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Abstract In this paper, we construct the discrete
higher-order rogue wave (RW) solutions for a general-
ized integrable discrete nonlinear Schrödinger (NLS)
equation. First, based on the modified Lax pair, the
discrete version of generalized Darboux transforma-
tion is constructed. Second, the dynamical behaviors of
first-, second- and third-order RW solutions are inves-
tigated in corresponding to the unique spectral param-
eter, higher-order term coefficient, and free constants.
The differences between the RW solution of the higher-
order discrete NLS equation and that of the Ablowitz–
Ladik (AL) equation are illustrated in figures. More-
over, we explore the numerical experiments, which
demonstrates that strong-interaction RWs are stabler
than the weak-interaction RWs. Finally, the modula-
tion instability of continuous waves is studied.
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1 Introduction

Rogue wave was founded in many fields, such as non-
linear optics, fluid mechanics, and even finance [1–
3]. A mass of nonlinear evolution equations including
the NLS equation, Kundu–Eckhaus equation, Hirota
equation, Sasa–Satuma equation, nonlinear wave equa-
tion and so on, can describe the RW phenomena [4–
10]. As a basic model that describes optical soli-
ton propagation in Kerr media, the NLS equation
contains multi-soliton solutions, breather solutions,
and RW solutions [5,11–13]. However, in the regime
of ultra-short pulses, the NLS equation is inappro-
priate to accurately describe the phenomena, and
higher-order nonlinear dispersion terms must be taken
into account [6–9,14]. In discrete integrable system,
the RW solutions of the AL equation, coupled dis-
crete NLS equation and discrete Hirota equation are
also discussed based on generalized Darboux trans-
formation (DT) and Hirota bilinear method [15–
18]. There are great differences on RWs between
the continuous integrable system and discrete inte-
grable system. Ohta and Yang point out that the RWs
can exist in the defocusing Ablowitz–Ladik equation
[17].

As we know, the higher-order NLS equation named
as the Lakshmanan–Porsezian–Daniel (LPD) equation
[19]
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iqt + qxx + 2|q|2q
+ γ

(
qxxxx + 8|q|2qxx + 6q∗q2x + 4q|qx |2

+2q2q∗
xx + 6|q|4q

)
= 0.

(1)

is the third member of the NLS hierarchy. Here q is
a varying wave packet envelope, q∗ denotes the com-
plex conjugate q, and γ is a real parameter and stands
for the strength of higher-order linear and nonlinear
effects. Equation (1) can also describe the dynamics
of higher-order alpha-helical proteins with nearest and
next nearest neighbour interactions [20,21]. This equa-
tion has attracted great attentions. In Refs. [19,22],
Authors establish the relation between higher-order
NLS equation and one-dimensional Heisenberg ferro-
magnetic chains when higher order spin-spin exchange
interactions (biquadratic type) and the effect of dis-
creteness are considered. The integrability of Eq. (1)
including its singularity structure, construction of Lax
pair and Bäcklund transformation have been discussed
in detail in Ref. [22]. The one soliton solution of Eq. (1)
has been constructed [20] byusingHirotamethod.Mul-
tisoliton solutions using DT is presented in [23]. Rogue
waves for the three-coupled fourth-order NLS system
is studied in [24]. Besides, Eq. (1) can be regarded as
a special case for an integrable three-parameter fifth-
order nonlinear Schrödinger equation [25,26]. Rational
solutions, breather solutions, rogue wave and modula-
tion instability of this integrable three-parameter fifth-
order nonlinear Schrödinger equation are analytically
studied based onDTand robust inverse scattering trans-
form [27,28]. The corresponding rational solutions and
breather solutions of Eq. (1) can be obtained under cer-
tain constraints.

In this article, we focus on the following spatial dis-
cretization [20] of integrable higher-order NLS equa-
tion (1)

iqn,t + γ

h4
(1 + |qn|2)

(
(1 + |qn−1|2)qn−2

+(1 + |qn+1|2)qn+2 − 4qn−1 − 4qn+1

+q∗
n (q2n+1 + q2n−1)

+qn(q
∗
n−1qn+1 + qn−1q

∗
n+1) + 6qn

)

+ 1

h2

(
(1 + |qn|2)(qn+1 + qn−1) − 2qn

)
= 0,

(2)

Equation (2) can govern the discrete α-helical protein
chain model with several higher-order excitations and
interactions. Under the transformation

qn(t) = hq(nh, t) � hq(x, t), (3)

the higher-order integrable discrete NLS equation (2)
yields the integrable fourth-order NLS equation (1).
Reference [20] investigates the integrability of Eq. (2)
including Hamiltonian, discrete Lax pair, discrete soli-
ton and gauge equivalence. However, as we know, there
is littlework on roguewave solutions and breather solu-
tions of this higher-order integrable discrete NLS equa-
tion (2). This is the main motivation for us to investi-
gate the higher-order RWs of the discrete integrable
NLS equation (2) with higher-order excitations in this
paper. Moreover, it is very meaningful to study other
integrable properties of the higher-order integrable dis-
crete NLS equation (2). We shall give an insight into
the continuous limit theory of higher-order integrable
discrete NLS equation (2) including discrete DT, dis-
crete rational solutions, discrete breather solutions and
gauge equivalence in the future. The paper is organized
as follows. In Sect. 2, by using the modified discrete
Lax pairs, we apply the generalized (1,N-1)-fold Dar-
boux transformation [5,15] to construct higher-order
discrete RWsolutions of Eq. (2). The dynamical behav-
iors of these discrete RWs are discussed in Sect. 3,
which exhibits interesting wave structures. Finally, in
Sect. 4 the modulation instability of continuous-wave
states of the higher-order discrete NLS equation (2) is
investigated.

2 Lax pair and generalized discrete DT

The higher-order discrete NLS equation (2) admits the
following discrete modified Lax pair

Eϕn = Unϕn,

ϕn,t = Vnϕn,
(4)

where the shift operator E is defined as Eϕn = ϕn+1,
ϕn = (ϕn,1, ϕn,2)

T is the vector eigenfunction. The
matrices Un and Vn with spectral parameter λ take the
forms

Un =
(

λ qnλ−1

−q∗
nλ λ−1

)
,

Vn = iγ

h4

(
An(λ, λ−1, qn) Bn(λ, λ−1, qn)
Bn(λ

−1, λ, q∗
n ) −An(λ

−1, λ, q∗
n )

)

+ i

h2

(
Cn(λ, λ−1, qn) Dn(λ, λ−1, qn)
Dn(λ

−1, λ, q∗
n ) −Cn(λ

−1, λ, q∗
n )

)
,

(5)
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in which

An(λ, λ−1, qn) = λ4 + λ−4

2
+ λ2(qnq

∗
n−1 − 2) + λ−2(q∗

nqn−1 − 2) − 4qnq
∗
n−1

+ q2nq
∗2
n−1 + (1 + |qn−1|2)qnq∗

n−2

+ (1 + |qn|2)qn+1q
∗
n−1 + 3,

Bn(λ, λ−1, qn) = λ2qn − λ−4qn−1

+ (1 + |qn|2)qn+1 + q2nq
∗
n−1 − 4qn

− λ−2
(
(1 + |qn−1|2)qn−2 + q∗

nq
2
n−1 − 4qn−1

)
,

Cn(λ, λ−1, qn)

= λ2 − 1 − (λ − λ−1) + qnq
∗
n−1,

Dn(λ, λ−1, qn)

= qn − qn−1λ
−2.

One can directly verify that the discrete zero curva-
ture condition Un,t = (EVn)Un − UnVn of the linear
spectral equations (4) yields the generalized integrable
discrete NLS equation (2).

Following the idea in [29], the Darboux transforma-
tion of the higher-order discrete NLS equation (2) can
be obtained. Under the gauge transformation

ψ [1]
n = Tn[N ](λ)ψn, (6)

with

Tn[N ] =

⎛
⎜⎜⎝

λN +
N∑

k=1
T (N−2k)
n,1 λN−2k

N∑
k=1

T (N−2k+1)
n,2 λN−2k

(−1)N+1
N∑

k=1
T (N−2k+1)∗
n,2 λ−N+2k (−1)N (λ−N +

N∑
k=1

T (N−2k)∗
n,1 λ−N+2k)

⎞
⎟⎟⎠ ,

where T (N−2k)
n,1 and T (N−2k+1)

n,2 can be determined by
(

λN
j +

N∑
k=1

T (N−2k)
n,1 λN−2k

j

)
ϕ

( j)
n,1

+
(

N∑
k=1

T (N−2k+1)
n,2 λN−2k

)
ϕ

( j)
n,2 = 0,

(
(λ∗

j )
−N +

N∑
k=1

T (N−2k)
n,1 (λ∗

j )
−N+2k

)
ϕ

( j)∗
n,2

−
(

N∑
k=1

T (N−2k+1)
n,2 (λ∗

j )
−N+2k

)
ϕ

( j)∗
n,1 = 0.

(7)

The linear spectral problem (4) changes to new one as

Eψ̃n = Ũnψn,
dψ̃n

dt
= Ṽnψn, (8)

and the matrices Ũn and Ũn satisfy

Ũn = Tn+1[N ]Un(Tn[N ])−1,

Ũn = (Tn,t [N ] + Tn[N ]Vn)(Tn[N ])−1,

The relation between potential q̃n[N ] and potential
qn is

q̃n[N ] = −qnT
(−N )
n+1,1 − T (−N+1)

n+1,2 , (9)

where

T (−N )
n,1 = −�1[N ]

�[N ] , T (−N+1)
n,2 = −�2[N ]

�[N ] , (10)

with

�[N ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ−N
1 ϕ

(1)
n,1 λ−N

1 ϕ
(1)
n,2 λ−N+2

1 ϕ
(1)
n,1 λ−N+2

1 ϕ
(1)
n,2 · · · λN−2

1 ϕ
(1)
n,1 λN−2

1 ϕ
(1)
n,2

λ−N
2 ϕ

(2)
n,1 λ−N

2 ϕ
(2)
n,2 λ−N+2

2 ϕ
(2)
n,1 λ−N+2

2 ϕ
(2)
n,2 · · · λN−2

2 ϕ
(2)
n,1 λN−2

2 ϕ
(2)
n,2

...
...

...
...

...
...

...

λ−N
N ϕ

(N )
n,1 λ−N

N ϕ
(N )
n,2 λ−N+2

N ϕ
(N )
n,1 λ−N+2

N ϕ
(N )
n,2 · · · λN−2

N ϕ
(N )
n,1 λN−2

N ϕ
(N )
n,2

(λ∗
1)

Nϕ
(1)∗
n,2 −(λ∗

1)
Nϕ

(1)∗
n,1 (λ∗

1)
N−2ϕ

(1)∗
n,2 −(λ∗

1)
N−2ϕ

(1)∗
n,1 · · · (λ∗

1)
−N+2ϕ

(1)∗
n,2 −(λ∗

1)
−N+2ϕ

(1)∗
n,1

(λ∗
2)

Nϕ
(2)∗
n,2 −(λ∗

2)
Nϕ

(2)∗
n,1 (λ∗

2)
N−2ϕ

(2)∗
n,2 −(λ∗

2)
N−2ϕ

(2)∗
n,1 · · · (λ∗

2)
−N+2ϕ

(2)∗
n,2 −(λ∗

2)
−N+2ϕ

(2)∗
n,1

...
...

...
...

...
...

...

(λ∗
N )Nϕ

(N )∗
n,2 −(λ∗

N )Nϕ
(N )∗
n,1 (λ∗

N )N−2ϕ
(N )∗
n,2 −(λ∗

N )N−2ϕ
(N )∗
n,1 · · · (λ∗

N )−N+2ϕ
(N )∗
n,2 −(λ∗

N )−N+2ϕ
(N )∗
n,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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It is noted that the expression of �1[N ] and �2[N ]
can be derived by substituting (λN

1 ϕ
(1)
n,1, λ

N
2 ϕ

(2)
n,1, · ·

·, λN
Nϕ

(N )
n,1 , (λ∗

1)
−Nϕ

(1)∗
n,2 , (λ∗

2)
−Nϕ

(2)∗
n,2 , ···, (λ∗

N )−Nϕ
(N )∗
n,2 )T

for the first and second column in �[N ], respectively.
Next, we will construct the generalized (1, N − 1)-

fold DT for higher-order discrete NLS equation (2).
The generalized (1, N − 1)-fold DT links to single
spectral parameter λ = λ1 and the order N-1 of the
highest-order derivatives for the eigenfunctions. Using
the similar method in Ref. [5,18], we get a generalized
(1, N−1)-foldDT for higher-order discreteNLS equa-
tion (2). Especially, we consider the following eigen-
function solution of the Lax pair (4) with seed solution
q0(n, t) = ceiφt

ϕ(λ) =
(

(C1χ
−
1 en ln ν−

1 +μ−
1 t + C2χ

+
1 en ln ν+

1 +μ+
1 t )eiφt+�(ε2)

(C1en ln ν−
1 +μ−

1 t + C2en ln ν+
1 +μ+

1 t )e−iφt+�(ε2)

)
,′

(11)

where

φ = 2c2(3c2γ + h2)

h4
,

�(ε2) =
√

(λ2 − 1) − 4λ2c2
N∑

k=1

(dk + i fk)ε
2k,

χ±
1 = 1 − λ2 ∓ √

λ4 − 2(1 + 2c2)λ2 + 1

2cλ2
,

ν±
1 = λ + c

λχ±
1

,

μ±
1 =

i(λ2 − 1)
(
h2λ2(λ − 1)2 ± (γ λ4 + (h2 + 2(c2 − 1)γ )λ2 + γ )

√
λ4 − 2(2c2 + 1)λ2 + 1

)

2h4λ4
,

with C j ( j = 1, 2) are arbitrary complex parameters
(i.e.,C1 = 1,C2 = 0), dk, fk are free real and ε is
small parameter. We fix the spectral parameter λ =

λ1 + ε2 with λ1 = √
1 + c2 ± c in Eq. (11) and expand

eigenfunction ϕ(λ) into the Taylor series at ε = 0, then
we obtain

(λ1 + ε2) jφ1(λ1 + ε2) = λ
j
1φ1 + φ1[ j, 1]ε2

+ · · · + φ1[ j, N ]ε2N + · · · ,

(λ1 + ε2) jψ1(λ1 + ε2) = λ
j
1ψ1 + ψ1[ j, 1]ε2

+ · · · + ψ1[ j, N ]ε2N + · · · ,

(12)

where

φ1[ j, l] = 1

(2l)!
∂2l

∂ε2l
[(λ1 + ε2) jφ1(λ1 + ε2)]|ε=0,

ψ1[ j, l] = 1

(2l)!
∂2l

∂ε2l
[(λ1 + ε2) jψ1(λ1 + ε2)]|ε=0,

j = −N ,−N + 1, . . . , 0, 1, . . . , N

− 1, N ; l = 1, 2, . . . .

Then we obtain a generalized DT for the higher-order
discrete NLS equation (2)

qn[N ] = −q0 f
(−N )
n+1 − g(−N+1)

n+1 , (13)

where

f (−N )
n = −�[N ]

1

�[N ] , g(−N+1)
n = −�[N ]

2

�[N ] ,

with

�[N ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ−N−1φ1 φ1[−N − 1, 1] · · · φ1[−N − 1, N ] λ∗N+1ψ∗
1 ψ1[N + 1, 1]∗ · · · ψ1[N + 1, N ]∗

λ−N−1ψ1 ψ1[−N − 1, 1] · · · ψ1[−N − 1, N ] −λ∗N+1φ∗
1 −φ1[N + 1, 1]∗ · · · −φ1[N + 1, N ]∗

λ−N+1φ1 φ1[−N + 1, 1] · · · φ1[−N + 1, N ] λ∗N−1ψ∗
1 ψ1[N − 1, 1]∗ · · · ψ1[N − 1, N ]∗

λ−N+1ψ1 ψ1[−N + 1, 1] · · · ψ1[−N + 1, N ] −λ∗N−1φ∗
1 −φ1[N − 1, 1]∗ · · · −φ1[N − 1, N ]∗

...
...

. . .
...

...
...

. . .
...

λN−1φ1 φ1[N − 1, 1] · · · φ1[N − 1, N ] λ∗−N+1ψ∗
1 ψ1[−N + 1, 1]∗ · · · ψ1[−N + 1, N ]∗

λN−1ψ1 ψ1[N − 1, 1] · · · ψ1[N − 1, N ] −λ∗−N+1φ∗
1 −φ1[−N + 1, 1]∗ · · · −φ1[−N + 1, N ]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The matrix �[N ]
1 and �[N ]

2 are described by �[N ]
respectively, but the first row and the second row
in the �[N ] are changed to (λN+1φ1, . . . , φ1[N +
1, N ], λ∗−N−1ψ∗

1 , . . . , ψ1[−N−1, N ]∗), respectively.

3 RW solutions and dynamic behaviors

Case 1: one-order RW solutions
As N = 1, the solution (13) reduces

qn[1] = −q0 f
(−1)
n+1 − g(0)

n+1, (14)

with

�[1] =

∣∣∣∣∣∣∣∣

λ−2φ1 φ1[−2, 1] λ∗2ψ∗
1 ψ1[2, 1]∗

λ−2ψ1 ψ1[−2, 1] −λ∗2φ∗
1 −φ1[2, 1]∗

φ1 φ1[0, 1] ψ∗
1 ψ1[0, 1]∗

ψ1 ψ1[0, 1] −φ∗
1 −φ1[0, 1]∗

∣∣∣∣∣∣∣∣
.

For convenient, choose h = 1, c = 3
4 corresponding to

λ1 = 1
2 then we obtain the first-order RW solution of

Eq. (2) is

qn [1] = − 3

4
e

9
128 i(16+27γ )t

12288n(3n − 2) + 225t (8 + 27γ )(9t (8 + 27γ ) − 128i) − 81920

12288n(3n − 2) + 5(4096 + 405t2(8 + 27γ )2)
.

(15)

Note that qn+n0 [1] is a solution with arbitrary real
number shift n0 and the translational property also sat-
isfies the following higher-order RW solutions. Next
we illustrate the property of first-order RW solution
(15).

By analyzing the explicit formula of qn+n0 [1], we
find that the parameter γ produces no effect in the
amplitude of the first-orderRWsolution (15). Themax-
imum amplitude of |qn[1]| is 63

16 at point (n1, t1) =
(0, 0) with the shift n0 = 1

3 , which is an on-site RW
(see Fig. 1a). The minima amplitude attains 0 at two
sites (n2, t2) = (−1, 0), (n3, t3) = (1, 0)with the shift
n0 = 4−√

21
3 ,

√
21−2
3 respectively. Moreover, we find

that the lower peak amplitude of the first-order RW can
reach at two adjacent lattice sites when n0 = 5

6 , which

is called inter-site RW (see Fig.1b). Through detailed
calculation, we find that the higher-order discrete NLS
equation (2) has the identical amplitude but different
center points with the same background wave plane
comparing with the fundamental RW solution in the
AL equation [17].

Next, we consider the effect of higher-order term
γ and spectrum parameter λ on RWs. Figure 2a, b,
c show that the first-order RWs become narrower with
the increase of nonlinear term parameter γ but the peak
does not changed. When γ → ∞, the first-order RWs
can concentrate the energy. On the conversely, when
γ → 0, Eq. (2) reduces to the AL equation, and the
RWs approach the fundamental RWs of the AL equa-
tion. Altering the parameter λ, we see that the ampli-
tudes of the fist-order RWs increase with the spectrum
λ increase (see Fig. 2d, e).

The numerical simulation with random noise is
an effective method to test the stability of the sys-
tem [30,31]. In what follows, we study the dynamical
behaviors of the first-order RW solutions by numerical
simulation with the initial conditions and perturbation
for Eq. (2). Figure 3a is the exact first-order RW solu-
tion (15). Figure 3b, c are the profiles of the numeri-
cal simulation, which exhibit the time evolution of the
RWs with initial condition and the perturbation of the
initial solution with 2% amplitude as random noise at
t ∈ (−1, 1), respectively. The corresponding results
show that the numerical simulations of the first-order
RW solution can well agree with the exact RW solu-
tion (15) besides a little weak oscillation near the edges
with the perturbation case.

Case 2: second-order RW solutions
Formula (13) with N = 2 yields

qn[2] = −q0 f
(−2)
n+1 − g(−1)

n+1 , (16)

where

f (−2)
n = −D[2]

1

D[2] , g(−1)
n = −D[2]

2

D[2] ,

123



634 J. Yang et al.

Fig. 1 First-order RW
solution (15) with γ = 1: a
on-site RW (n0 = 1/3); b
inter-site RW (n0 = 5/6)

Fig. 2 First-order RWs (15) with n0 = 1/3 and the different parameter γ : a γ = 1/5; b γ = 2; c γ = 10 and plots with different
parameter λ: d λ = 2/3,the shift n0 = 4/5, e λ = 1 + √

2,the shift n0 = (1 − √
2)/2, f λ = 4,the shift n0 = −1/15

123



Multi-rogue wave solutions 635

Fig. 3 The first-order RW solutions (15). a Exact solution, b numerical simulations using exact solutions (15) with t = −1. c numerical
simulations by adding random noise with amplitude 2% as the initial condition

with

�[2] =

∣∣∣∣∣∣∣∣∣∣∣∣

λ−3φ1 φ1[−3, 1] φ1[−3, 2] λ∗3ψ∗
1 ψ1[3, 1]∗ ψ1[3, 2]∗

λ−3ψ1 ψ1[−3, 1] ψ1[−3, 2] −λ∗3φ∗
1 −φ1[3, 1]∗ −φ1[3, 2]∗

λ−1φ1 φ1[−1, 1] φ1[−1, 2] λ∗ψ∗
1 ψ1[1, 1]∗ ψ1[1, 2]∗

λ−1ψ−1 ψ1[−1, 1] ψ1[−1, 2] −λ∗φ∗
1 −φ1[1, 1]∗ −φ1[1, 2]∗

λφ1 φ1[1, 1] φ1[1, 2] λ∗−1ψ∗
1 ψ1[−1, 1]∗ ψ1[−1, 2]∗

λψ1 ψ1[1, 1] ψ1[1, 2] −λ∗−1φ∗
1 −φ1[−1, 1]∗ −φ1[−1, 2]∗

∣∣∣∣∣∣∣∣∣∣∣∣

,

and �
[2]
1 and �

[2]
2 are described by �[2], but the first

row and the second row are replace by
(λ31φ1, φ1[3, 1], φ1[3, 2], λ∗−3

1 ψ∗
1 , ψ1[−3, 1]∗,

ψ1[−3, 2]∗) in the �[2], respectively.
If we choose c = 3/4,λ = 2,h = γ = 1, the exact
second-order RW solutions can be expressed as

qn[2] = −3

4
e
387
128 i t

A2(n, t)

B2(n, t)

∣∣∣
n→n+n0

(17)

where B2(n, t), A2(n, t) are obtained through mathe-
matica software:

B2(n, t) = 68719476736(1600 + 3n(1280 + 3n(497

+ 3n(136 + 3n(26 + n(8 + n)))))) + 849346560000(23465

+ 21n(−2056 + 3n(−96 + 7n(16 + 3n))))t2

+ 1200225600000000(670 + 21n(8 + 3n))t4

+ 1696058545166015625t6 + 1061683200

(25t (4096(−125 + 21n(8 + 3n)) − 5788125t2)d1

+ 3276800d21 + 64e1(4096n(1 + n)(3 + n)

− 275625(4 + 3n)t2 + 51200e1)),

A2(n, t) = 68719476736(100 + 3n(−1520 + 3n(−428

+ n(8 + 3n(53 + 3n(8 + n)))))) − 2415919104000i(−4880

+ 3n(−1336 + 3n(−6 + 7n(16 + 3n))))t

+ 2548039680000(−29220 + 7n(−4856 + 3n(−446

+ 7n(16 + 3n))))t2 − 975421440000000i

(275 + 21n(8 + 3n))t3 + 1200225600000000(−205

+ 21n(8 + 3n))t4 − 2067576131250000000i t5

+ 1696058545166015625t6 + 589824000(

− 262144i(20 + 3n(8 + 3n)) + 184320(50 + 21n(8

+ 3n))t + 158760000i t2 − 260465625t3)d1

+ 3478923509760000d21
+ 7549747200e1(4096(100 + 3n(34 + 3n(4 + n)))

+ 1008000i(4 + 3n)t

− 2480625(4 + 3n)t2 + 460800e1).

We see that the parameters d1 and f1 control the
strong and weak interaction of the second-order RW
(17).

• For the case d1 = f1 = 0, the strong interaction
happens that the RWs have four minimum points and
five local maximum including a biggest peak at the
center of the wave packets (see Fig. 4a).
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Fig. 4 The second-order discrete RW solutions (17) with c = 3/4, λ=2, h = γ = 1. a d1 = f1 = 0, n0 = 0; b d1 = 10, f1 = 0,
n0 = −5/6; c d1 = 0, f1 = 10, n0 = 2/3

• For the case d1 
= 0 or f1 
= 0, the second-order
RWs split into three first-order RWs, whose centers
become a rotating triangle, and the whole profiles have
three local maximum and six minimum points (see
Fig. 4b, c).

Moreover, adjusting the parameters freely, we find
that the area of the triangle increases with the increase
of the parameters |d1| or | f1| and | f1| can control the
rotation of the triangle RWs.
Next, we give the dynamical property for the second-
orderRWsby the numerical simulation. Figure 5a, d are
exact second-order RW solutions with different param-
eters d1 and e1. Figure 5b, c show that the numerical
simulation of the strong interaction (i.e.,d1 = 0, f1 =
0) can well agree with the exact solution except for
weak oscillations at t > 0.4 (see Fig. 5c). For the weak

interaction case (i.e.,d1 = 10, f1 = 0), we find that
the wave propagation can also match the exact solution
well. However, if we add the random noise (2%) to the
initial solution, the weak interaction displays serious
oscillations after time exceeds 0.2, which may be due
to the main energy distribution [17].

Case 3: third-order RW solutions
When N = 3, by the formula (13) and take the special
spectral parameters λ = 7

4 with c = 33
56 , then the third-

order discrete RW solution is obtained as

qn[3] = −q0 f
(−3)
n+1 − g(−2)

n+1 , (18)

where

f (−3)
n = −�

[3]
1

�[3] , g(−2)
n = −�

[3]
2

�[3] ,

with

�[3] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1[−4, 0] φ1[−4, 1] φ1[−4, 2] φ1[−4, 3] ψ1[4, 0]∗ ψ1[4, 1]∗ ψ1[4, 2]∗ ψ1[4, 3]∗
ψ1[−4, 0] ψ1[−4, 1] ψ1[−4, 2] ψ1[−4, 3] −φ1[4, 0]∗ −φ1[4, 1]∗ −φ1[4, 2]∗ −φ1[4, 3]∗
φ1[−2, 0] φ1[−2, 1] φ1[−2, 2] φ1[−2, 3] ψ1[2, 0]∗ ψ1[2, 1]∗ ψ1[2, 2]∗ ψ1[2, 3]∗
ψ1[−2, 0] ψ1[−2, 1] ψ1[−2, 2] ψ1[−2, 3] −φ1[2, 0]∗ −φ1[2, 1]∗ −φ1[2, 2]∗ −φ1[2, 3]∗
φ1[0, 0] φ1[0, 1] φ1[0, 2] φ1[0, 3] ψ1[0, 0]∗ ψ1[0, 1]∗ ψ1[0, 2]∗ ψ1[0, 3]∗
ψ1[0, 0] ψ1[0, 1] ψ1[0, 2] ψ1[0, 3] −φ1[0, 0]∗ −φ1[0, 1]∗ −φ1[0, 2]∗ −φ1[0, 3]∗
φ1[2, 0] φ1[2, 1] φ1[2, 2] φ1[2, 3] ψ1[−2, 0]∗ ψ1[−2, 1]∗ ψ1[−2, 2]∗ ψ1[−2, 3]∗
ψ1[2, 0] ψ1[2, 1] ψ1[2, 2] ψ1[2, 3] −φ1[−2, 0]∗ −φ1[−2, 1]∗ −φ1[−2, 2]∗ −φ1[−2, 3]∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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Fig. 5 The second-order RW solutions (17). Exact solutions
with a d1 = f1 = 0 and d d1 = 10,= f1 = 0. b and e the
numerical simulation using exact solutions (17) at t = −1 as

initial conditions. d and f numerical simulations by adding ran-
dom noise with amplitude 2% to the exact solutions (17) as initial
conditions

and �
[3]
1 and �

[3]
2 change to �[3] but the first row

and second row in the �[3] are replaced by (φ1[4, 0],
φ1[4, 1], φ1[4, 2], φ1[4, 3], ψ1[−4, 0]∗, ψ1[−4, 1]∗,
ψ1[−4, 2]∗, ψ1[−4, 3]∗), respectively. The exact
expression of three-order RW solution is so clumsy
that we omit it here.

We just give its structural analysis corresponding to
the four different parameters (d1,2, f1,2).

• For the case d1,2 = f1,2 = 0, the strong intera—-
ction is displayed in Fig. 6a.

The weak interaction happens when d1 
= 0 or d2 
=
0, f1,2 = 0.

• For the case d1 = 10, d2 = f1,2 = 0, the third-
order RWs split into six first-order RWs, which form a
triangular pattern (see Fig. 6b);

• For the case d2 = 10, d1 = f1,2 = 0, the third-
order RWs also split into six first-order RWs, which
array to a rotating pentagon pattern with a first-order
RWs located at the center (see Fig. 6c).

Now we study the dynamical behaviors for the
third-order RWs (18) by the numerical simulation.
Here, we only consider the strong-interaction case (see
Fig. 6a) and weak interaction case (see Fig. 6b). Figure
7a, b show that the strong-interactions of third-order
RWs almost agree with the exact solution (18). If a
small noise adds to the exact solution (18) in strong-
interaction case, the wave propagation behaves well
except a small bulge around the edges (see Fig. 7c)
but the amplitude is obviously lower than the one’s of
the exact solution and numerical simulation case (see
Fig. 7a, b). On the other hand, no matter what we add
a noise or not to the initial condition, the wave propa-
gations of weak interaction of third-order RWs display
strong oscillations (see Fig. 7d–f).We infer that the dis-
persed energy of the third-order RWs can more easily
lead to the disorder than the strong interaction case.
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Fig. 6 Third-order discrete RW solutions with h = γ = 1 a strong interaction d1,2 = f1,2 = 0, n0 = 0; b a triangular pattern with
d1 = 10, d2 = 0, f1,2 = 0, n0 = −1/2; c a pentagon pattern with d1 = 0, d2 = 10, f1,2 = 0, n0 = −1/3

4 Modulation instability of continuous-wave states

Many studies [32–35] have shown that the modula-
tional instability (MI) associated with the growth of
perturbations on a plane wave background can result in
the RWs. We consider the continuous-wave solution of
Eq. (2) with q0(n, t) = ceiφt , where the real amplitude
c 
= 0. We perturb this solution

qn(t) =
(
1 + ε

c
q̂n(t)

)
q0(n, t), (19)

where ε is an infinitesimal amplitude and q̂n(t) is a per-
turbation solution. Substituting (19) into Eq. (2) yields
a complex linearized equation

i q̂n,t + γ (1 + c2)2q̂n−2 + (1 + c2 + 4γ (c2 − 1))q̂n−1

+ (2γ (c2 + 1)(c2 − 3) − 2)q̂n + γ (c2 + 1)2q̂n+2

+ (c2 + 1)(4γ (c2 − 1) + 1)q̂n+1 + 2c2γ (1 + c2)q̂∗
n−1

+ 2c2(1 − 2γ + 4cγ )q̂∗
n + 2c2γ (1 + c2)q̂∗

n+1 = 0.

(20)

We consider the perturbation with real and imaginary
parts q̂n = q1,n(t) + iq2,n(t), which changes the com-
plex linearized equation can change into two real equa-
tions

γ (1 + c2)2q1,n−2 + (1 + c2)(1 − 4γ + 6γ c2)q1,n−1

+ 2(−1 + c2 + γ (3 − 4c2 + 5c4))q1,n

+ (1 + c2)γ (−4 + 6c2))q1,n+1

+ (1 + c2)2q1,n+2 − q2,n,t = 0,

(1 + c2)[γ (1 + c2)q2,n−2 + (1 + 2γ (c2 − 2))q2,n−1

− 2(1 + 3γ (c2 − 1))q2,n

+ (1 + 2γ (c2 − 2))q2,n+1

+ γ (1 + c2)q2,n+2] + q1,n,t = 0.

(21)

Assume that real equation (21) exists the following
complex solution

(q1,n(t), q2,n(t)) = (q(0)
1,n, q

(0)
2,n)e

gt+ikn, (22)

where g is theMIgain k is an arbitrary realwavenumber
and q(0)

1,n, q
(0)
2,n are constant amplitudes of the perturba-

tion eigenmode. Substituting (22) into Eq. (21) yields
the MI dispersion equation in the form of the determi-
nant∣∣∣∣

−g 2(c2 − 1+(c2+1) cos k)(1+2γ (2c2−1)+2γ (c2+1) cos k)
−4(c2 + 1)(1 + 2γ (c2 − 1) + 2γ (c2 + 1) cos k) sin2 k

2 g

∣∣∣∣ = 0, (23)

which gives an explicit dispersion relation

g2 = 8(1 + c2)
(
c2 − 1 + (c2 + 1) cos k

)

(
1 + 2γ (2c2 − 1) + 2γ (1 + c2) cos k

)2
sin2

k

2
.

(24)
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Fig. 7 The third-order RW solutions (18). The exact solution a
d1,2 = f1,2 = 0 and d d1 = 10, d2 = f1,2 = 0 (left); b and
e simulated simulation using exact solutions (18) as the initial

conditions (middle); c and f numerical simulations by adding
random noise with amplitude 2% to the exact solutions (18) as
initial conditions (right)

Fig. 8 Gain spectra of the
MI for different CW
amplitude c and higher
order parameter γ . a
Different amplitude with
c = 2 (blue solid), c = 3
(red dashed), and c = 4
(green dotted-dashed); b
Different parameter with
γ = 1 (blue solid), γ = 2
(red dashed), and γ = 3
(green dotted-dashed)
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We point out here the MI takes place when expression
(24) is positive. The MI condition g2 > 0 holds as

cos k >
1 − c2

1 + c2
,

cos k 
= −1 + 2γ (2c2 − 1)

2γ (1 + c2)
, and

k 
= 2mπ,m ∈ Z .

Figure 8 shows that the growth rate g(k) becomes larger
and larger as the amplitude c increases, meanwhile, for
the fixed amplitude c = 2, gmax(k) also gets larger with
the increase of parameter γ .

5 Conclusions

In this paper, we have studied a higher-order inte-
grable discrete NLS equation by the generalized dis-
crete (1, N −1)-fold Darboux transformation. The dis-
crete higher-order RW solutions are given by deter-
minants. We have analytically studied the dynamical
behaviors of discrete RW solutions, which exhibits
abundant patterns including on-site, inter-site, the rotat-
ing triangle and pentagon structures. Comparing with
the discrete NLS equation, the first-order RWs of inte-
grable higher-order discrete NLS equation have the
identical peaks but different center pointswith the same
plane-wave amplitude. We also find that the nonlin-
ear term parameter γ can control energy density of
the RWs. By means of numerical simulation with the
time evolutions of the RW solutions, we reveal that the
strong interaction RWs are more stable on the wave
propagation than the weak interaction case. Finally,
the modulation instability condition of the background
wave solutions are given.
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