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Abstract In this paper, a new type of non-volatile
locally active memristor with bi-stability is proposed
by injecting appropriate voltage pulses to realize a
switching mechanism between two stable states. It is
found that the memristive parameters of the new mem-
ristor can affect the local activity, which has been
rarely reported, and this phenomenon is explained
based onmathematical analyses and numerical simula-
tions. Then, a locally activememristive coupled neuron
model is constructed using the proposedmemristor as a
connecting synapse. The parameter-associated dynam-
ical behaviors are revealed by bifurcation plots, phase
plane portraits and dynamical evolution maps. More-
over, the bi-stability phenomenon of the new coupled
neuron model is disclosed by local attraction basins,
and the periodic burster andmulti-scroll chaotic burster
are found if a multi-level pulse current is used to imi-
tate a periodical external stimulus on the neurons. The
Hamiltonian energy function is calculated and analyzed
with or without external excitation. Finally, the neu-
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ronal circuit is designed and implemented, which can
mimic electrical activity of the neurons and is useful
for physical applications. The experimental results cap-
tured from the analog circuit are consistent well with
the numerical simulation results.
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1 Introduction

In 1971, by deducing from the perspective of logic,
Chua pointed out that there should be a circuit ele-
ment linking magnetic flux and electric charge and
enriches the relationships among the electric quanti-
ties [1]. Later, based on the theory, the first entity
of TiO2 memristor was developed by HP laboratory,
and it is becoming more and more interesting in lots
of engineering areas such as non-volatile memories,
nonlinear circuit designs, and so on [2–4]. So far, the
characteristics of memristor have been explored exten-
sively, such as input frequency, input amplitude and
initial value-dependent dynamics behaviors [5,6], and
the local activity was considered as the origin of com-
plexity [7]. In 2014, the first locally active memris-
tor was proposed and verified physically by Chua [8].
The locally active memristor has intense nonlinear and
complicated dynamics, and its mathematical modeling
and physical implementation have widely aroused the
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researchers’ interests [9]. In recent years, some locally
activememristorswith different stable pinchedhystere-
sis loops under different initial conditions have been
reported, which are considered as multi-stable mem-
ristors [10]. Furthermore, diverse locally active char-
acteristic curves indicate the complex polymorphic of
locally active memristors. Liang et al. [11] proposed an
S-type locally activememristor and then constructed an
equivalent analog circuit, and a small signal equivalent
analog circuit that was used to reveal the influence of
the memristor on the amplification of extremely small
energy fluctuation in the locally active region. By intro-
ducing an inductor and a capacitor to the memristor
circuit, a third-order chaotic oscillator was found and
analyzed in [11]. In addition, a bi-stable non-volatile
locally active memristor with complex dynamics was
proposed and analyzed in [12]. Then, a tri-stable locally
activememristorwithwide large active regionwas con-
structed and introduced in a Chua system, which has
been implemented successfully by commercial analog
elements [13], whereas there are few results reported
about the effect of parameters on the local activity.
Inspired by these considerations, a bi-stable locally
active memristor is proposed, and the effect of dif-
ferent parameters on the local activity is investigated
based on this new memristor. It is found that the varia-
tion of the memristive parameters not only causes the
change of locally active region, but also determines
the existence of local activity, which is an interesting
phenomenon, and may be helpful to construct different
type locally active memristors, such as N-type [14] and
M-type locally active memristors.

The non-volatile property of memristor is worth
exploring since this property can be used to deter-
mine the memristive state with power-off. Motivated
by the multiple stable states of non-volatile memris-
tor, Ying and Wang analyzed the switching mecha-
nism of states using pulse excitation in order to verify
the non-volatility. With the excitation of pulse voltage,
the non-volatile memductance can be switched from
one stable state to another state [15]. Some published
papers have pointed out memristors can be utilized to
describe external electromagnetic induction or as neu-
ral synapses.When the neurons are exposed to the elec-
tric field, considering the electromagnetic induction
(MEI) theorem, the induced current will be added on
the neurons resulting from the fluctuation of magnetic-
flux, and the induced current can be described by a
flux-controlled memristor [16–19]. Lin andWang tried

to put one neuron of Hopfield neural network (HNN)
[20] to electromagnetic radiation and found the hid-
den extreme multi-stability and rich transient chaotic
phenomena [21]. Besides, the locally active memristor
can be used to simulate autapse [22]. By introducing
hyperbolic tangent function, Wang et al. presented a
bi-stable scissors-type locally active memristor which
was utilized as an autapse in two Hindmarsh–Rose
neural network [23]. Then, a tri-stable locally active
memristor was proposed and introduced to emulate the
autapse in 2D Hindmarsh–Rose neuron. Four coexist-
ing firing activities were found, and physical circuit
implementation results were then presented to demon-
strate the validity of simulation results and theoreti-
cal analyses [24]. Furthermore, because of the poten-
tial difference among neurons in the nervous system,
the complex electromagnetic field induced by electro-
magnetic induction can be detected, similarly, and the
flux-controlled memristor can be utilized as the cou-
pled synapse to represent the coupling relationships
among neurons based on the MEI theorem [25–28].
A newmemristor-coupled neuron model was proposed
in [29], and the synchronization behavior between two
neurons was investigated in detail. It was found that
the phase synchronization can be achieved by field
coupling. Moreover, the effect of magnetic field cou-
pling intensity on phase synchronization of neurons
was investigated and the stability of synchronization of
the network was explored under noise in [30]. With the
construction of a threshold memristor, Bao proposed
a memristor synapse-coupled neuron network and dis-
covered abundant firing phenomena and then achieved
the complete exponential synchronization between two
identical HR neurons [31]. In order to investigate the
characteristics of the new proposed bi-stable threshold
locally active memristor based neuron network, this
newmemristor is introduced to themodified FitzHugh–
Nagumo (FHN) nervous system, which was proposed
by [32], as a coupled synapse.

It is reported that the external electrical stimuli,
such as random noise and electromagnetic radiation,
are relevant to real electrophysiological environment,
which influence the dynamics behaviors of the neural
systems [33]. Besides, firing activities can be induced
by external stimuli, which can help researchers bet-
ter understand the abnormal firing behaviors of bio-
logical cells and has great medical significance. Bao
et al. discovered the coexistence of periodic bursting
firing and chaotic bursting firing by injecting a sinu-
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soidal AC current to HR neuron [34]. In addition, under
the excitation of bi-polar pulse signal, coexisting firing
patterns were explored [35]. Similarly, in the memris-
tive HNN, bursting phenomenon induced by external
current was explained by analyzing the AC equilib-
rium points [36]. Moreover, Wang et al. introduced a
multi-level pulse signal and a memristor to the HNN
to imitate the external stimuli and magnetic field, then,
multi-scroll phenomenon was found [37]. In this paper,
a kind of multi-level current is introduced to the pro-
posed nervous system, then, periodic burster andmulti-
scroll chaotic burster are found.

In recent years, some researchers have pointed out
that the firing activities of nervous systems can be ana-
lyzed by energy supply and consumption. According
to Helmholtz’s theorem, Yang et al. calculated the neu-
ron Hamiltonian energy of Izhikevich neuron driven
by external stimulus under electromagnetic induction
and found that the transition of Hamiltonian energy is
mainly dependent on the firing behaviors [38]. Based
on the Hindmarsh–Rose neuron model, Wang et.al
found that the change of Hamilton energy depends on
the discharge mode and external currents [39]. Hence,
the Hamiltonian energy is useful to better understand
the relationship between firing behaviors and energy
coding, and this paper uses the Hamiltonian-energy-
function-based method to explore the energy changes
of the coupled neuron model.

The rest of this paper is arranged as follows. In
Sect. 2, a novel locally active memristor is designed,
and its characteristics including non-volatility, local
activity versus memristive parameters and switching
mechanism are revealed by numerical analyses. In
Sect. 3, a memristive synapse-coupled nervous sys-
tem is modeled and analyzed. Section 4 presents the
designed circuit and hardware experiments. Finally,
conclusions are given in Sect. 5.

2 A threshold locally active memristor model

There is a definition about generic memristor proposed
by Chua [40], which can be expressed as{

v(t) = G(x)u(t)
dx
dt = H(x, u)

(1)

where u(t), v(t) and x represent the input, output and
state variable, respectively. The specific functionsG(x)
and H(x, u) determine the memductance (memris-
tance) and some specific properties such as non-volatile

Fig. 1 Amplitude- and frequency-dependent pinched hysteresis
loops. a F = 0.75 Hz and x(0) = 0 with different amplitudes.
b A = 2 V and x(0) = 0 with different frequencies

memory and local activity. Locally active memristor
can imitate neural synapse, but there are few thresh-
old locally active memristors proposed in the liter-
ature. Considering the memductance induced by the
electromagnetic induction will not be infinite [16], by
introducing the hyperbolic tangent function, a thresh-
old locally active memristor is proposed, and the math-
ematical model can be described as⎧⎨
⎩
iM = G(x)vM
G(x) = a + b tanh(x)
dx
dt = −x3 + x − vM

, (2)

where a and b are memristive parameters, and vM and
iM are the input voltage and output current, respec-
tively. The remarkable characteristics of the presented
memristive mathematical model including frequency-
dependent and amplitude-dependent pinched hystere-
sis loops, non-volatile memory and local activity are
deduced and verified using abundant numerical simu-
lations in the following subsections.

2.1 Pinched hysteresis loops dependent on amplitude
and frequency

Letting the memristive parameters a = 0 and b = 1,
the dynamics behaviors of the proposed memristor are
analyzed under different input signal amplitudes and
frequencies when a sinusoidal voltage sourcewith vari-
able voltage amplitude A and voltage frequency F is
the input signal.With the initial state x(0) = 0, it can be
seen fromFig. 1 that there are six different pinched hys-
teresis loops in the vM − iM plane when the memristor
is driven by an external excitation. Fig. 1(a) illustrates
that, with the frequency F = 0.75 Hz fixed, as the
external excitation amplitude increases from 1 to 2, the
hysteresis lobe area will be magnified along vM−axis
and iM−axis. Choosing the amplitude A = 2 V, the
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Fig. 2 Pinched hysteresis loops with initial values x(0) = 0 and
x(0) = 8. a A = 2 V,F = 0.5 Hz. b A = 2 V, F = 0.2 Hz

frequency-dependent pinched hysteresis loops are pre-
sented in Fig. 1(b). Obviously, with the increase of fre-
quency, the hysteresis lobe area gradually decreases
and tends to be a single-valued function.

2.2 Pinched hysteresis loops with respect to bi-stable
characteristics

For a bi-stable memristor, there are two coexisting sta-
ble pinched hysteresis loops under proper amplitudes,
frequencies and initial values [23]. When the ampli-
tude A = 2 V and the frequency F = 0.5 Hz are fixed,
two totally diverse stable pinched hysteresis loops are
depicted for x(0) = 0 and x(0) = 8, as shown in
Fig. 2(a). It should be noted that the critical initial value
x(0) = 0.0619 splits the two pinched hysteresis loops.
However, with the amplitude A = 2 V and the fre-
quency F = 0.2 Hz, two identical stable pinched hys-
teresis loops under two different initial values x(0) = 0
and x(0) = 8 are depicted in Fig. 2(b). As the input fre-
quency decreases, two diverse pinched hysteresis loops
tend to converge to a stable pinched hysteresis loop. It
is obvious that both the frequency and initial value can
affect the bi-stability.

2.3 Non-volatility

The non-volatile theorem [40] points out the power-off
plot (POP) of the non-volatile memristor has two or
more negative slopes that intersect the x−axis in the
x−dx/dt plane. The memristance or memductance of
the non-volatile memristor will retain a constant when
power is off. Let vM = 0, one can obtain the state
equation below.

dx

dt
|vM=0 = −x3 + x (3)

(a) (b)

Fig. 3 POP and asymptotically stable processes of the memris-
tor. a POP. b asymptotically stable processes

The dynamic route of the state equation can be
shown in Fig. 3(a), which can be named as POP.Denote
that the attached arrowheads on the POP illustrate the
evolutionary direction of state x alongside the curve.
For any initial point on the curve above the x−axis,
where dx/dt > 0, it must evolve to the right alongside
the POP. On the contrary, while any initial point on the
curve lies the lower half-plane, it must evolve to the left
along the POP. This phenomenon is named as the no
backtracking rule of dynamical route of non-volatile
memristor. The intersection points Q0(x0 = −1),
Q1(x1 = 0) and Q2(x2 = 1) are considered as the
equilibrium points of the proposed memristor. One can
observe that the equilibrium points Q0 and Q2 both
have negative slopes and are asymptotically stable,
while Q1 is unstable. It indicates two stable equilib-
rium states in the non-volatile memristor under differ-
ent initial values, namely

x(∞) =
⎧⎨
⎩

−1, x(0) < 0
0, x(0) = 0
1, x(0) > 0

, (4)

which indicates two stable memductances

{
G(x0) = − tanh(1) ≈ −0.726 S, x(0) < 0
G(x2) = tanh(1) ≈ 0.726 S, x(0) > 0

. (5)

When thememristor is powered off, in order tomore
intuitively show the asymptotically stable processes of
the initial state x(0), the time series of x are shown in
Fig. 3(b). It can be seen that, if the state x(0) > 0, it
finally converges to the state x(∞) = 1 with the corre-
sponding memductance G = 0.726 S, while the state
x(0) < 0, it converges to x(∞) = −1 with the corre-
spondingmemductanceG = −0.726 S. Therefore, the
memristor can be considered as a bi-stable memristor.
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Fig. 4 Five dynamic routes of DRM

2.4 State switching mechanism of the non-volatile
memristor

It should be noted that dynamic route map (DRM) is
the collection of the dynamic routes with constant volt-
ages [41]. Fig. 4 presents the DRM for five dynamic
routes,which correspond to the constant voltages vM =
−2 V, −1 V, 0 V, 1 V, 2 V, respectively. On the
basis of no backtracking rule, by injecting a single
pulse excitation on the memristor with suitable volt-
age amplitude v and pulse width w, one can switch
from the stable state x0 to the stable state x2 alongside
a suitable dynamic route.

Figs. 5(a), 5(c) and 5(e) present two different
dynamic routes, where the red curve is the POP with
constant voltage vM = 0 V and the blue curve is the
dynamic routewith the constant voltage vM = −2 V. If
the amplitude v = −2 V, different switching dynamic
routes from state x0 to x2 are related to pulse width w.
In Fig. 5(a), the initial state is x(0) = x0 corresponding
to memductance G(x0) = −0.726 S. When the pulse
width w = 0.8 s, the initial state x(0) rises instanta-
neously to the blue dynamic route and ,then, traverses
to the right alongside it. As the pulse ends, the state x(t)
immediately drops to red curve and, then, asymptoti-
cally converges to the stable state x2. Fig. 5(b) shows
the memductance variation.

As shown in Fig. 5(c), when the pulse width satisfies

w =
∫ x2

x0

1

f (x, v)|v=−2V
dx = 1.0196 s, (6)

one can switch directly from the initial state x0 to the
final state x2 without the asymptotical process on the

red curve. The evolutionary process of memductance
can be visualized in Fig. 5(d).

When the pulse width w = 1.2 s, the circuitous
evolutionary process and the change of memductance
are shown in Fig. 5(e) and Fig. 5(f), respectively. It
can be seen that, as the pulse peak appears at t = 1 s,
the initial state instantly jumps to the blue curve and
traverses to the left along the dynamic route. When the
pulse peak disappears at t = 2.2 s, the state x (t =
2.2 s) drops vertically to the red POP. Based on the
no backtracking rule, the state will finally evolve to the
stable state x2 along the red curve.

2.5 Local activity

Generally, locally active characteristic can be judged by
performing the DC V − I plot [40]. It should be pointed
out that not all of non-volatile memristors are locally
active. To depict the DC V − I plot of the proposed
memristor, by setting dx/dt = 0, one can obtain the
equilibrium state equation as follows:

V = X − X3 (7)

Here, V representsDCvoltage, and X represents a vari-
able equilibrium state that always satisfies dx/dt(x =
X) = 0. Furthermore, referring to (2) and (7), the DC
current I can be expressed as

I = (a + b tanh(X))V = (a + b tanh(X))(X − X3).(8)

If X ∈ [−1.2, 1.2] and the memristive parameters
a = 0 and b = 1, the X − V plot and the V − I plot
are depicted in Fig. 6. If there are one or more negative
slopes in DC V − I plot, thememristor is locally active.
As can be seen from Fig. 6(b), the red loci are negative,
and one can obtain the locally active region, namely
X < 0.

Specially, when a = 1.2 and b = 1, the correspond-
ing characteristic loci of DC V − I plot change and are
plotted in Fig. 7(a). It can be observed that the local
activity of the proposed memristor disappears and the
memristor is completely passive. Furthermore, with the
memristive parameters a = −1.2 and b = 1, the mem-
ristor is completely positive. Fig. 7(b) illustrates the
positive characteristics. The phenomenon has not been
reported so far and isworth exploring. Bymathematical
analysis, one can explain the influence of the memris-
tive parameters on the local activity of the memristor.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Switchingmechanismof the non-volatilememristor from
the state x0 to x2 under pulse excitations with different pulse
widths. a stable state transition with w = 0.8. b memductance

variation with w = 0.8.c stable state transition with w = 1. d
memductance variation withw = 1. e stable state transition with
w = 1.2. f memductance variation with w = 1.2
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(a) (b)

Fig. 6 Characteristics curves. a X − V curve. b V − I curve

(a) (b)

Fig. 7 DC V-I loci with a a = 1.2 and b = 1. b a = −1.2 and
b = 1

(a) (b)

Fig. 8 The effect of memristive parameters on the local activity.
a effect of single parameter. b effect of two-parameter

From (8), one can obtain the relationship between
DC voltage V and DC current I as

dI

dV
= (a + b tanh(X)) (9)

which determines the slope of any point in theDC V− I
plot.

Obviously, when dI/dV < 0, the locally active
region can be obtained. Letting the parameter b = 1,
the variation of the locally active regionwith the change
of parameter a can be computed as shown in Fig. 8(a).
It can be seen that the dotted lines represent the slope
of the locus in DC V − I plot and the slope is negative.
With the increase of the parameter a, the locally active
region is getting smaller and smaller. One can deduce
that, when |a| > |b|, the local activity disappears.
Based on this, Fig. 8(b) shows the two-parameter effect

Fig. 9 Memristive synapse-coupled nervous system

on the local activity intuitively. It should be pointed out
that b must not be equal to zero.

3 Memristive synapse-coupled neural system

To fully explore the dynamic characteristic of memris-
tor synapse-coupled neuronmodel, the proposedmem-
ristor is introduced into a two-neuron system as shown
in Fig. 9. According to the MEI theorem, the current
iM induced by the potential difference vM between two
neurons can be expressed as{
iM = W (ϕ)vM = k(a + b tanh(ϕ))vM
dϕ/dt = −ϕ3 + ϕ − vM

(10)

where ϕ represents themagnetic-flux of thememristive
synapse, andW (ϕ) indicates thememductancewith the
coupling weight k.

The modified FitzHugh–Nagumo (FHN) model is
selected, which can be utilized to describe the firing
activity of FHN neuron, and the corresponding mathe-
matical model is{

v̇ = v(v − 1)(1 − a1v) − w + Iext
ẇ = b1v

, (11)

where v represents the membrane potential, w rep-
resents the recovery potential, a1 and b1 are control
parameters, and Iext is external stimulus current.

By introducing the memristive synapse into the neu-
ral system, the memristive synapse-coupled neuron
model can be obtained and the mathematical model
is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = x(x − 1)(1 − a1x) − y + iM + Iext
ẏ = b1x
u̇ = u(u − 1)(1 − a2u) − v − iM + Iext
v̇ = b2u
ϕ̇ = −ϕ3 + ϕ − (x − u)

iM = k(a + b tanh(ϕ))(x − u)

(12)

It is significant to note that all the internal control
parameters are positive with a1 = 6.5, b1 = 4.25,
a2 = 6.75 and b2 = 3.5 for the coupled neuron model.
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In this work, by using the coupling weight k, the mem-
ristive parameters a and b as well as the external stim-
ulus Iext as control parameters, we study the dynamics
characteristics of this model under fixed initial value
(0, 0.51, 0,−0.5, 0.8) and (0.1, 0, 0, 0, 0).

3.1 Equilibrium points and stability analysis

When Iext = 0, let the left side of the system (12)
be zero, three equilibrium points can be obtained:
E1 = (0, 0, 0, 0, 0), E2 = (0, 0, 0, 0,−1) and E3 =
(0, 0, 0, 0, 1), which are also the equilibrium points of
the proposed memristor. For the point E1, the corre-
sponding Jacobian matrix can be calculated as

JE1 =

⎡
⎢⎢⎢⎢⎣

a · k − 1 −1 −a · k 0 0
b1 0 0 0 0
−a · k 0 a · k − 1 −1 0
0 0 b2 0 0
−1 0 1 0 1

⎤
⎥⎥⎥⎥⎦ (13)

The corresponding characteristic equation below
can be obtained by solving P(λ) = (λI − JE0), where
I is a 5 × 5 identity matrix.

P(λ) = λ5 + (1 − 2ak)λ4 + (b1 + b2 − 1)λ3

+ (2ak − ab1k − ab2k − 1)λ2

+ (b1b2 − b2 − b1 + ab1k + ab2k)λ − b1b2

(14)

According to the Routh–Hurwitz criterion, if all the
principal minors are positive, the equilibrium point is
stable. Assuming b1 + b2 > 2 and k, a ∈ (0, 1), one
can obtain

Δ3 < [a2(b1 + b2)
2 − 2a2(b1 + b2)]k

+ [−a(b1 + b2)
2 + 3a(b1 + b2)]k

− (b1 + b2)k < (b1 + b2)(a − 1)

[(b1 + b2 − 2)a + 1]
< 0

(15)

which indicates E1 is always unstable. For example,
when a = 0, the equilibrium point E1 is also unstable.
As a result, the unstable equilibrium point may lead to
the occurrence of chaos or periodic oscillations in the
coupled FHN model.

3.2 Dynamical characteristics analysis

3.2.1 Bifurcation behavior with respect to the
coupling weight k

Coupling weight plays an important role in multi-
neuron systems and has a great influence on the neu-
rodynamics. To explore the influence of the cou-
pling weight on the dynamics of the proposed sys-
tem, the memristive parameters a = 0 and b = 1
and two sets of initial conditions (0, 0.51, 0,−0.5, 0.8)
and (0.1, 0, 0, 0, 0) are chosen, and the maximum
Lyapunov exponent spectrum and bifurcation dia-
gram with k in the range [0.7, 1] are shown in
Figs. 10(a) and 10(b), respectively. It can be observed
from Fig. 10(b) that, when the initial condition is
(0.1, 0, 0, 0, 0), the coupled neuron model is always
stable. On the contrary, with the initial condition
(0, 0.51, 0,−0.5, 0.8), the system (12) presents the
periodic-doubling bifurcation route to chaos for k ∈
[0.7, 0.825]. Afterwards, the system evolves into
periodic-3. When k is greater than 0.923, the system
enters into chaos again. Accordingly, with different
coupling weights k, the coexisting behaviors can be
illustrated by phase plane plots as shown in Fig. 11.

When b = 1 and the memristive parameter a
varies from 0 to 1, the locally active region gradu-
ally decreases although the local activity still exists.
In order to investigate the influence of both a and
k on the dynamical behaviors of the coupled neuron
model, Fig. 12 shows dynamical evolution map and
two-parameter bifurcation diagram in the a − k plane,
respectively. As shown in Fig. 12(a), the right color bar
indicates the value of the maximum Lyapunov expo-
nent. One can conclude the blue and green regionsmark
non-oscillation, yellow shading denotes chaos, while
other colors represent periodic oscillations. In order
to further intuitively show the dynamics behavior pro-
ceeding of the coupled neuron model, two-parameter
bifurcation diagram is shown in Fig. 12(b), which is
consistentwith the two-parametermaximumLyapunov
exponent diagram. Here, the white region represents
point attractor, the yellow region is the periodic-1, the
black region is the periodic-2, the magenta region is
the periodic-3, the cyan region is the periodic-4, and
the blue region is the chaotic behavior.
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(a) (b)

Fig. 10 Bifurcation behaviors with the increase of coupling weight k under different initial values. a Maximum Lyapunov exponent
spectrum. b Bifurcation diagram of state y

(a) (b)

Fig. 11 Phase portraits of coexisting attractors in x − y plane. a k = 0.7. b k = 0.98

3.2.2 Dynamics analysis about memristive
parameters a and b

As discussed in Fig. 8(b), when the memristive param-
eters a and b vary simultaneously, the locally active
region changes, which has an important influence on
the dynamical behaviors of the memristor. Therefore,
it is worth exploring the effect of the parameters a and
b on the dynamical behaviors of the nervous system.
With coupling weight k = 0.98, by scanning upward
the values of a and b, the corresponding two-parameter
bifurcation diagram and dynamical evolution map in
the a − b plane are obtained by numerical simulations.

As shown in Fig. 13(b), different colors stand for com-
pletely different oscillation states. Thewhite area repre-
sents stable equilibrium point, the blue area represents
chaos, the green area stands for quasi-periodic state,
and others represent periodicities. The numerical sim-
ulation results demonstrate that the oscillation states
mainly appear in the region of a > 0.

3.3 Bi-stability depicted by local basins of attraction

For typical coupling weight k = 0.7 and k = 0.98 in
the memristive synapse-coupled FHN model, the local
attraction basins in the x(0)−y(0) planewith u(0) = 0,
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(a) (b)

Fig. 12 Dynamics analysis by increasing the values of both a and k from 0 to 1. a Dynamical evolution map. b Two-parameter
bifurcation diagram in a − k plane

(a) (b)

Fig. 13 Dynamics analysis by increasing the values of both a and b from −1 to 1. a Dynamical evolution map. b Two-parameter
bifurcation diagram in a − b plane

v(0) = 0 andϕ(0) = 1e−6 are shown inFig. 14,where
different colored regions represent different attractors.
In Fig. 14(a), the yellow region represents periodic-
1, and the white region represents the stable point. In
Fig. 14(b), the blue region indicates chaotic attractor. It
can be seen that the numerical simulation results indi-
cate the bi-stability phenomenon. Bi-stability, exactly
as multi-stability, means the coexistence of two differ-
ent types of attractors. Moreover, it can be seen that the
change of coupling weight k does not affect the local
attraction basin of the stable point.

3.4 Periodic burster and multi-scroll chaotic burster
induced by multi-level pulse excitation

In this paper, a multi-level pulse current Iext is intro-
duced to the proposed system tomimic a periodic stim-
ulus effect on the neurons, which can be described
mathematically as [42]

Iext =
M∑
k=1

I sgn(sin(wt − φi )), φi = (i − 1)π/M

(16)
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(a) (b)

Fig. 14 Local attraction basins versus coupling weight k. a k = 0.7. b k = 0.98

where M is a control parameter for the number of lev-
els, the amplitude I and frequency w are utilized to
control the amplitude and pulse width of a single level,
respectively.WhenM = 1, a bi-polar pulse current can
be generated.

Here, the amplitude I = 1 and the frequency
w = 0.045 are chosen. Under the excitation of
a bipolar pulse signal, when the initial value is
(0, 0.51, 0,−0.5, 0.8) and the coupling weight k =
0.7, the coupled FHN model is in periodic bursting fir-
ing pattern, whereas when k = 0.98, the model oper-
ates in chaotic bursting firing pattern. Moreover, from
the perspective of phase space trajectory, multi-scroll
chaotic attractor appears.

Fig. 15 describes the phase diagrams in x − y plane
and the corresponding time domain waveforms with
regard to k = 0.7 and k = 0.98. For Fig. 15(a), the
marked points are AC equilibrium points. It is obvi-
ous that the state x(t) oscillates around the equilibrium
point x = 0 and y(t) oscillates around the equilibrium
points y = −1 and y = 1 as shown in Fig. 15(b).

When M = 3, a four-scroll chaotic burster can be
generated around the marked AC equilibrium points
y = −3, y = −1, y = 1, y = 3, as shown in
Fig. 16(a). Fig. 16(b) depicts the oscillation waveforms
of x and y.With the increase of parameterM , more and
more scrolls can be generated along y−direction. One
can conclude the quantitative relationship between the
number of scrolls and the number of equilibriumpoints:

N = M + 1, (17)

(a) (b)

(c) (d)

Fig. 15 Periodic burster and double-scroll chaotic burster. a
Phase diagram of periodic burster with k = 0.7. b Time domain
waveforms of x and y with k = 0.7. c Phase diagram of chaotic
burster with k = 0.98. d Oscillation waveforms of x and y with
k = 0.98

(a) (b)

Fig. 16 Four-scroll chaotic burster. a Phase diagram in the x− y
plane. b Time domain waveforms of x and y with k = 0.98
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in which N represents the number of scrolls and M
represents the control parameter.

3.5 Energy analysis

The Hamiltonian-energy-function-based method is
widely utilized to analyze diverse dynamics systems
including neural network, which is useful to explore
energy release and supply of neurons. Some references
have also mentioned that the Hamiltonian energy is an
important index of chaos [43,44].

According to the Helmholtz’s theorem [45], the
vector field F(X) of the coupled neuron model can
be divided into two categories: the conservative field
Fc(X) and the diverging field Fd(X), which can be
expressed mathematically as:

F(X) = Fc(X) + Fd(X)

=

⎡
⎢⎢⎢⎣

−y − k(a + b tanh(ϕ))u
b1x

−v − k(a + b tanh(ϕ))x
b2u
−(x − u)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

x(x − 1)(1 − a1x) + k(a + b tanh(ϕ))x
0

u(u − 1)(1 − a2u) + k(a + b tanh(ϕ))u
0

−ϕ3 + ϕ

⎤
⎥⎥⎥⎦ (18)

Accordingly, Hamiltonian energy function is just
related to conservative form Fc(X) and has nothing
to do with the external forcing term Fd(X). By solv-
ing the equation∇HT (X)Fc(X) = 0, the Hamiltonian
energy function H(X) can be derived as

H(X) = 1

2
x2 + 1

2b1
y2 − 1

2
u2 − 1

2b2
v2 (19)

Moreover, the derivative of the Hamiltonian energy
functionwith respect to time canbeobtained as follows.

Ḣ(X) = x(x(x − 1)(1 − a1x)

+ k(a + b tanh(ϕ))x)

− u(u(u − 1)(1 − a1u)

+ k(a + b tanh(ϕ))u)

= ∇HT (X)Fd(X)

(20)

Obviously, according to (19), theHamiltonian energy
is directly related to the membrane potential and recov-
ery potential of two neurons instead of external stim-
uli. The evolution of Hamiltonian energy of different

(a) (b)

(c) (d)

(e) (f)

Fig. 17 Evolution of energy of different firing patterns. a 2D
view of energy of the periodicity. b Energy and energy derivative
of periodicity. c 2D view of energy of chaotic firing. d Energy
and energy derivative of chaotic firing. e 2D view of energy of
multi-scroll burster. f Energy and energy derivative of multi-
scroll burster

attractors is described in detail in Fig. 17. Fig. 17(a)
illustrates how the energy of periodic attractor alters
along the orbit, and Fig. 17(b) shows that the Hamilto-
nian energy evolves in regular versus time. Fig. 17(c)
indicates the energy distribution of chaotic attractor
with coupling weight k = 0.98, and Fig. 17(d) shows
the evolution of the energy with respect to time. With
coupling weight unchanged, under external multi-level
logic pulse excitation, the energy evolution of the
double-scroll attractor in themodel is explored and pre-
sented in Figs. 17(e)-(f). It can be seen fromFig. 17 that
the coupling weight k not only affects the dynamical
behaviors of the coupled neuron model, but also affects
the fluctuation ofHamiltonian energy. Furthermore, for
the double-scroll attractor, the energy distribution of
two scrolls is extremely unequal as shown in Fig. 17(e),
and the fluctuation of Hamiltonian energy between the
scrolls is quite different. In other words, external stim-
ulus influences the energy distribution indirectly and
greatly.
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(a) (b)

Fig. 18 Circuit schematic structure. a The schematic of circuit emulator. b tanh function circuit schematic

4 Circuit implementation

Hardware implementation is necessary for practical
engineering applications. Some analog electrical ele-
ments, such as capacitors, inductances, resistors and
operational amplifiers, can be utilized to physically
realize nonlinear systems. The memristor synapse-
coupled neuron model can be designed and realized
by commercial electric elements, which is helpful for
the development of neuromorphic circuits.

4.1 Circuit emulator of the proposed memristor

In order to physically verify the presented memristor,
the circuit is designed and the corresponding schematic
is given in Fig. 18(a), which involves one capacitor, one
function operation unit, three amplifiers LM358, three
multipliers AD633JN and some resistors. To realize the
hyperbolic tangent function [34], one operation mod-
ule is utilized as shown in Fig. 18(b), and this module
includes four transistors Ti (i = 1, 2, 3, 4), three ampli-
fiers and some resistors.

The multipliers use the default set as Ai = 1(i =
1, 2, 3), and the circuit parameters are selected as R0 =
10 k�, R = 1 �, Rs = 9.8 k�, Rf = 520 �, C0 =
100 nF, Rm = 1 k� and RT = 2 k�. One can obtain
the time constant τ0 = R0C0 = 1 ms and the circuit
equations are

{
i = A0 tanh(x)v/R
dx
dτ

= − 1
R0C0

x3 + 1
R0C0

x − 1
R0C0

v
(21)

Fig. 19 Experimental pinched hysteresis loops with v(t) =
sin(2π f t) obtained on the breadboard. a f = 500 Hz. b
f = 750 Hz

where the input sinusoidal source voltage v is chosen
as v(t) = sin(2π f t) with variable frequency f , and i
is the current through the memristor. Furthermore, the
circuit model corresponds to the simulation model (2).
Let f = 500 Hz and f = 750 Hz the breadboard
experimental results are shown in Figs. 19(a) and (b),
respectively, which are consistent with the simulation
results versus F = 0.5 Hz and F = 0.75 Hz as shown
in Fig. 1(b).

4.2 Experimental circuit of the coupled neuron model

Based on the proposed locally active memristor emu-
lator in Fig. 18, the equivalent analog circuit schematic
of the memristive synapse-coupled neuron model is
designed and presented, as shown in Fig. 20, which
has been implemented physically. The experimental
circuits on the breadboard are shown in Fig. 21. The
circuit state equations, which correspond to (12), can
be found as follows:

123



4472 R. Li et al.

Fig. 20 Main circuit structure

Fig. 21 The photograph of the hardware circuit of the coupled
neuron model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv1
dτ/τ0

= −[v1(−v1 + 1)(1 − R0
R1

v1) + v2 − Im − Iext ]
dv2
dτ/τ0

= − R0
R2

(−v1)
dv3
dτ/τ0

= −[v3(−v3 + 1)(1 − R0
R3

v3) + v4 + Im − Iext ]
dv4
dτ/τ0

= − R0
R4

(−v3)
dv5
dτ/τ0

= −v5
3 + v5 − (v1 − v3)

Im = −( R0
Ra

+ g1R0
Rb

tanh(v5))(v3 − v1)

(22)

Assume that τ0 = R0C0 = 0.1 ms; then the resis-
tance R0 = 10 k� and the capacitor Ci = 10 nF(i =
1, 2, 3, 4, 5) are chosen. According to (12), the circuits
parameters in Fig. 20 are derived as R1 = 1.53 k�,
R2 = 2.35 k�, R3 = 1.48 k� and R4 = 2.35 k�.
Denote that g1 = 1; the resistances of Ra , Rb are
determined by Ra = R0/(ak) and Rb = R0/(bk),
respectively. For example, when a = 0, the switch S1
is open. If the switch S1 is open and Rb = 10.2 k�,
the chaotic dynamics appears as shown in Fig. 22.
The time series of the voltages v1, v2, v3, v4 are

Fig. 22 Experimental portraits of the chaotic attractor. a Time-
domain waveforms of v1, v2, v3 and v4. b Phase plane projec-
tion on the v1 −v2 plane. c Phase plane projection on the v2 −v5
plane. d Phase plane projection on the v3 − v5 plane

depicted in Fig. 22(a). The phase plane projections on
the v1 − v2, v2 − v5 and v3 − v5 planes are experi-
mentally captured, as shown in Figs. 22(b)-(d). Finally,
the effect of multi-level-pulse excitation on the system
dynamics is observed. The time series of the voltages
v1, v2, v3, v4 and experimental results are shown in
Fig. 23.
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Fig. 23 Experimental results of the double-scroll chaotic
burster. a Time-domain waveforms of v1, v2, v3 and v4. b Phase
plane projection on the v1 − v2 plane

5 Conclusion

In this paper, a new bi-stable and non-volatile mem-
ristor with locally activity was presented. The switch-
ing mechanism and memristive parameter-associated
dynamics characteristics were numerically and exper-
imentally explored. Based on the proposed memris-
tor, a novel locally active memristive synapse-coupled
neuron model was constructed. The dynamics of the
coupled neuron model was investigated by bifurcation
plots, dynamical evolution maps and so on. The new
neuron model exhibits the characteristic of bi-stability
under different coupling weights, which was numeri-
cally revealed by local attraction basins. Moreover, the
periodic burster and multi-scroll chaotic burster were
found under external stimuli. Furthermore, the Hamil-
tonian energy functionwas deduced and the energy dis-
tribution was analyzed to explore the energy changes
of the coupled neuron model. Hardware experimental
results further verify the numerical results, which have
applications value. In the future, new types of locally
active memristors with better characteristics may be
designed, based on which novel neurodynamic behav-
iors in neural models may be explored.

Acknowledgements This work was partially supported by the
Natural Science Foundation of Tianjin (No. 18JCYBJC87700),
the New Generation Artificial Intelligence Technology Major
Project ofTianjin (18ZXZNSY00270) andSouthAfricanNational
Research Foundation Grants (Nos. 114911 and 132797).

Data availability statement Datawill bemade available on rea-
sonable request.

Declarations

Conflict of Interest The authors declare that they have no con-
flict of interest.

References

1. Chua, L.: Memristor-the missing circuit element. IEEE
Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.
org/10.1109/TCT.1971.1083337

2. Corinto, F., Forti, M.: Memristor circuits: bifurcations with-
out parameters. IEEE Trans. Circuits Syst. I 64(6), 1540–
1551 (2017). https://doi.org/10.1109/tcsi.2016.2642112

3. Corinto, F., Forti, M.:Memristor circuits: flux-charge analy-
sis method. IEEE Trans. Circuits Syst. I 63(11), 1997–2009
(2016). https://doi.org/10.1109/tcsi.2016.2590948

4. Minati, L., Gambuzza, L.V., Thio, W.J., Sprott, J.C., Frasca,
M.: A chaotic circuit based on a physical memristor. Chaos
Solitons Fractals 138, 109990 (2020). https://doi.org/10.
1016/j.chaos.2020.109990

5. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge
analysis of two-memristor-based chua’s circuit: dimension-
ality decreasing model for detecting extreme multistability.
IEEETrans. Ind. Electron. 67(3), 2197–2206 (2020). https://
doi.org/10.1109/tie.2019.2907444

6. Chen, M., Ren, X., Wu, H., Xu, Q., Bao, B.: Interpreting
initial offset boosting via reconstitution in integral domain.
Chaos Solitons Fractals 131, 109554 (2020). https://doi.org/
10.1016/j.chaos.2019.109544

7. Chua, L.: Local activity is the origin of complexity. Int. J.
Bifurcation Chaos 15(11), 3435–3456 (2005). https://doi.
org/10.1142/S0218127405014337

8. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci.
Technol. 29(10), 104001 (2014). https://doi.org/10.1088/
0268-1242/29/10/104001

9. Yu, Y., Bao, H., Shi, M., Bao, B., Chen, Y., Chen, M.:
Complex dynamical behaviors of a fractional-order system
based on a locally active memristor. Complexity 2019, 1–13
(2019). https://doi.org/10.1155/2019/2051053

10. Lin, H., Wang, C., Hong, Q., Sun, Y.: A multi-stable mem-
ristor and its application in a neural network. IEEE Trans.
Circuits Syst. II 67(12), 3472–3476 (2020). https://doi.org/
10.1109/tcsii.2020.3000492

11. Liang, Y.,Wang, G., Chen, G., Dong, Y., Yu, D., Iu, H.H.-C.:
S-type locally active memristor-based periodic and chaotic
oscillators. IEEETrans. Circuits Syst. I 67(12), 1–14 (2020).
https://doi.org/10.1109/tcsi.2020.3017286

12. Dong, Y., Wang, G., Chen, G., Shen, Y., Ying, J.: A
bistable nonvolatile locally-active memristor and its com-
plex dynamics. Commun. Nonlinear Sci. Numer. Simulat.
84, 105203 (2020). https://doi.org/10.1016/j.cnsns.2020.
105203

13. Zhu,M.,Wang,C.,Deng,Q.,Hong,Q.: Locally activemem-
ristor with three coexisting pinched hysteresis loops and its
emulator circuit. Int. J. Bifurcation Chaos 30(13), 2050184
(2020). https://doi.org/10.1142/s0218127420501849

14. Liang, Y., Lu, Z., Wang, G., Dong, Y., Yu, D., Iu, H.H.-C.:
Modeling simplification and dynamic behavior of n-shaped
locally-active memristor based oscillator. IEEE Access 8,
75571–75585 (2020). https://doi.org/10.1109/access.2020.
2988029

15. Ying, J., Wang, G., Dong, Y., Yu, S.: Switching character-
istics of a locally-active memristor with binary memories.
Int. J. Bifurcation Chaos 29(11), 1930030 (2019). https://
doi.org/10.1142/s0218127419300301

123

https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1109/tcsi.2016.2642112
https://doi.org/10.1109/tcsi.2016.2590948
https://doi.org/10.1016/j.chaos.2020.109990
https://doi.org/10.1016/j.chaos.2020.109990
https://doi.org/10.1109/tie.2019.2907444
https://doi.org/10.1109/tie.2019.2907444
https://doi.org/10.1016/j.chaos.2019.109544
https://doi.org/10.1016/j.chaos.2019.109544
https://doi.org/10.1142/S0218127405014337
https://doi.org/10.1142/S0218127405014337
https://doi.org/10.1088/0268-1242/29/10/104001
https://doi.org/10.1088/0268-1242/29/10/104001
https://doi.org/10.1155/2019/2051053
https://doi.org/10.1109/tcsii.2020.3000492
https://doi.org/10.1109/tcsii.2020.3000492
https://doi.org/10.1109/tcsi.2020.3017286
https://doi.org/10.1016/j.cnsns.2020.105203
https://doi.org/10.1016/j.cnsns.2020.105203
https://doi.org/10.1142/s0218127420501849
https://doi.org/10.1109/access.2020.2988029
https://doi.org/10.1109/access.2020.2988029
https://doi.org/10.1142/s0218127419300301
https://doi.org/10.1142/s0218127419300301


4474 R. Li et al.

16. Bao, H., Hu, A., Liu, W., Bao, B.: Hidden bursting firings
and bifurcation mechanisms in memristive neuron model
with threshold electromagnetic induction. IEEETrans. Neu-
ralNetw. Learn Syst. 31(2), 502–511 (2020). https://doi.org/
10.1109/TNNLS.2019.2905137

17. Bao, H., Zhu, D., Liu, W., Xu, Q., Chen, M., Bao,
B.: Memristor synapse-based morris-lecar model: bifur-
cation analyses and fpga-based validations for periodic
and chaotic bursting/spiking firings. Int. J. Bifurcation
Chaos 30(03), 2050045 (2020). https://doi.org/10.1142/
s0218127420500455

18. Chen, C., Bao, H., Chen, M., Xu, Q., Bao, B.: Non-ideal
memristor synapse-coupled bi-neuron Hopfield neural net-
work: Numerical simulations and breadboard experiments.
AEU Int. J. Electron. Commun. 111, 152894 (2019). https://
doi.org/10.1016/j.aeue.2019.152894

19. Lin, H., Wang, C.: Influences of electromagnetic radia-
tion distribution on chaotic dynamics of a neural network.
Appl. Math. Comput. 369, 124840 (2020). https://doi.org/
10.1016/j.amc.2019.124840

20. Bao, B., Qian, H., Wang, J., Xu, Q., Chen, M., Wu, H.,
Yu, Y.: Numerical analyses and experimental validations of
coexisting multiple attractors in Hopfield neural network.
Nonlinear Dyn. 90(4), 2359–2369 (2017). https://doi.org/
10.1007/s11071-017-3808-3

21. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistabil-
ity with hyperchaos and transient chaos in a Hopfield neu-
ral network affected by electromagnetic radiation. Nonlin-
ear Dyn. 99(3), 2369–2386 (2019). https://doi.org/10.1007/
s11071-019-05408-5

22. Zhang, G., Wang, C., Alzahrani, F., Wu, F., An, X.: Inves-
tigation of dynamical behaviors of neurons driven by mem-
ristive synapse. Chaos Solitons Fractals 108, 15–24 (2018).
https://doi.org/10.1016/j.chaos.2018.01.017

23. Tan, Y., Wang, C.: A simple locally active memristor and
its application in HR neurons. Chaos 30(5), 053118 (2020).
https://doi.org/10.1063/1.5143071

24. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistabil-
ity in a locally active memristive neuron model. Nonlinear
Dyn. 100(4), 3667–3683 (2020). https://doi.org/10.1007/
s11071-020-05687-3

25. Njitacke, Z.T., Doubla, I.S., Mabekou, S., Kengne, J.: Hid-
den electrical activity of two neurons connected with an
asymmetric electric coupling subject to electromagnetic
induction: Coexistence of patterns and its analog implemen-
tation. Chaos Solitons Fractals 137, 109785 (2020). https://
doi.org/10.1016/j.chaos.2020.109785

26. Xu, Q., Zhu, D.: FPGA-based Experimental Validations of
Electrical Activities in Two Adjacent FitzHugh-Nagumo
Neurons Coupled by Memristive Electromagnetic Induc-
tion. IETE Technical Review 1–15 (2020). https://doi.org/
10.1080/02564602.2020.1800526

27. Chen, C., Chen, J., Bao, H., Chen, M., Bao, B.: Coex-
isting multi-stable patterns in memristor synapse-coupled
Hopfield neural network with two neurons. Nonlinear
Dyn. 95(4), 3385–3399 (2019). https://doi.org/10.1007/
s11071-019-04762-8

28. Zhang, G., Ma, J., Alsaedi, A., Ahmad, B., Alzahrani, F.:
Dynamical behavior and application in Josephson Junction
coupled by memristor. Appl. Math. Comput. 321, 290–299
(2018). https://doi.org/10.1016/j.amc.2017.10.054

29. Wu, F., Ma, J., Zhang, G.: Energy estimation and cou-
pling synchronization between biophysical neurons. Sci.
China Technol. Sci. 63(4), 625–636 (2019). https://doi.org/
10.1007/s11431-019-9670-1

30. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchroniza-
tion between neurons coupled by memristor. Chaos Soli-
tons Fractals 104, 435–442 (2017). https://doi.org/10.1016/
j.chaos.2017.09.002

31. Bao, H., Zhang, Y., Liu, W., Bao, B.: Memristor
synapse-coupled memristive neuron network: synchro-
nization transition and occurrence of chimera. Nonlin-
ear Dyn. 100(1), 937–950 (2020). https://doi.org/10.1007/
s11071-020-05529-2

32. Parker, J.E., Short, K.M.: Sigmoidal synaptic learning pro-
duces mutual stabilization in chaotic FitzHugh-Nagumo
model. Chaos 30(6), 063108 (2020). https://doi.org/10.
1063/5.0002328

33. Wang, S., He, S., Rajagopal, K., Karthikeyan, A., Sun, K.:
Route to hyperchaos and chimera states in a network of
modified Hindmarsh-Rose neuron model with electromag-
netic flux and external excitation. Europ. Phys. J. Special
Topics 229(6–7), 929–942 (2020). https://doi.org/10.1140/
epjst/e2020-900247-7

34. Bao, B., Hu, A., Xu, Q., Bao, H., Wu, H., Chen, M.: AC-
induced coexisting asymmetric bursters in the improved
Hindmarsh-Rose model. Nonlinear Dyn. 92(4), 1695–1706
(2018). https://doi.org/10.1007/s11071-018-4155-8

35. Bao, H., Hu, A., Liu, W.: Bipolar pulse-induced coexisting
firing patterns in two-dimensional hindmarsh-rose neuron
model. Int. J. Bifurcation Chaos 29(01), 1950006 (2019).
https://doi.org/10.1142/s0218127419500068

36. QuanXu, Z.S., Bao, H., Chen, M., Bao, B.: Two-neuron-
based non-autonomous memristive Hopfield neural net-
work: numerical analyses and hardware experiments. AEU
Int. J. Electron. Commun. 96, 66–74 (2018). https://doi.org/
10.1016/j.aeue.2018.09.017

37. Lin, H., Wang, C., Yao, W., Tan, Y.: Chaotic dynamics in a
neural networkwith different types of external stimuli. Com-
mun. Nonlinear Sci. Numer. Simulat. 90, 105390 (2020).
https://doi.org/10.1016/j.cnsns.2020.105390

38. Yang, Y., Ma, J., Xu, Y., Jia, Y.: Energy dependence on dis-
charge mode of Izhikevich neuron driven by external stim-
ulus under electromagnetic induction. Cognit. Neurodyn.
(2020). https://doi.org/10.1007/s11571-020-09596-4

39. Wang, Y., Wang, C., Ren, G., Tang, J., Jin, W.: Energy
dependence on modes of electric activities of neuron driven
by multi-channel signals. Nonlinear Dyn. 89(3), 1967–1987
(2017). https://doi.org/10.1007/s11071-017-3564-4

40. Chua, L.: Everything youwish to knowaboutmemristors but
are afraid to ask. Radioengineering 24(2), 319–368 (2015).
https://doi.org/10.13164/re.2015.0319

41. Mannan, Z.I., Adhikari, S.P., Kim, H., Chua, L.: Global
dynamics of Chua Corsage Memristor circuit family: fixed-
point loci, Hopf bifurcation, and coexisting dynamic attrac-
tors. Nonlinear Dyn. 99(4), 3169–3196 (2020). https://doi.
org/10.1007/s11071-020-05476-y

42. Hong, Q., Xie, Q., Xiao, P.: A novel approach for gener-
ating multi-direction multi-double-scroll attractors. Nonlin-
ear Dyn. 87(2), 1015–1030 (2016). https://doi.org/10.1007/
s11071-016-3094-5

123

https://doi.org/10.1109/TNNLS.2019.2905137
https://doi.org/10.1109/TNNLS.2019.2905137
https://doi.org/10.1142/s0218127420500455
https://doi.org/10.1142/s0218127420500455
https://doi.org/10.1016/j.aeue.2019.152894
https://doi.org/10.1016/j.aeue.2019.152894
https://doi.org/10.1016/j.amc.2019.124840
https://doi.org/10.1016/j.amc.2019.124840
https://doi.org/10.1007/s11071-017-3808-3
https://doi.org/10.1007/s11071-017-3808-3
https://doi.org/10.1007/s11071-019-05408-5
https://doi.org/10.1007/s11071-019-05408-5
https://doi.org/10.1016/j.chaos.2018.01.017
https://doi.org/10.1063/1.5143071
https://doi.org/10.1007/s11071-020-05687-3
https://doi.org/10.1007/s11071-020-05687-3
https://doi.org/10.1016/j.chaos.2020.109785
https://doi.org/10.1016/j.chaos.2020.109785
https://doi.org/10.1080/02564602.2020.1800526
https://doi.org/10.1080/02564602.2020.1800526
https://doi.org/10.1007/s11071-019-04762-8
https://doi.org/10.1007/s11071-019-04762-8
https://doi.org/10.1016/j.amc.2017.10.054
https://doi.org/10.1007/s11431-019-9670-1
https://doi.org/10.1007/s11431-019-9670-1
https://doi.org/10.1016/j.chaos.2017.09.002
https://doi.org/10.1016/j.chaos.2017.09.002
https://doi.org/10.1007/s11071-020-05529-2
https://doi.org/10.1007/s11071-020-05529-2
https://doi.org/10.1063/5.0002328
https://doi.org/10.1063/5.0002328
https://doi.org/10.1140/epjst/e2020-900247-7
https://doi.org/10.1140/epjst/e2020-900247-7
https://doi.org/10.1007/s11071-018-4155-8
https://doi.org/10.1142/s0218127419500068
https://doi.org/10.1016/j.aeue.2018.09.017
https://doi.org/10.1016/j.aeue.2018.09.017
https://doi.org/10.1016/j.cnsns.2020.105390
https://doi.org/10.1007/s11571-020-09596-4
https://doi.org/10.1007/s11071-017-3564-4
https://doi.org/10.13164/re.2015.0319
https://doi.org/10.1007/s11071-020-05476-y
https://doi.org/10.1007/s11071-020-05476-y
https://doi.org/10.1007/s11071-016-3094-5
https://doi.org/10.1007/s11071-016-3094-5


A new locally active memristive synapse-coupled neuron model 4475

43. Qi, G., Hu, J.: Modelling of both energy and volume con-
servative chaotic systems and their mechanism analyses.
Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020).
https://doi.org/10.1016/j.cnsns.2020.105171

44. Cang, S., Wu, A., Wang, Z., Chen, Z.: Four-dimensional
autonomous dynamical systems with conservative flows:
two-case study. Nonlinear Dyn. 89(4), 2495–2508 (2017).
https://doi.org/10.1007/s11071-017-3599-6

45. Ma, J., Wu, F., Jin, W., Zhou, P., Hayat, T.: Calculation of
Hamilton energy and control of dynamical systems with
different types of attractors. Chaos 27(5), 053108 (2017).
https://doi.org/10.1063/1.4983469

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1016/j.cnsns.2020.105171
https://doi.org/10.1007/s11071-017-3599-6
https://doi.org/10.1063/1.4983469

	A new locally active memristive synapse-coupled neuron model
	Abstract
	1 Introduction
	2 A threshold locally active memristor model
	2.1 Pinched hysteresis loops dependent on amplitude and frequency
	2.2 Pinched hysteresis loops with respect to bi-stable characteristics
	2.3 Non-volatility
	2.4 State switching mechanism of the non-volatile memristor
	2.5 Local activity

	3 Memristive synapse-coupled neural system
	3.1 Equilibrium points and stability analysis
	3.2 Dynamical characteristics analysis
	3.2.1 Bifurcation behavior with respect to the coupling weight k
	3.2.2 Dynamics analysis about memristive parameters a and b

	3.3 Bi-stability depicted by local basins of attraction
	3.4 Periodic burster and multi-scroll chaotic burster induced by multi-level pulse excitation
	3.5 Energy analysis

	4 Circuit implementation
	4.1 Circuit emulator of the proposed memristor
	4.2 Experimental circuit of the coupled neuron model

	5 Conclusion
	Acknowledgements
	References




