isola-

tion system. Gatti [11] modified the three-spring

structure with four oblique pre-compressed springs.

Elastic beams present negative stiffness when com-

pressed beyond their buckling loads. Liu et al. [12]

proposed a negative-stiffness corrector formed by a

pair of Euler buckled beams. Yan et al. [16] investi-

gated an anti-spring isolator consisting of several

quasi-trapezoidal blade springs. Cheng et al. [17] and

Zhou et al. [18] proposed vibration isolators via cam-

roller mechanisms, and the negative stiffness is

derived from the geometric constraints of the convex-

ities. The magnetic force between two magnets is

inversely proportional to the square of the distance.

Based on the theory, Shi et al. [19] andWang et al. [20]

proposed negative-stiffness elements with permanent

magnets and electromagnets, respectively. In order to

produce the negative stiffness, the elements must be

with stored elastic potential energy or magnetic energy

at their initial states. The structures are usually

intentionally pre-deformed and sometimes with large

internal stress. Thus, precision assemblies are essential

and difficult for the HSLDS devices. The gaps,

asymmetries and frictions due to the assembly errors

and the relative movements of the connectors signif-

icantly influence the performances of the devices. The

difficulty in precision assembly is one of the limita-

tions for the HSLDS devices applying to scaled

structures or systems.

Compliant mechanisms realize motions through

elastic deformations of the materials with the advan-

tages of no gap and no friction [21]. A compliant

mechanism can be manufactured as a whole through

wire electrical-discharge machining, and thus the

problems in precision assembly are avoided. The

generation of the nonlinear stiffness highly depends on

the storage and the release of the potential energy.

Gatti [22] presented an analytical insight on a

K-shaped spring configuration for the purpose of

elastic potential energy maximum. A compliant

mechanism stores elastic potential energy through

the deformations of the whole flexure structure instead

of distributed springs, and negative stiffness can be

produced with deliberately designed structure and

dimensions. Xu [23] proposed a tilted-angle parallel-

ogram flexure mechanism with the negative stiffness

presented in a large stroke. Han et al. [24] investigated

a double-tensural fully-compliant mechanism with

negative stiffness, and all the compliant segments are

loaded in tension without buckling problems. Zhao

et al. [25] analyzed a rotational flexure pivot with

quasi-zero stiffness. The force–displacement relation

of a negative-stiffness mechanism is nonlinear and can

be predicted by the beam constraint model (BCM) [26]

and the power series method [27]. However, in the

existing literature, the negative stiffness is usually a

by-product of the multi-stable compliant mechanism,

and the mechanism is designed for kinetic purposes

such as constant-force and static-balancing. The

research limits to the snap-through properties

[28, 29] and the kinetic designs [30, 31]. There is

little research on the dynamic characteristics of the

negative-stiffness compliant mechanisms and their

performances for vibration isolation. Furthermore,

parallel structures are extensively used in compliant

mechanisms for kinetic applications, while their

applicability in dynamics remains unknown.

Vibration isolation performances of HSLDS sys-

tems can be further improved by introducing nonlinear

damping such as the nonlinear viscous damping and

the hysteretic damping. Nonlinear damping can be

produced from geometric nonlinearities [32], materi-

als with intrinsic nonlinearities [33], viscous fluids

[34] and frictions [35]. Among them, wire ropes

exhibit hysteretic damping due to inner frictions, and

the structure is simple and practical for engineering

applications. Wire ropes have been adopted in vibra-

tion control as Stockbridge dampers [36] and ring-type

springs [37]. Carpineto et al. [38] adopted wire ropes

with both ends clamped for vibration mitigation, and

the stiffness softening/hardening characteristics were

observed. Carboni et al. [39, 40] improved the

structure by introducing NiTiNOL for larger energy

dissipation, and the pinching effects were revealed.

Leblouba et al. [41] studied the shear cyclic behaviors

of twelve polycal wire rope isolators through exper-

iments, and proposed a Bouc–Wen–Baber–Noori

model to characterize the hysteresis. Zhang et al.

[42] introduced a NiTiNOL-steel wire rope into a
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nonlinear energy sink to enhance the energy dissipa-

tion. Zheng et al. [43] integrated a NiTiNOL-steel wire

rope with a composite laminated beam for structural

vibration suppression. It is promising to incorporate

the wire ropes into the HSLDS system to enhance the

energy dissipation. The performances of a HSLDS

vibration isolator incorporated by Bouc–Wen-type

hysteretic damping has not been fully understood.

There are theoretical and practical motivations to

explore the stiffness-varying characteristics and the

frequency responses of the incorporated isolator.

In this work, a nonlinear vibration isolator is

proposed with the negative stiffness facilitated by a

compliant mechanism and the hysteretic damping

induced from wire ropes. The restoring forces of the

nonlinear elements are characterized. The dynamic

model of the nonlinear isolator is established and

analyzed. Generalized equivalent stiffness and a

generalized equivalent damping ratio are respectively

defined to understand comprehensively the isolators

with multiple nonlinearities. Comparison investiga-

tions demonstrate the merits in dynamic properties of

the negative-stiffness structures and the effectiveness

of the incorporation of different nonlinear elements.

The manuscript is organized as follows. Section 2

develops a model for the nonlinear restoring forces of

the compliant mechanism and the wire ropes. Sec-

tion 3 presents the dynamic model of the nonlinear

isolator and the analysis methodology. Section 4

focuses on the comparisons of the nonlinear isolators

with different structures. Section 5 performs parame-

ter analysis. Section 6 ends the work with conclusions.

2 Modelling of the restoring forces

2.1 The restoring force of the compliant

mechanism

Figure 1 shows the structure of a compliant mecha-

nism presenting negative stiffness. The mechanism is

composed of two three-section beams and a block. The

block is regarded as rigid and fixed on the payload.

The three-section beam is composed of two thin beams

for large deformations and one thick beam as a

reinforcement. A small external force is enough to

drive the structure into a post-buckling state, and the

post-buckling is the basis of negative stiffness. The

structure is widely used in bi-stable compliant mech-

anisms [27]. The load-free state is shown as dotted

lines and the beams are up-tilted. At the balancing

position for vibration isolation, the compliant mech-

anism is pre-deformed with stored elastic potential

energy. Due to the symmetric structure, the payload

and the block are only able to move vertically.

Consider a three-section cantilever beam shown in

Fig. 2a. The load-free state is shown in dashed lines,

and each beam is straight with a rectangular sec-

tion. The length, the tilt angle, the out-of-plane width,

the in-plane thickness and the moment of inertial of

the ith beam are denoted as Li, ai, Wi, Ti and Ii,

respectively. The Young’s modulus of the beam is

denoted as E. The deformed state is shown in solid

lines. Elastic deformations occur under external loads

(denoted as Fx, Fy and Mz) applied on the free end of

the three-section beam. The horizontal displacement,

the vertical displacement and the rotation angle of the

free end are denoted as Dx, Dy and h, respectively.
Each beam is regarded as a cantilever beam and

analyzed according to its local coordinate. The elastic

deformation of the ith beam is shown in Fig. 2b. The

equivalent external loads applied on the ith beam are

denoted as Fix, Fiy andMiz, respectively. The in-plane

displacements of the free end are denoted as Dix, Diy

and hi according to the local coordinate. Dimension-

less parameters are introduced as

ti ¼
Ti
Li
; dix ¼

Dix

Li
; diy ¼

Diy

Li
; fix ¼

FixL
2
i

EIi
; fiy ¼

FiyL
2
i

EIi
; miz ¼

MizLi
EIi

ð1Þ

According to the BCM [44], there areccording to

the local coordinate. Dimensio

fiy
miz

� �
¼ p1

diy
hi

� �
þ fixp2

diy
hi

� �
þ f 2ixp3

diy
hi

� �
ð2Þ

Fig. 1 The load-free and pre-deformed states of the up-tilted

compliant mechanism

123

Nonlinear vibration isolation via a compliant mechanism and wire ropes 1689



dix ¼
fixt

2
i

12
� 1

2
diy hi½ �p2

diy
hi

� �

� fix diy hi½ �p3
diy
hi

� �
ð3Þ

where

p1 ¼
12 �6

�6 4

� �
; p2 ¼

6=5 �1=10
�1=10 2=15

� �
;

p3 ¼
�1=700 1=1400
1=1400 �11=6300

� �

Equations (2) and (3) quantify the elastic deforma-

tions of the ith beam according to the local coordinate.

The angle between the ith local coordinate and the

global coordinate is denoted as wi and expressed as

wi ¼ ai þ
Xi�1

j¼1

hj ð4Þ

According to the force equilibrium relation at the

deformed state, there is

coswi � sinwi 0

sinwi coswi 0

�Diy Li þ Dix 1

2
4

3
5 Fix

Fiy

Miz

2
4

3
5

¼
coswi�1 � sinwi�1 0

sinwi�1 coswi�1 0

0 0 1

2
4

3
5 Fði�1Þx

Fði�1Þy
Mði�1Þz

2
4

3
5 ð5Þ

For the three-section beam, the external loads

according to the global coordinate are expressed as

Fx

Fy

Mz

2
4

3
5 ¼

cosw3 � sinw3 0

sinw3 cosw3 0

0 0 1

2
4

3
5 F3x

F3y

M3z

2
4

3
5 ð6Þ

The geometric constraints are derived based on the

structure shown in Fig. 1. Due to the symmetric

structure, the horizontal displacement of the free end is

0. Besides, the free end is fixed on the block, thus the

rotation angle is also 0. The constraints lead to

Dx

Dy

h

2
64

3
75 ¼

X3
i¼1

coswi � sinwi 0

sinwi coswi 0

0 0 1

2
64

3
75

Li þ Dix

Diy

hi

2
64

3
75

0
B@

�Li

cos ai
sin ai
0

2
64

3
75
1
CA ¼

0

Dy

0

2
64

3
75

ð7Þ

Equations (1–7) make up the elastic deformation

model for the three-section beam in the form of

nonlinear algebra equations. A path-following proce-

dure is performed to obtain the relation between the

vertical force and the vertical displacement of the free

end. The vertical displacement Dy is set as the

incremental parameter and starts from 0 (load-free

condition). With a determined vertical displacement,

the vertical force Fy can be acquired by solving the

nonlinear equations.

A typical force–displacement relation of the three-

section beam is shown in Fig. 3. The structure presents

the negative stiffness in a limited region denoted as the

working region. The region starts from (-Dya, -Fya)

and ends at (-Dyc, -Fyc). The mid-point of the

working region in the displacement scale is (-Dyb,

-Fyb), i.e., Dyb = (Dya ? Dyc)/2. A new coordinate is

attached to the mid-point. The vertical displacement

and the vertical force of the three-section beam

measured from the new origin are denoted as YT and

FT, respectively.

For the convenience of computation, the relation

between FT and YT is fitted into a polynomial function

as

FT ¼
Xnk
i¼1

KTiY
i
T ð8Þ

where KTi is the coefficient of the ith-order term, and

the highest order is nk. It should be noted that Eq. (8)

presents a mathematical model rather than a physical

Fig. 2 The elastic

deformations of the

cantilever beams: a the three
section beam b the ith beam
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model. Parameter KT1 indicates the initial stiffness at

the new origin, while the high-order parameters KTi

(i = 2, 3, …, nk) have no physical meaning.

2.2 The restoring force of the wire ropes

The structure of the wire ropes with both ends clamped

is shown in Fig. 4. The wire ropes exhibit nonlinear

stiffness and hysteretic damping due to the inner

frictions among the winded wires. Due to the

symmetric structure, the payload is only able to move

vertically. At the initial state, the wire ropes are

horizontal without any residual hysteretic force. The

gravity of the payload is ignored in this section

because it is balanced by the linear spring the isolator.

The force–displacement relation of the wire rope is

established with a semi-physical model. Firstly, the

wire rope is assumed to be a cantilever beam with a

constant section without inner friction. The length, the

area of the section, the moment of inertial and the

Young’s modulus of the beam are denoted as Lw, Aw,

Iw and Ew, respectively. The external loads applied on

the free end of the beam are denoted as Fwx, Fwy and

Mwz, respectively. The elastic deformations of the free

end are denoted as Xw, Yw and hw, respectively. At the
initial state, the beam is horizontal with the axial force

denoted as Fwx0 and the axial deformation denoted as

Xw0. The geometric constraints indicate that the

horizontal displacement Xw = Xw0, and the rotation

angle hw is 0. Dimensionless parameters are intro-

duced as

tw ¼
ffiffiffiffiffiffiffiffiffiffiffi
Iw

L2wAw

r
; xw ¼ Xw

Lw
; yw ¼ Yw

Lw
; xw0 ¼

Xw0

Lw
;

fwx ¼
FwxL

2
w

EwIw
; fwy ¼

FwyL
2
w

EwIw
; fwx0 ¼

Fwx0L
2
w

EwIw

ð9Þ

where tw is a characteristic dimension of the section,

and for example, tw = Dw/(4Lw) for a circular section,

whereDw is the diameter. According to the BCM [44],

there are

fwy ¼ 12yw þ 6

5
fwxyw � 1

700
f 2wxyw ð10Þ

xw ¼ fwxt
2
w � 3

5
y2w þ 1

700
fwxy

2
w ð11Þ

When yw\ 8tw (which is equal to Yw\ 2Dw for a

circular section), the third term on the right hand side

of Eq. (11) is less than 1/10 of the first term, and thus it

can be ignored for approximate calculation. At the

initial state, there is only axial force and

xw0 ¼ fwx0t
2
w ð12Þ

where xw0 and fwx0 are the initial axial deformation and

the initial axial force, respectively. Based on the

geometric constraints, there is xw = xw0. Subtracting

Eq. (12) from Eq. (11) yields

fwx ¼ fwx0 þ
3y2w
5t2w

ð13Þ

Substitute Eq. (13) into Eq. (10) and ignore the

small-value terms. There is

fwy ¼ 12þ 6fwx0
5

� f 2wx0
700

� �
yw þ 18

25t2w
� 3fwx0
1750t2w

� �
y3w

ð14Þ

According to Eq. (9), the dimensional form of

Eq. (14) is

Fwy ¼
12EwIw
L3w

þ 6Fwx0

5Lw
� F2

wx0Lw
700EwIw

� �
Yw

þ 18EwAw

25L3w
� 3Fwx0Aw

1750IwLw

� �
Y3
w ð15Þ

Fig. 3 The relation between the vertical force and the vertical

displacement

Fig. 4 The wire ropes in a symmetric structure
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Equation (15) indicates the elastic force without the

inner friction, and it contains a linear term and a cubic

term due to the geometric nonlinearity.

Secondly, the inner frictions of the wire rope are

characterized by a Bouc–Wen model [45], and the

hysteretic force Zw is expressed in a differential form:

Z 0
w ¼ Kwd � Gþ Bsgn Y 0

wZw
� �	 


Zwj jnb
� �

Y 0
w ð16Þ

where Kd, G, B and nb are the parameters of the Bouc–

Wen model, and sgn denotes the signum function. As

shown in [39, 40], the value of nb is identified to be 1

exactly or approximately based on the experiments. A

slight difference of nb does not change the essential

stiffness and damping characteristics of the wire ropes.

Thus, for simplicity, the value of nb is fixed as 1 in this

work.

Finally, the total restoring force is the summation of

the elastic force and the hysteretic force with an

opposite direction. The total restoring force of the two

wire ropes is expressed as

�Fw ¼ Kw1Y þ Kw3Y
3 þ Z ð17Þ

where

Kw1 ¼
24EwIw
L3w

þ 12Fwx0

5Lw
� F2

wx0Lw
350EwIw

;

Kw3 ¼
36EwAw

25L3w
� 3Fwx0Aw

875IwLw
;

and Fw is the restoring force. The expression of Z is

similar to Eq. (16) with Kd = 2Kwd.

The model parameters are identified based on the

experimental data of the restoring forces in Reference

[38]. In the experiments, a wire rope constituted by 7

strands of 19 steel wires is tested. The diameter of each

wire is 0.65 mm and the length of the wire rope is

100 mm. With the section equivalent to a circular

section with the same area, the equivalent diameter is

about 7.5 mm. Thus, the proposed method is suit-

able for the conditions with Yw within 15 mm. The

identified parameters are shown in Table 1. It should

be noted that Kw1, Kw3 and Kd denote the correspond-

ing stiffness coefficients with two wire ropes, while

G and B are independent of the number of the wire

ropes.

The calculation results and the experimental results

of the restoring forces are shown in Fig. 5. The

negative sign in the ordinate label indicates that the

direction of the restoring force is opposite to the

deformation, and thus the slopes in the figure charac-

terize the stiffness. The relative root mean square

errors of the calculation results with the displacement

amplitudes of 5 mm and 10 mm are 12.7% and 6.4%,

respectively. The semi-physical model is not quanti-

tatively accurate, while the shapes of the hysteretic

loops are characterized. The model is accurate enough

for the following dynamic analysis.

3 Dynamic model and analysis methods

3.1 Dynamic model of the isolator

The structure of the isolator with both the negative-

stiffness compliant mechanism and the wire ropes is

shown in Fig. 6. The payload is horizontally sus-

pended by a pair of wire ropes, and vertically

supported by a linear spring, a linear damper and the

compliant mechanisms. The compliant mechanism is

composed of an up-tilted part and a down-tilted part.

The two parts are manufactured as a whole while pre-

deformed in opposite directions. The payload and the

middle block of the compliant mechanism are fixed

together (Fig. 6). The linear spring increases the static

stiffness and enhances the stability of the isolator. The

linear damper increases the dissipated energy and is

regarded as a comparison with the hysteretic damping.

In Fig. 6, the compliant mechanism includes four

three-section beams, and the total restoring force is

expressed as

�Fm ¼
Xnk
i¼1

KmiY
i ð18Þ

where Y denotes the vertical relative displacement

between the payload and the base, and Fm denotes the

restoring force of the compliant mechanism.

Based on the restoring force models of the compli-

ant mechanism [Eq. (18)] and the wire ropes

[Eq. (17)], the dynamic model of the isolator can be

Table 1 Identified parameters of the wire rope

Kw1/2 Kw3/2 Kd/2 G B

5.52 N/mm 0.0357 N/mm3 85.4 N/mm 0.87 4.57
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established. The stiffness of the linear spring is Ks, and

the damping parameter of the linear damper is C. The

mass of the payload is M. A harmonic displacement

excitation is applied on the base in the vertical

direction with the amplitude Ae and the frequency

xe. The dynamic equation can be expressed as

MY 00 þ
Xnk
i¼1

KiY
i þ CY 0 þ Z ¼ MAexe cos xeTð Þ

ð19Þ

Z 0 ¼ Kd � Gþ Bsgn Y 0Zð Þ½ � Zj jnbf gY 0 ð20Þ

where

Ki ¼
Km1 þ Kw1 þ Ks i ¼ 1ð Þ

Km3 þ Kw3 i ¼ 3ð Þ
Kmi othersð Þ

8<
:

and T denotes the time. Introduction of dimensionless

parameters leads to

g2 €yþ
Xnk
i¼1

kiy
i þ cg _yþ dz ¼ g2 cos t ð21Þ

_z ¼ 1� cþ bsgn _yzð Þ½ � zj jnbf g _y ð22Þ

where

xc ¼
ffiffiffiffiffi
Kc

M

r
; g ¼ xe

xc

; y ¼ Y

Ae

; ki ¼
KiA

i�1
e

Kc

; c ¼ Cxc

Kc

;

t ¼ xeT; z ¼ Z

KdAe

; d ¼ Kd

Kc

; c ¼ GAnb
e K

nb�1
d ; b ¼ BAnb

e K
nb�1
d

8>><
>>:

and Kc, Yc and xc are the characteristic stiffness, the

characteristic displacement and the characteristic

frequency, respectively. The amplitudes of the abso-

lute and relative payload displacements are denoted as

Ap and A, respectively, and their dimensionless forms

are ap = Ap/Ae and a = A/Ae, respectively. Thus, there

is TD : ap, where TD is the displacement

transmissibility.

The dynamic model is solved with a semi-analytical

method introduced in our previous work [46]. A

harmonic balance method (HBM) is used to transform

the differential equations into nonlinear algebra equa-

tions. The Fourier expansions of the high-order terms

in the polynomial function is obtained through a

recursive method [46]. The implicit function of the

Bouc–Wen model is dealt with an alternating fre-

quency/time domain technique [47]. The nonlinear

algebra equations are solved with a combination of the

Levenberg–Marquardt method [48] and the arc-length

continuation method [49]. The frequency responses

Fig. 5 The calculation and experimental [38] results of the restoring forces of the wire rope

Fig. 6 The structure of a nonlinear vibration isolator via

compliant mechanisms and wire ropes
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are acquired through a swept-frequency process. The

stability of the periodic solution is analyzed based on

the Floquet theory, and the transition matrix is

calculated through a precise Hsu’s method [50].

3.2 Generalized equivalent stiffness

and generalized equivalent damping ratio

The nonlinear isolation system is further analyzed

through the generalized equivalent stiffness and the

generalized equivalent damping ratio [46]. The gen-

eralized equivalent stiffness is derived from the

anhysteretic restoring force. According to the basic

characteristics of the Bouc–Wen model, the anhys-

teretic Bouc–Wen force is defined as

_zan ¼ 1� cþ bð Þ zanj j½ � _y ð23Þ

where zan is the anhysteretic Bouc–Wen force, and it

equals 0 at y = 0. Integration of Eq. (23) leads to

zan ¼
sgn yð Þ
cþ b

1� e� cþbð Þ yj j
h i

ð24Þ

Hence the anhysteretic restoring force of the

isolator is expressed as

�fr�an ¼
Xnk
i¼1

kiy
i þ d

sgn yð Þ
cþ b

1� e� cþbð Þ yj j
h i

ð25Þ

where fr-an is the anhysteretic restoring force, and the

equivalent stiffness is

ke ¼ � dfr�an

dy
¼

Xnk
i¼1

ikiy
i�1 þ de� cþbð Þ yj j ð26Þ

where ke is the equivalent stiffness of the isolator in the

dimensionless form.

The generalized equivalent damping ratio is

derived from the dissipated energy and the generalized

stored elastic energy. The dimensionless amplitude of

the relative displacement between the payload and the

base is denoted as a. The dissipated energy in one

period is expressed as

Ed ¼
Z �a

a

fr �
Z a

�a

fr ð27Þ

where fr is the hysteretic restoring force and expressed

as

�fr ¼
Xnk
i¼1

kiy
i þ cg _yþ dz ð28Þ

The maximum generalized stored energy is com-

puted through the anhysteretic restoring force as

Es ¼ �
Z a

0

fr�andy ð29Þ

It should be noted that Ed and Es are both in the

dimensionless form, and the equivalent damping ratio

is defined by their ratio as

fe ¼
Ed

4pgEs

ð30Þ

where fe is the equivalent damping ratio.

4 Structure comparison

4.1 Structures of the compliant mechanisms

Figure 7 shows two nonlinear isolators with different

structures of the compliant mechanism. In the parallel

structure, the three-section beams are tilted in the same

direction. The structure is easier for mounting and

widely used for kinetic applications. In the symmetric

structure, the three-section beams are tilted in opposite

directions. The structure is proposed in this research to

achieve a better dynamic performance.

The dimensions of the three-section beams are

shown in Table 2. The total length is 100 mm, and it is

Fig. 7 Isolators with

different structures of

compliant mechanisms:

a parallel structure

b symmetric structure
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the same with the length of the wire ropes shown in

Sect. 2.2. The tilting angles of the up-tilted and down-

tilted beams are positive and negative, respectively.

The absolute value of the tilting angle is selected as the

maximum value with the maximum stress in the three-

section beam below 800 MPa during deformation.

The relation between the maximum tilting angle and

the thickness of the beams will be discussed in Sect. 5.

The restoring forces and the equivalent stiffness of the

compliant mechanisms are shown in Fig. 8. Both the

calculation results based on the BCM and the fitting

results based on a 3-order polynomial function are

demonstrated in Fig. 8a. The fitting results well

coincide with the physical model within the working

region, and the relative root mean square errors are

within 3%. A finite element analysis (FEA) is

performed with ANSYS to verify the physical model,

and the results are shown as scatters in Fig. 8a.

Compared with the FEA results, the root mean square

errors of the BCM-based results are within 1%.

As shown in Fig. 8, the initial stiffness of the two

structures are the same, and the working regions are

also the same. The restoring force of the symmetric

structure is symmetric about the origin. The minimum

equivalent stiffness is-153.4 N/mm, and it appears at

the initial state. The restoring force of the parallel

structure is asymmetric, and the minimum equivalent

stiffness is -169.1 N/mm.

The symmetric and parallel structures are adopted

in nonlinear isolators and compared with a linear

isolator. For the nonlinear isolator, the stiffness of the

linear spring Ks equals the absolute value of the

minimum equivalent stiffness of the compliant mech-

anism. Thus, the isolators are stable in static equilib-

rium states. For comparison, the linear spring in the

linear isolator is the same with that in the nonlinear

isolator with the symmetric structure. The character-

istic stiffness and the excitation amplitude are Kc-

= 153.4 N/mm and Ae = 1 mm, respectively. The

dimensionless stiffness parameters are shown in

Table 3.

The frequency responses of three isolators are

shown in Fig. 9. The HBM-based calculation results

are shown as lines. A direct integration based on the

Runge–Kutta (RK) method is performed to verify the

accuracy of the HBM-based method. In the numerical

integration, the swept frequency processes are per-

formed in both the forward and the backward direc-

tions, and the vibration amplitudes of the payload in

the steady-state responses (equaling to the displace-

ment transmissibility) are shown as scatters in Fig. 9.

The frequency responses calculated with two methods

well coincide in most cases.

As shown in Fig. 9a, with c = 0.2, the displacement

transmissibility of the isolator with the symmetric

structure is smaller than 1 for all the frequencies. Thus,

a full-band isolation is achieved. For the isolator with

the parallel structure, a full-band isolation is impos-

sible due to the nonzero linear stiffness. As shown in

Fig. 9b, with c = 0.16, the vibrations are effectively

isolated with the frequency exceeds a threshold.

Compared with the parallel structure, the isolator with

the symmetric structure exhibits a smaller resonant

peak and a lower frequency threshold for the effective

isolation. As shown in Fig. 9c, with c = 0.15, jump

phenomena occur in the nonlinear isolators. The jump-

down frequency of the isolator with the symmetric

structure is lower. Furthermore, as shown in Fig. 9d,

for the symmetric structure, only the odd harmonics

are nonzero. For the parallel structure, the even

harmonics are nonzero. Typically, the nonzero zero-

order harmonic indicates that the equilibrium location

changes with the frequency during vibration, and it is

not contained in the amplitude-frequency responses in

Fig. 9a– c. Besides, with the parallel structure, the

HBM-based method results in an unstable response

within 0.4\ g\ 0.7, while the numerical integration

exhibits a peak. According to the stability analysis

based on the Floquet theory, the eigenvalue of the

monodromy matrix leaves the unit circle through- 1.

It indicates the occurrence of a symmetry-breaking

bifurcation due to the even-order harmonics [51]. In

conclusion, the nonlinear isolators perform much

Table 2 Dimensions of the three-section beams

L1 L2 L3 T1 T2 T3 W a1 = a2 = a3

35 mm 30 mm 35 mm 1.5 mm 5 mm 1.5 mm 10 mm p/52 (-p/52)
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better than the linear isolator within the working

region. Compared with the parallel structure, the

isolator with the symmetric structure achieves better

isolation performances with smaller resonant peak,

broader isolation frequency band and fewer nonzero

harmonics.

4.2 Structures of the isolators

For a comprehensive understanding for the functions

of the compliant mechanism and the wire ropes in

vibration isolation, three isolators are compared and

shown in Fig. 10. The first one is the isolator with both

the compliant mechanism and the wire ropes. For a

comparison between the hysteretic damping and the

linear damping, an isolator with the compliant mech-

anism and a linear damper is presented as the second

isolator. To study the functions of the compliant

mechanism, an isolator with the wire ropes, a linear

spring and a linear damper is presented as the third

isolator.

The dimensions of the compliant mechanism and

the identified parameters of the wire ropes are shown

in Tables 2 and 1, respectively. The characteristic

stiffness and the excitation amplitude are Kc-

= 153.4 N/mm and Ae = 1 mm, respectively. The

dimensionless parameters of three isolators are shown

in Table. 4. The selected linear damping leads to

similar resonant amplitudes of three isolators, and thus

the isolation frequency and the isolation efficiency can

be compared.

The generalized equivalent stiffness and the gen-

eralized equivalent damping ratio are calculated

through Eqs. (26) and (30). As shown in Fig. 11a,

the introduction of the compliant mechanism leads to

quasi-zero initial stiffness, and the stiffness increases

with an increasing displacement. The introduction of

the wire ropes results in a raise of the initial stiffness,

while the raise decreases exponentially with an

increasing displacement. Besides, the wire ropes leads

to slight increases of the linear and the cubic stiffness.

Therefore, the isolators with only the compliant

mechanism and only the wire ropes exhibit hardening

and softening characteristics, respectively. The isola-

tors with both the compliant mechanism and the wire

ropes exhibit softening-hardening characteristics.

Specifically, the equivalent stiffness decreases expo-

nentially with small displacements and increases in a

Fig. 8 a The restoring forces and b the equivalent stiffness of the compliant mechanisms

Table 3 The stiffness

parameters of the isolators
Ks k1 k2 k3

Symmetric structure 153.4 N/mm 0 0 2.83 9 10–2

Parallel structure 169.1 N/mm 0.102 - 9.33 9 10–2 2.83 9 10–2

Linear isolator 153.4 N/mm 1 0 0

123

1696 M.-Q. Niu, L.-Q. Chen



Fig. 9 The frequency responses of the isolators with a c = 0.2, b c = 0.16 and c c = 0.15, and d the frequency responses of different

harmonics with c = 0.15

Fig. 10 Isolators with different nonlinear components: a both the compliant mechanism and the wire ropes, b only the compliant

mechanism and c only the wire ropes
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quadratic relation with large displacements, as shown

in Eq. (26).

The generalized equivalent damping ratio is related

to the stiffness characteristics of the isolator. To

compare the hysteretic damping resulted from the wire

ropes and the linear damping, the damping effects are

applied on nonlinear isolators with the same linear and

cubic stiffness. The results are shown in Fig. 11b. The

damping ratio of the linear damping decreases with the

increasing amplitude, and it is independent with the

frequency. The damping ratio of the hysteretic damp-

ing increases and then decreases with the increasing

amplitude, because the wire ropes causes the stiffness

softening for small amplitudes. Furthermore, the

dissipated energy in one period (Ed) is independent

with the frequency, and thus the equivalent damping

ratio has an inverse proportion to the frequency as

shown in Eq. (30).

The frequency responses of the isolators are shown

in Fig. 12. The HBM-

based results coincide with the RK-based numerical

results. Compared with the isolator with only the wire

ropes, the isolator with both the compliant mechanism

and the wire ropes exhibits a lower resonant frequency

and thus a broader frequency band for vibration

isolation. It is due to the HSLDS characteristics

produced by the compliant mechanism. Compared

with the isolator with only the compliant mechanism,

the isolator with both the compliant mechanism and

the wire ropes increases the resonant frequency and

improves the isolation efficiencies at high frequencies.

It is because the hysteretic damping results in a small

equivalent damping ratio at high frequencies, which is

beneficial for high-frequency isolation.

5 Parameter analysis

The stiffness characteristics of the compliant mecha-

nism depend on the dimensions, and the thickness of

Table 4 The dimensionless parameters of the isolators with different components

Isolator structure k1 k3 d b c c

Figure 10a 0.072 2.88 9 10–2 1.114 4.57 0.87 0

Figure 10b 0 2.83 9 10–2 0 0 0 0.159

Figure 10c 1.072 0.05 9 10–2 1.114 4.57 0.87 1

Fig. 11 a The generalized equivalent stiffness and b the

generalized equivalent damping ratio of the isolators (‘‘CM-WR

isolator’’ denotes the isolator with both the compliant

mechanism and the wire ropes. ‘‘CM isolator’’ denotes the

isolator with the compliant mechanism. ‘‘WR isolator’’ denotes

the isolator with the wire ropes.)
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the two thin beams T1,3 and the tilting angle of the

three-section beam a1,2,3 are the key parameters. With

T1,3 determined, the stroke with negative stiffness

(working stroke) increases with an increasing tilting

angle. However, the increase of a1,2,3 is constrained by
the allowable stress of the beam. Figure 13 shows the

maximum value of a1,2,3 and the corresponding

maximum working stroke with determined T1,3, and

the allowable stress is 800 MPa. The other dimensions

are shown in Table 2. It can be seen that both the

maximum tilting angle and the maximum working

stroke decrease with the increase of the thickness.

Thus, thin beams are more preferred to achieve larger

working stroke. However, the allowable thickness is

constrained by the machining capacity.

The compliant mechanisms with 4 groups of

dimensions are adopted in the isolator with both the

compliant mechanism and the wire ropes. The stiff-

ness of the linear springs equals the absolute value of

the initial negative stiffness of the compliant mecha-

nisms. The determined and calculated parameters of

the isolators are shown in Table 5. The other

dimensions are the same with those in Table 2, and

the other dimensionless parameters are the same with

those in Table 4. It can be seen thatKs, which indicates

the static load capacity of the isolator, decreases with

decreasing T1,3 and decreasing a1,2,3. The cubic

stiffness k3 decreases with decreasing T1,3 and

increasing a1,2,3.
The generalized equivalent stiffness and the fre-

quency responses of the nonlinear isolators with

different dimensions of the compliant mechanisms

are shown in Fig. 14. For the isolators with larger

cubic stiffness, the equivalent stiffness increases more

dramatically with large displacements. The frequency

responses of the isolators are similar at low frequen-

cies. However, the isolator with larger cubic stiffness

exhibits larger resonant amplitude and higher resonant

frequency. It can be concluded that the dimensions of

the compliant mechanisms affect the isolation perfor-

mances through cubic stiffness, and smaller cubic

stiffness is more preferred.

In conclusion, smaller thickness of the beams leads

to larger working stroke, better vibration isolation

performances but weaker load capacity. Larger titling

angle results in larger working stroke, better vibration

isolation performances and stronger load capacity.

The upper limit of the tilting angle is constrained by

the allowable stress of the beams.

6 Conclusions

This work proposes a nonlinear vibration isolator via a

compliant mechanism with the negative stiffness and

wire ropes with the hysteretic damping. The restoring

force of the compliant mechanism is modelled based

on a beam constraint model, and the force model is

substantially validated by the finite element analysis.

The hysteretic restoring force of the wire ropes is

characterized with a Bouc–Wen model-based semi-

physical model with the identified parameters. The

Fig. 12 The frequency responses of the isolators with different

components (‘‘CM-WR’’ denotes the isolator with both the

compliant mechanism and the wire ropes. ‘‘CM’’ denotes the

isolator with the compliant mechanism. ‘‘WR’’ denotes the

isolator with the wire ropes.)

Fig. 13 The maximum tilting angle and the maximum working

stroke of the compliant mechanism
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dynamic model of the nonlinear isolator includes a

polynomial function and an implicit differential

function. The frequency responses are obtained

through a harmonic balance-based semi-analytical

method, and verified by a direct integration with a

Runge–Kutta method. The generalized equivalent

stiffness and the generalized equivalent damping ratio

are defined for systems with multiple nonlinearities.

The investigation yields the following conclusions:

(1) The compliant mechanism exhibits negative stiff-

ness in a limited stroke. The isolator with the

compliant mechanism demonstrates lower resonant

frequency and smaller resonant amplitude. (2) The

isolator with the symmetric compliant mechanism

presents full-band isolation, stable response with a

resonant peak and jump phenomenon with large,

medium and small damping. The symmetric compliant

mechanism is more preferred than the parallel com-

pliant mechanism for broad-band vibration isolation.

(3) The wire ropes increase the initial value of the

generalized equivalent stiffness, and the generalized

equivalent damping ratio of the hysteretic damping

has an inverse proportional relation with the fre-

quency. Therefore, the introduction of the wire ropes

enhances the isolation efficiencies at high frequencies

at the cost of a higher resonant frequency. (4) The

isolator with both the compliant mechanism and the

wire ropes exhibits multiple nonlinearities. The

incorporation of the HSLDS and the hysteretic damp-

ing is beneficial for a broad-band and high-efficient

vibration isolation. (5) The working stroke and the

vibration isolation performances can be improved by

decreasing the thickness and increasing the tilting

angle of the compliant mechanism. However, the

decrease of the thickness weakens the load capacity,

and the increase of the tilting angle is constrained by

the allowable stress of the beam.
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Table 5 The parameters of

the isolators with different

dimensions of the compliant

mechanisms

T1,3 a1,2,3 Maximum stress Working stroke Ks k3

1.5 mm p/52 785 MPa 5.64 mm 153.4 N/mm 2.88 9 10–2

1.1 mm p/49 783 MPa 6.82 mm 70.2 N/mm 3.83 9 10–3

1.1 mm p/52 716 MPa 6.30 mm 69.3 N/mm 5.30 9 10–3

1.1 mm p/65 498 MPa 4.68 mm 64.4 N/mm 1.70 9 10–2

Fig. 14 a The generalized equivalent stiffness and b the frequency responses of the isolators with different dimensions of the compliant

mechanisms
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