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Abstract The dynamic response of a thin buckled
panel in a supersonic wind-tunnel experiment is inves-
tigated. Measured time histories of the panel dis-
placement and velocity show co-existing, nonlinear
responses with features of periodic and chaotic oscil-
lations. Fully coupled computational analyses are con-
ducted in order to study and interpret the aeroelastic
phenomena observed during the experiments. A com-
putationally efficient modeling framework is formu-
lated with a nonlinear structural reduced-order model
and enriched piston theory aerodynamics for the mean
flow. The simulations predict the onset of the chaotic
motions observed in the experiments, albeit with an
approximately 21% increase in the oscillation ampli-
tude. A linearized equation governing the distance
between neighboring solutions is derived and used to
compute the largest Lyapunov exponent in order to
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prove the existence of chaos. A modified Riks analy-
sis highlights the co-existence of multiple equilibrium
positions which predisposes the nonlinear system to
chaos. The system’s sensitivity to cavity pressure, tem-
perature differential, and initial conditions is also inves-
tigated. Variation of the cavity pressure and tempera-
ture differential yields additional regions of dynamic
activity that were not explored during the experiments.
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action · Panel flutter · Chaos · Largest Lyapunov
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1 Introduction

The intersection of nonlinear plate dynamics and high-
speed flow has been, and continues to be, an active area
of computational research [8,10,17,18,22,24,30,32,
38,41]. Plates represent a basic structural component
in the design of aerospace vehicles, particularly with
regards to the aircraft’s outer mold line. The weight-
constrained nature of these platforms motivates the use
of thin panels that inevitably operate in the nonlinear
regime. Moreover, coupling between the extreme envi-
ronmental loads associated with high-speed flows and
the nonlinear structure drives unanticipated responses
that are path-dependent and evolve over long time
records [30]. These issues highlight the importance
of carefully designed experiments and computational
studies in order to develop and improve fluid-structure
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interaction (FSI)models aswell as understand the phys-
ical mechanisms governing the coupled problem.

Experiments on FSI are necessary for a compre-
hensive understanding of the flow physics and the
associated structural response. Early FSI experiments
focused on identification of panel flutter boundaries
for evaluation of engineering-level tools and to provide
guidelines on avoiding detrimental aeroelastic behav-
ior during the design process [14–16,21,43]. How-
ever, the use of discrete instrumentation limited the
ability to characterize the loads and response over
the entire test article. In addition, the experiments
did not consider post-flutter behavior. These issues
have stimulated a renewed interest in FSI experiments
[5,7,11,12,39,40,44,46], many of which have relied
on recent advances in full-field measurement tech-
niques to characterize the structural response, loading
conditions, and flow-field. Small-amplitude forcing of
the test articles due to turbulent boundary layer pres-
sure fluctuations and shock/boundary-layer interaction
(SBLI) was measured in a majority of the experiments.
However, Spottswood et al. [44] and Brouwer et al.
[5] demonstrated that modulation of the temperature
differential between the frame and panel as well as
the cavity pressure in a wind tunnel, as illustrated in
Fig. 1, can excite large-amplitude, cross-well oscil-
lations for a buckled panel. The experimental results
from the latter demonstrated that a transition from
chaotic to periodic dynamics occurred as the tem-
perature differential decreased. Additionally, Daub et
al. [12] measured large-amplitude, transient motions
of a thin panel excited by heating in the absence of
an SBLI which eventually subsided as the tempera-
ture increased. While such data are clearly important,
there are several limitations associated with aeroelastic
experiments. First, ground-based facilities are unable to
replicate all flowandboundary conditions necessary for
an in-depth exploration of the parameter space [23]. In
addition, the coupled nature of the problem restricts the
ability to study the independent effects of various flow
mechanisms on the aeroelastic instabilities and post-
flutter behavior. Finally, prohibitive operational costs
limit the use of experiments to adequately explore the
operational space.

Given these restrictions, computational modeling
must play a role in the analysis of FSI. While high-
fidelity models such as computational fluid dynam-
ics (CFD) and finite element (FE) are necessary for
a comprehensive understanding of the fluid and struc-

Fig. 1 Top and side viewof a generic thin panel and rigid support
showing the cavity pressure, pc, static pressure differential, Δp,
and the temperature differential between the frame and panel,
ΔT . The subscripts p and f denote the panel and frame proper-
ties, respectively

tural domains, respectively, computational costs gen-
erally prohibit their use for aeroelastic predictions
over the life of a structure [3]. This has motivated
the use of model reduction strategies to study FSI
[8–10,13,17,18,22,24,32,37,38]. The computational
frameworks are generally formulated with a nonlin-
ear, Galerkin-based structural model coupled to pis-
ton theory aerodynamics. Dowell [19] and Mei et al.
[32] provide excellent reviews on panel flutter includ-
ing the influence of panel geometry, boundary condi-
tions, cavity acoustics, static pressure differentials, and
thermal effects. Notable findings include the sensitiv-
ity of the flutter boundary to small variations in the
static pressure differential and that thermal buckling
can lead to an earlier onset of dynamic instabilities.
Thermal buckling also has the potential to produce non-
simple periodic as well as chaotic motions [8,20]. The
co-existence of multiple potential wells for a buckled
structure that grow further apart as the temperature dif-
ferential increases results in the onset of chaos. Nydick
et al. [38] also demonstrated that panel curvature can
produce similar behavior to that of a buckled struc-
ture.More recent studies have focused on incorporating
three-dimensional flow effects, viscous-inviscid inter-
actions, and SBLI into the fluid loads using an enriched
piston theory formulation [4,9]. In particular, SBLI has
been shown to produce significant variations in the flut-
ter boundaries and post-flutter response. Finally,Miller
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et al. [37], Deshmukh et al. [13], and Freydin et al. [24]
demonstrated that turbulent boundary layer fluctuating
pressure loads affect instability onset. To date, correla-
tions between the simulations and experiments demon-
strate the ability of reduced-order models (ROMs) to
reasonably capture flutter onset for a wide range of
parameters.

The Air Force Research Laboratory Structural Sci-
ences Center recently conducted a series of exper-
iments in the Research Cell 19 (RC-19) wind tun-
nel to explore the response of a thin panel to turbu-
lent flows. Multiple instances of coexisting, nonlinear
panel responses were measured using full-field, non-
contact techniques. A calibrated, reduced-order com-
putational aeroelastic framework is implemented in this
study to investigate the underlying physics govern-
ing the measured panel behavior. The models enable
efficient exploration of the highly nonlinear parameter
space including the effects of different operating con-
ditions, modeling assumptions, and initial conditions
on the aeroelastic response. This is in contrast to the
experiments, where exploring these effects is generally
not feasible. The computational results will guide the
development of future experiments targeting aeroelas-
tic instabilities and inform the continued enhancement
of the reduced-order framework.

The remainder of the paper is organized as follows.
The computationalmodels for aeroelastic response pre-
diction are detailed in Sect. 2. This includes a discus-
sion of the enriched piston theory model for the predic-
tion of unsteady pressure and the nonlinear structural
ROM. An approach to identify chaos using the gov-
erning aeroelastic equations is presented in Sect. 3. A
brief overview of the RC-19 experiments is discussed
in Sect. 4. The computational configuration as well
as model calibration, evaluation, and application are
presented in Sects. 5–8. In regards to model calibra-
tion, measurements of the installed panel are used to
update the structural model parameters. Time histories
of the measured deformation are then used to bench-
mark the aeroelastic model. Identification of chaos in
the aeroelastic response is discussed in Sect. 9. Con-
cluding remarks are provided in Sect. 10.

2 Computational models for fluid-structure
interactions

Areduced-order simulation framework for efficient and
robust aeroelastic response prediction is constructed.

The formulation relies on a piston theory model for
the mean pressure loading and does not include fluc-
tuations from the turbulent boundary layer. The sensi-
tivity of the predictions to acoustic loading from the
turbulent boundary layer is a topic of future research.
A steady Reynolds-averaged Navier–Stokes (RANS)
analysis is also used to enrich the piston formulation
and is assumed to capture three-dimensional as well
as boundary layer effects for flow over a flat, rigid
plate. This enrichment is necessary when considering
the effects of SBLI on FSI, which is an objective of
ongoing research. The structure is approximated using
a nonlinear ROM, which is applicable to a broad range
of structural configurations.

2.1 Enriched Piston theory

Piston theory is a simple and effective strategy for
aeroelastic load prediction [33]:

p(x, y, t)

= p∞ + γ p∞
{
c1

vn(x, y, t)

a∞
+ c2

(
vn(x, y, t)

a∞

)2

+ c3

(
vn(x, y, t)

a∞

)3 }

(1)

where the piston velocity, vn , is given as:

vn(x, y, t) = U∞w′(x, y, t) + ẇ(x, y, t) (2)

In the above equations, p is the pressure,U is the veloc-
ity, a is the speed of sound, w′ is the surface inclina-
tion in the x-direction, ẇ is the surface velocity, and
the subscript ∞ denotes freestream conditions. Since
the experiments were conducted for a Mach number of
approximately 2.0, the coefficients c1, c2, and c3 are
obtained from the second-order theory of Van Dyke
[45]:

c1 = M∞√
M2∞ − 1

c2 = M4∞(γ + 1) − 4(M2∞ − 1)

4(M2∞ − 1)2

c3 = 0

(3)

As the Mach number, M , tends to infinity, Van
Dyke’s expression converges to second-order classi-
cal piston theory [29]. Note that piston theory is a
quasi-steady model for the aerodynamic pressure. This

123



3326 K. R. Brouwer et al.

assumption is reasonable due to the disparity between
the extreme fluid velocities and the frequencies asso-
ciated with structural vibration [30]. In order to extend
these expressions to a broader range of flow conditions,
including those with three-dimensional flow effects
and inviscid–viscous interactions, the freestream con-
ditions in Eqs. 1–3 are replaced by local flow quantities
that vary spatially along the surface [4]:

p(x, y, t)

= pl(x, y) + γ pl(x, y)

{
Ml(x, y)√

Ml(x, y)2 − 1

vn(x, y, t)

al(x, y)

+ Ml(x, y)4(γ + 1) − 4(Ml(x, y)2 − 1)

4(Ml(x, y)2 − 1)2(
vn(x, y, t)

al(x, y)

)2 }
(4)

vn(x, y, t) = Ul(x, y)w
′(x, y, t) + ẇ(x, y, t) (5)

where the local quantities are denoted by the subscript
l and are extracted from a steady RANS analysis over
a flat, rigid surface. Surface inclination and velocity
effects are then included in Eq. 4 as a quadratic per-
turbation about pl . The local pressure is computed at
the surface since it is assumed to be constant through
the boundary layer. However, the local speed of sound,
al , and local velocity, Ul , are not constant through
the boundary layer as illustrated in Fig. 2. Thus, both
quantities are extracted along an effective shape, which
is assumed to capture the displacement effects of the
flat plate boundary layer on the external flow [1]. The
effective shape for flow over an undeformed surface
is extracted using a modified piston theory model, as
described inMcNamara et al. [31]. Note that a compar-
ison of the aeroelastic predictions using classical and
enriched piston theory is provided in Sect. 8.

2.2 Structural reduced-order model

A structural ROM with nonlinear geometric effects is
implemented in order to reduce the computational costs
associated with structural response prediction. Con-
struction of a robust structural ROMrequires the identi-
fication of key features in the structural response which
must be included in the basis identification. The gov-
erning equation for the structural ROM is formulated

in the undeformed reference configuration as:

∂

∂Xk

(
Fi j Si j

) + ρ0b0i = ρ0üi (6)

where S is the second Piola–Kirchhoff stress tensor, ρ0
is the density with respect to the reference configura-
tion, ü is the acceleration field, b0 is the vector of body
forces, and F is the deformation gradient tensor:

Fi j = δi j + ∂ui
∂X j

(7)

which is a function of the displacement field, u, and the
Kronecker delta, δ. The above equations are assumed
to depend on the position, X ∈ Ω0. The stress–strain
relation is obtained from the Duhamel–Neumann form
of the Helmholtz free energy equation [25]:

Si j = ρ0

(
∂F
Ei j

)
T

= C i jkm
[
Ekm − αkm

(
T − Tre f

)]
(8)

whereF is the Helmholtz free energy per unit mass, E
is the green strain tensor,C is the fourth-order elasticity
tensor, α is the second-order tensor of thermal expan-
sion, T is the temperature, and Tre f is the reference
temperature.

The displacement, ui , and temperature, T , fields are
defined in modal form as:

ui (X, t) = Σ
NU
j=1η j (t)U

( j)
i (X) for i = 1 − 3 (9)

T (X, t) = Σ
NT
j=1τ j (t)T

( j)(X) (10)

where η j (t) and τ j (t) are the time-dependent general-

ized coordinates. The variables U ( j)
i (X) and T ( j)(X)

represent the basis functions satisfying the boundary
conditions. The number of temperature and displace-
ment basis functions are specified by NT and NU ,
respectively. After substitution of Eqs. 9 and 10 into
Eqs. 6–8, the resulting equation is discretized using
Galerkin’s method. This yields a set of nonlinear ordi-
nary differential equations for the generalized coordi-
nates:

M i j η̈ j + Di j η̇ j +
(
K (1)

i j − K (th)
i jm τm

)
η j + K (2)

i jmη jηm

+ K (3)
i jmnη jηmηn = F(ae)

i + F(th)
i j τ j

(11)

where M i j denotes the elements of the mass matrix,

and K (1)
i j , K

(2)
i jm , and K (3)

i jmn are the linear, quadratic,

and cubic stiffness coefficients, respectively. The F(ae)
i

term represents themodal forces from the aerodynamic
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Fig. 2 Representative
velocity contours for a
turbulent boundary layer
(TBL) over a flat plate
showing the approximate
locations of the boundary
layer thickness, δT BL , and
effective shape

loading. The terms K (th)
i jm and F(th)

i j are the change in
linear stiffness and force induced by a temperature vari-
ation of the form 1× T ( j). Note that the quadratic and
cubic stiffness coefficients are exact representations
with physical meaning and not merely the outcome of a
truncated approximation. The method of indirect eval-
uation of the coefficients in Eq. 11 from the finite ele-
ment method is used [35]. Finally, a viscous damping
term, Di j , is included in Eq. 11 to represent dissipation
mechanisms. The Rayleigh damping model is adopted:

Di j = αdM i j + βdK i j (12)

where αd and βd are mass and stiffness proportional
Rayleigh damping coefficients which are identified
using the damping ratios of the first three panel fre-
quencies. These quantities were obtained from an
impact hammer test of the panel after installation in
the wind tunnel. The resulting αd and βd are 15 s−1

and 8×10−7 s, which leads to damping ratios between
0.3% and 1.4% for all bending modes in the basis.

3 Identification of chaos in fluid-structure
interactions

During recent tests in the RC-19 wind tunnel, multiple
instances of chaotic oscillations were observed. Com-
putational aeroelastic studies on similar configurations
have also noted the potential for chaos [8,20,27,38,41].
However, most of these studies relied on indirect tests
for chaos, including phase portraits, Poincaré maps,
and plots of the power spectrum computed from a
fast Fourier transform. A more rigorous test for chaos
involves computing the largest Lyapunov exponent
(LLE). In this study, the governing equations for the
aeroelastic system are used to directly compute the
LLE.

Direct calculation of the LLE involves analyzing
the dynamics of the distance between two neighboring

solutions. In the case of chaotic motions, the neigh-
boring solutions will diverge exponentially with expo-
nent λ, which are referred to as Lyapunov exponents.
First, the governing fluidmodel and structural ROMare
combined into a single equation. In order to simplify
the analysis, a linear enriched piston model is used in
place of the second-ordermodel. This assumption is not
expected to impact the findings since both models are
capable of producing chaotic attractors, as discussed in
Sect. 8. The governing equation is then written as:

M i j η̈ j +
(
Di j + D(pt)

i j

)
η̇ j

+
(
K (1)

i j − K (th)
i jm τm + K (pt)

i j

)
η j

+ K (2)
i jmη jηm + K (3)

i jmnη jηmηn

=
(
F(pt)
i + F(th)

i j τ j

)
(13)

where D(pt)
i j is the modal aerodynamic damping, K (pt)

i j

is themodal aerodynamic stiffness, and F(pt)
i is amodal

force. These terms are defined as:

D(pt)
i j = T ir L(2)

rr φr j

K (pt)
i j = T ir L(1)

rr φ′
r j

F(pt)
i = −T irΔpr

(14)

In Eq. 14, Δpr is the spatially varying static pressure
differential, φ is a matrix containing the displacement
basis functions for the structural ROM such that φr j =
U ( j)
r , and T ir is the transfer matrix used to project the

pressure onto the modes. Note that the number of rows
and columns in T ir is defined by the number of modes
in the ROM, Nm , and the number of nodes in the FE
mesh, NFE , respectively. The diagonals of the square
matrices L(1) and L(2) are computed from the linear
piston model as:
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L(1)
rr = γ plMlUl

al
√
M2

l − 1

L(2)
rr = γ plMl

al
√
M2

l − 1

(15)

where the subscript l denotes the local flow conditions
which are defined at each point on the surface of the
FE mesh.

Direct calculationof theLyapunovexponents involves
analyzing the distance, d, between two nearby solu-
tions, η and η(2), where η(2) = η + d. In other words,
this approach involves solving for the dynamics of d in
the vicinity of the solution η. Re-labeling Eq. 13 yields:

M i j η̈ j + D̃i j η̇ j + K̃ i jη j + Ri (η) = F̃i (16)

where D̃i j , K̃ i j , and F̃i , represent the combined damp-
ing, linear stiffness, and force terms, respectively, in
Eq. 13. The nonlinear restoring force is given by Ri (η).
Similarly, the dynamics of η(2) are governed by:

M i j ¨(η j + d j ) + D̃i j ˙(η j + d j ) + K̃ i j (η j + d j )

+Ri (η + d) = F̃i (17)

Since the time differentiation is a linear operator,
subtracting Eq. 16 from Eq. 17 yields:

M i j d̈ j + D̃i j ḋ j + K̃ i j d j + Ri (η + d) − Ri (d) = 0

(18)

Expanding the nonlinear restoring force and retain-
ing only the linear terms with respect to d results in the
final form of the linearized equations:

M i j d̈ j + D̃i j ḋ j + K̃ i j d j + K (2)
i jm

(
η j dm + d jηm

)
+K (3)

i jmn

(
η jηmdn + η j dmηn + d jηmηn

) = 0

(19)

Note that the forcing does not appear on the right
hand side. Instead the nonlinear stiffness changes as
a function of η(t), which is an input to the linearized
equation.

Next, d is assumed to take the form:

d =
N∑
i=1

Aie
λi tϕi (20)

where ϕi is a mode shape, Ai are constants and λi are
the eigenvalues (i.e. Lyapunov exponents). For large
time, the response will be completely dominated by the
LLE. Thus, if the aeroelastic response is computed for
a sufficiently large time, then d is governed by λLLE :

|d(large t)| → CeλLLE t (21)

where C = ALLE |ϕLLE | is a constant. Thus, the LLE
is estimated as:

ln(|d(large t)|) = ln(C) + λLLE t (22)

For small t , the approximation C ≈ |d0| is intro-
duced where |d0| is the initial separation. The final
result is:

λLLE = lim
t→∞

1

t

|d(t)|
|d0| (23)

In order to solve for λLLE , the time history of the
modal weights is extracted from the aeroelastic simula-
tions and substituted into the linearized equation gov-
erning the perturbation dynamics, Eq. 19. The equation
is initialized by randomly selecting sufficiently small
values for d and ḋ. While these initial quantities do
not necessarily need to be small, a smaller value helps
avoid rapid divergence of the equation. Equation 19 is
marched forward in time using a Newmark-β scheme
withNewton–Raphson subiterations to achieve conver-
gence. The estimate for λLLE , Eq. 23, is monitored as
a function of time.

4 RC-19 experimental overview

The RC-19 is a continuous Mach 1.5 – 3 supersonic
wind tunnel consisting of four separate interchange-
able walls that can be configured to meet a range of
experimental requirements [26]. The rectangular test
section, detailed in Table 1, was modified in previous
experiments [44] to accommodate a flexible panel flush
with the top wall, as indicated in Fig. 3. The panel was
machined from a 0.305 × 0.152 × 0.0127 m block of
AISI 4140 alloy steel. A pocket was machined into
the block leaving a compliant panel with the dimen-
sions listed in Table 1. Note that the thin panel was
scaled so that the first three vibration modes are below
500 Hz. A pressurized cavity was located on the oppo-
site side of the panel and contained a clear quartz win-
dow through which the backside panel dynamics were
measured using three-dimensional digital image cor-
relation (DIC). The speckle pattern of randomly dis-
tributed dots for the DIC on the cavity side of the panel
is shown in Fig. 4.

In addition to the full-field displacement measure-
ments from DIC, discrete sensors were also used to
characterize the loading environment and flexible panel
response. The panel was instrumented with two type-
K thermocouples (TC) to record temperatures on the
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Fig. 3 RC-19 modified test section showing the pressure taps, thin panel, and cavity

Table 1 RC-19 and compliant panel geometry

Parameter Value

Test section length, LT (m) 0.918

Test section width, WT (m) 0.152

Test section height, HT (m) 0.131

Panel length, L p (m) 0.254

Panel width, Wp (m) 0.127

Panel thickness, h (m) 6.35 × 10−4

Fig. 4 Cavity side of the thin panel instrumented with the strain
gage and thermocouples. The retroreflective dot represents the
LDV location, x/L p = 0.35, y/L p = 0.16

thick frame and cavity side of the panel, as shown in
Fig. 4. Note that the thermocouples were used spar-
ingly and only near the edges of the thin panel in order
to limit the effects of the sensors on the panel dynam-

Table 2 Operating conditions

Parameter Value

Mach number, M∞ 1.94

Total pressure, p0 (kPa) 345

Total temperature, T0 (K) 389

Freestream dynamic pressure, q∞ (kPa) 128

Reynolds number based on panel length, ReL p 7.70 × 106

ics. A Micro-Measurements WK-06-125AD-350 foil
strain gage was also positioned near the thermocouple
on the cavity side of the panel. APolytecOFV-552 fiber
optic dual-beam Laser Doppler Vibrometer (LDV) was
used to record panel velocities at the fixed point labeled
in Fig. 4.

The operating conditions for the experiment are
listed in Table 2. While the wind tunnel configura-
tion is designed to produce a nominal freestreamMach
number of 2.0 in the test section, measurements of the
boundary layer as well as the cavity pressures required
to excite a post-flutter response in Brouwer et al. [5]
support the lower value in Table 2. At the start of
the experiment, the panel was installed and the tunnel
started. The cavity was sealed once the transient panel
response due to start-up subsided. A static pressure dif-
ferential was then applied through modulation of the
cavity pressure, pc. The temperature differential, ΔT ,
between the panel and frame was also monitored. The
ΔT induces stresses due to constrained thermal expan-
sion that alters the dynamic behavior of the panel. In
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the absence of full-field temperaturemeasurements, the
panel and frame thermocouples were used to approxi-
mate the temperature differential as:

ΔTTC = TTC,p − TTC, f (24)

where TTC,p and TTC, f are the discrete measurements
of temperature from the thermocouples on the panel
and frame, respectively. Note that a majority of the
thin panel quickly reached an adiabatic condition once
exposed to the heated flow, whereas the frame heated
up at a slower rate due to its larger mass. Thus, the
temperature differential between the panel and frame
thermocouple, ΔTTC , decreased as a function of time.
At each cavity pressure, ten seconds of strain gage and
LDVdatawere recorded at a rate of 25 kHz. Thesemea-
surements were also used for in situ monitoring of the
panel behavior. When a large dynamic response was
observed, approximately three seconds of DIC were
recorded at a frame rate of 5 kHz. This recording time
was set based on camera memory limitations and the
desire to obtain data at multiple cavity pressures. These
steps were repeated until the dynamic behavior sub-
sided. The cavity pressure was then increased in order
to return to the starting condition. Additional data were
recorded when the dynamic motions resumed.

5 Aeroelastic model development

The computational configuration for the fluid and struc-
tural models of the thin panel in supersonic, turbulent
flow is discussed in detail below. This includes the
steady RANS analysis, which is used to compute the
local flow conditions for enriched piston theory, and
the nonlinear structural ROM. The structural ROM is
evaluated relative to a finite element model for various
static loading conditions. The coupling procedure for
the aeroelastic simulations is also presented. Finally,
measurements of the installed panel are used to cali-
brate the structural ROM in order enhance the accuracy
of the aeroelastic model for dynamic response predic-
tion.

5.1 Fluid model configuration

The required steady-state RANS flow solution for the
enriched piston theory model is computed using the
NASA Langley CFL3D code [2,28]. The code uses

Fig. 5 Reynolds-averaged Navier–Stokes (RANS) CFD mesh

an implicit, finite-volume algorithm based on upwind-
biased spatial differencing to solve the RANS equa-
tions. Closure of the equations for viscous flow is
achieved using the Menter k-ω turbulence model [34].

The computational domain for the RC-19 experi-
ments in Fig. 5 is generated using the dimensions listed
in Table 1. The mesh consists of 501 points in the x-
direction, 97 points in the y-direction, and 153 points
exponentially distributed from the surface. In addition,
401 and73points are evenly distributedover the surface
in the x and y-directions, respectively. The average y+
normal to the surface is 0.16. A freestream boundary
condition is specified at the leading edge of the com-
putational domain and a trip to turbulence is specified
0.5mupstreamof the leading edge of the panel. In order
to simplify the computations, the tunnel side walls are
notmodeled. Instead, an extrapolation boundary condi-
tion is specified at both computational boundaries in the
y-direction. This yields a nominally two-dimensional
flow field. All computations are conducted assuming
an adiabatic wall condition. The operating conditions
in Table 2 yield a mean surface pressure and adiabatic
temperature of p̄RANS = 51.0kPa and T̄RANS = 377K,
respectively. Note that the average surface pressure is
slightly larger than the freestream pressure of 48.4 kPa
due to the inclusion of the flat plate boundary layer in
the steadyRANSanalysis, as illustrated inFig. 2.More-
over, the presence of the boundary layer produces min-
imal variation in the local flow quantities extracted for
enriched piston theory. In the absence of full-field pres-
sure measurements, the local pressure from the RANS
solution is also used to define the static pressure differ-
ential for both the experiments and simulations:

Δp(x, y) = pRANS(x, y) − pc (25)

Note that Eq. 25 applies to aeroelastic simulations with
enriched piston theory. When classical piston theory is
used, pRANS is replaced by p∞, which makes Δp a
constant.

123



Investigation of aeroelastic instabilities for a thin panel in turbulent flow 3331

Table 3 Modal frequencies for the compliant panel

Mode fPre−test (Hz) fROM and fFE (Hz)

(1,1) 242 238

(1,2) 302 308

(1,3) 418 433

(1,4) 593 614

(2,1) 618 620

(2,2) 679 688

(2,3) 771 806

5.2 Structural reduced-order model (ROM)

A converged structural model is constructed using
a commercial FE software, Abaqus®, and contains
10,000 thin shell triangular (S3) elements. These ele-
ments are suitable for modeling finite strains and large
deformations. The required mesh resolution is iden-
tified based on the convergence of the free vibration
frequencies and the response to uniform static load-
ing. Bilinear interpolation is used to compute the nodal
degrees of freedom. The shell behavior is described
using a co-rotational formulation based on the Koiter–
Sanders theory for thin shells [6]. The structure is
assumed to be clamped on all sides. The aerodynamic
pressure from the RANS simulation is applied on the
surface of the structure using the subroutines available
inAbaqus®.A temperature difference,ΔTSim, between
the spatially varying panel temperature and a constant
frame temperature is also applied in the simulations.
The sign convention is consistent with Eq. 24. The
RANS prediction of the adiabatic wall temperature is
used to define the spatial distribution ofΔTSim,whereas
the mean is defined by the user.

The first 15 mode shapes from the unstressed state
of the panel are selected to represent the displacement
field in the ROM. The frequencies for the first seven
modes are listed in Table 3 along with the correspond-
ing pre-test modal frequencies. The ROM frequencies
are identical to those from the FE model. Note that the
pre-test frequencies were measured before placing the
panel in the wind tunnel and therefore do not include
the effect of the pre-load imparted during installation.
The thermal mode for the ROM is assumed to have a
distribution corresponding to that of the steady RANS
adiabatic wall temperature where the mean is shifted
to match a user-defined average temperature differen-

Fig. 6 Comparison of the static response from Abaqus®and
the structural ROM. y/L p = 0.25, ΔT Sim = 11.1 K, p∞ =
48.4 kPa, ReL p = 7.70 × 106

tial. Note that for all simulations using the structural
ROM this average temperature differential is reported
as ΔT Sim.

The predictive accuracy of the structural ROM is
assessed through a comparison of the static response
for various loading conditions, as illustrated in Fig. 6.
The selected cavity pressures produce deformations
into and out of the cavity. The deformations along the
midspan, y/L p = 0.25, in Fig. 6 indicate that the ROM
adequately captures the static response for a range of
cavity pressures.A similar comparison is not conducted
for dynamic simulations due to the computational limi-
tations associatedwithAbaqus®for long-duration anal-
yses.

5.3 Aeroelastic simulation procedure

Before conducting a coupled aeroelastic analysis, a
steadyRANSsimulation is computed over theflat, rigid
surface in order to obtain the local flow quantities for
enriched piston theory aswell as the adiabaticwall tem-
perature. Next, two different initialization procedures
are considered for the dynamic simulations in order to
assess the sensitivity of the coupled system to differ-
ent initial conditions. For the first initial condition, a
static structural analysis is conducted using the ROM
for a given Δp and ΔTSim. The static pressure differ-
ential is then removed, so that the resulting buckled
shape is only due to ΔTSim. This shape is then used
to initialize the dynamic simulation. Note that at the
onset of the dynamic analysis, the aerodynamic load-
ing includes the fluid-structural coupling terms from
piston theory as well as the static pressure differential,
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Fig. 7 Effect of fundamental frequency on the aeroelastic response prediction. p∞ = 48.4 kPa, ReL p = 7.70 × 106

Δp. The latter term functions as an additional instan-
taneous perturbation to the nonlinear system since it
was removed in the static analysis. While generally
larger in magnitude, this perturbation serves to mimic
the effect of cavity pressure modulation in the experi-
ments. This initialization procedure is used for all sim-
ulations unless otherwise noted. For the alternate initial
condition,Δp is included in the static solution and only
the surface inclination and velocity terms from piston
theory are added at the start of the dynamic analysis.
This typically yields a smaller perturbation to the non-
linear system compared to the first initial condition.

A loosely coupled, partitioned framework is imple-
mented for the fluid and structural solvers [36]. Before
each time step in the dynamic analysis, the fluid solu-
tion is updated using the most recent surface defor-
mations. After the time step, the pressure loads are
extracted for the structural solver. The structural ROM
is discretized in time using the Newmark-β integra-

tion scheme, where Newton–Raphson subiterations are
used for convergence. A time step size of 1× 10−5 s is
used for all coupled simulations andwas selected based
on a time convergence study of the dynamic response.
This corresponds to a step size of approximately 0.0024
of the first natural period.

5.4 Model calibration

In an attempt to model the measured response of the
thin panel, an initial series of simulations are conducted
using the unmodified aeroelastic model detailed above.
The pre-calibration predictions in Fig. 7 assume a fun-
damental frequency of 238 Hz. The oscillation ampli-
tude normalized by panel thickness,w/hAmp , and stan-
dard deviation of velocity, σVeloci ty , are provided as
functions of pc and Δp on the lower and upper x-axes,
respectively. The mean static pressure differential,Δp,
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is computed using the steady RANS mean pressure.
The deformation power spectral density (PSD) is also
provided for the caseswith the largest oscillation ampli-
tude. Similar to the experiments, computations are con-
ducted over a range of cavity pressures in order to
induce a dynamic response. Due to the continuous vari-
ation in ΔTTC throughout the experiments, the simu-
lations are initially evaluated at the mean of all ΔTTC
which is approximately 13.6 K.

Data from the DIC and LDV are also provided.
The measured mean oscillation amplitude in Fig. 7 (a)
is extracted from the DIC data along the midspan at
x/L p = 0.75, whereas the standard deviation of veloc-
ity, Fig. 7b, is obtained from the time history of the
LDV output. Note that the arrows in both plots denote
the direction of cavity pressure modulation. The mea-
sured oscillation amplitude and standard deviation of
velocity contain a peak in the vicinity of pc = 51.0 kPa
or Δp ≈ 0 kPa, the amplitude of which decreases with
ΔTTC . This behavior is due in part to a change in the
in-plane stresswith the temperature differential. Again,
ΔTTC decreased throughout the experiments since a
majority of the panel achieved an adiabatic condition
whereas the frame continued to heat up.

In contrast to the measured response, the pre-
calibration simulations predict a static deformation for
several combinations of cavity pressure and ΔT Sim

due to the omission of fluctuating pressure loads
from the turbulent boundary layer. If these loads
are included in the fluid model, the simulations are
expected to recover the small-amplitude, forced oscil-
lations observed in the experiments. The unmodified
ROM yields smaller oscillation amplitudes and stan-
dard deviations of velocity relative to the experiments.
The simulated response also produces two distinct
regions of dynamic activity. The first region corre-
sponds to larger amplitude oscillationswith cavity pres-
sures near 51.0 kPa or Δp ≈ 0 kPa. The second
region occurs for Δp < 0 kPa. This region exhibits
an approximately continuous increase in amplitude,
which is in contrast to the discontinuity in amplitude
for Δp ≈ 0 kPa. The deformation PSD for the case
with the maximum oscillation amplitude is compared
with the measured response in Fig. 7c. In addition to
the decrease in amplitude, the predicted dominant fre-
quency is 386 Hz compared to 257 Hz in the measured
response, an error of 50%.

Installation of the thin panel in the wind tunnel
imparts a pre-load. Characterizing the impact of this

Fig. 8 Strain PSD associated with small-amplitude oscillations
during tunnel startup used to identify the first natural frequency
of the panel. p∞ = 48.4 kPa, ReL p = 7.70 × 106

load on the panel frequencies using traditional modal
testing is difficult since the panel is not easily accessi-
ble once installed. Thus, the time history of the panel
strain during tunnel startup is used to estimate the fun-
damental panel frequency. Note that during startup of
the RC-19 tunnel, a normal shock passes through the
test section.Before this normal shock reaches the panel,
the panel is not exposed to the flow but exhibits a small-
amplitude forced response due to tunnel vibrations.
The PSD of the strain during the time period before
the normal shock reaches the panel, Fig. 8, indicates
that f1 ≈ 260 Hz for the installed panel. The ROM
is adjusted to match the fundamental frequency of the
installed panel by replacing the first entry in the lin-
ear stiffness matrix, K (1)

11 , with (2π f1)2. The results
using the modified structural ROM are labeled as the
post-calibration simulations in Fig. 7. While the simu-
lated oscillations have an amplitude and standard devi-
ation of velocity that exceeds themeasured response for
Δp ≈ 0 kPa, the dominant frequencies are identical.
Interestingly, both of the structural ROMs reproduce
the broad peak present in themeasured response, which
is indicative of chaotic, cross-well behavior. Given the
results in Fig. 7, the modified structural ROM with
f1 = 260 Hz is used for all remaining simulations.

6 Aeroelastic model evaluation relative to
experiments

As evidenced by the simulations and experimental data
in Sect. 5.4, the temperature differential and cavity
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Fig. 9 Effect of ΔT and pc on the aeroelastic response where
the square symbols denote selected cases in Figs. 10 and 11.
The mean static pressure differential, Δp, and pc are provided

on the upper and lower x-axes, respectively. p∞ = 48.4 kPa,
ReL p = 7.70 × 106

pressure have a profound impact on the response. Note
that these are the primary parameters used to induce
flutter in both the simulations and experiments since the
dynamic pressure is fixed at q∞ = 128 kPa. This is in
contrast to classical panel flutter studies [19,32] where
q∞ is varied in order to elicit a post-flutter response.
The effects of the temperature differential and cavity
pressure are examined in greater detail through the
construction of system response maps which are then
used to investigate the aeroelastic phenomena observed
in the experiments. This includes the large-amplitude,
cross-well chaotic and periodic oscillations that occur
for Δp ≈ 0 kPa. Note that the use of reduced-order
models enables the creation of these maps. Each pixel
in the predicted response map represents an aeroelas-
tic simulation computed for a given combination of
ΔTSim and pc. In contrast to high-fidelity simulation
tools which incur significant computational costs, the
reduced fluid and structural models require approxi-
mately 30 minutes on a single processor to simulate a
minute of response. Additionally, constructing the sys-
tem responsemap is an embarrassingly parallel process
since each simulation is obtained independent of the
others. Thus, the total wall time is highly dependent on
the number of available computer processors.

First, consider the simulated response maps of the
oscillation amplitude and standard deviation of veloc-
ity in Fig. 9. The results are shown in terms of pc on
the lower x-axis andΔT on the y-axis. The mean static

pressure differential, computed using the RANS pres-
sure prediction, is provided on the upper x-axis. Data
from the DIC and LDV are also shown. The experi-
ments start from an initial pc and ΔTTC of 55.2 kPa
and 16.7 K, respectively. The measured temperature
differential, ΔTTC , decreases for each measurement
since the frame temperature lagged behind that of the
thin panel in the experiments. The panel experiences
large-amplitude motions for experimental conditions
near pc = 51.0 kPa andΔTTC = 15.0 K. These defor-
mations also exhibit features of chaos as noted above.

A large number of the simulations in Fig. 9 yield
a static response due to the omission of turbulent
boundary layer induced fluctuating pressure loads. The
predicted response is expected to recover the small-
amplitude forced oscillations if the acoustic loads are
included in the fluid model. Visual inspection of Fig. 9
illustrates that the simulations predict flutter onset for
Δp ≈ 0 kPa. The decrease in oscillation amplitude
with ΔT as well as the attenuation of the post-flutter
response with increasing |Δp| are also captured. How-
ever, the oscillation amplitude is larger in the simula-
tions compared to the experiments for similarΔT . This
difference is likely tied to uncertainty in the distribu-
tion of ΔTSim. In the simulations, the steady RANS
prediction of the adiabatic wall temperature is used to
define the distribution of ΔTSim. While a majority of
the panel achieves an adiabatic wall condition in the
experiments, there is a thermal gradient near the panel
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Fig. 10 Effect ofΔT and pc on the simulated deformation time history for caseswithΔp ≈ 0 kPa in Fig. 9. x/L p = 0.75, y/L p = 0.25,
p∞ = 48.4 kPa, ReL p = 7.70 × 106

edge as the temperature transitions from the hot panel
to the cooler frame. This gradient is not accounted for
in the simulations. Moreover, the panel thermocouple
is located in this region of elevated temperature gra-
dients, which introduces additional uncertainty in the
discrete measurement of ΔTTC . Thus, obtaining full-
field surface temperature data is a primary test objective
for future entries in RC-19.

Other potential sources of error between the simula-
tions and experiments include differences in the initial
conditions as well as the omission of turbulent bound-
ary layer pressure fluctuations. In regards to the for-
mer, each simulation is computed for an independent
set of parameters and therefore neglects any hystere-
sis present in the experiments due to the continuous
changes in ΔT and pc. A consequence of this omis-
sion is that the simulations and each observation in
the experiments start from different initial conditions.
This can lead to significant variation in the final solu-
tion, especially for nonlinear systems. Initial condi-
tion dependence is discussed further in Sect. 7. Next,
the range of cavity pressures for which the cross-well
behavior occurs is larger in the experiments compared
to the simulations. The authors suspect that this differ-
ence is due to the absence of the turbulent boundary
layer induced acoustic loads in the fluid model. While
the cross-well oscillations are clearly an aeroelastic
phenomenon, the pressure fluctuations likely influence
the onset of this behavior as well as the intermittent
snap-through observed in Spottswood et al. [44]. Addi-
tional simulations exploring these hypotheses are cur-
rently underway.

In addition to the response maps, the time histories
and PSDs for a selected number of cases exhibiting
aperiodic and periodic motions are also provided in

Figs. 10 and 11. The results in Fig. 10 correspond to
simulations where the cavity pressure is near the mean
of the static surface pressure, i.e. Δp ≈ 0. This con-
dition tends to produce the largest amplitude oscilla-
tions. It is evident from the deformation time history
along the midspan at x/L = 0.75 in Fig. 10 that the
large-amplitude responses are centered about a zero
mean with features of chaos. This is consistent with
the PSDs, where there is a broad dominant peak at a
lower frequency. Interestingly, a larger ΔT yields an
increase in the oscillation amplitude, a broadening of
the dominant peak, and an increase in higher-frequency
content in the response. The increase in oscillation
amplitude is also observed in Fig. 9a. The thin panel is
buckled for these simulations since the critical tem-
perature is approximately 5.6 K. Buckling can lead
to large-amplitude, cross-well oscillations due to the
existence of co-existing equilibrium wells. In this case,
the wells correspond to the static buckled positions of
the panel into and out of the flow. The depth of the
wells increases with ΔT , resulting in larger oscillation
amplitudes and standard deviations of velocity for the
cross-well motions.

As the magnitude of Δp increases in Figs. 9 and 11,
the dynamic response transitions to periodic and the
amplitude decrease. This is particularly evident for
ΔT Sim < 7.5 K in Fig. 9, where for a given ΔT Sim

there is typically a decrease in amplitude as the magni-
tude of the static pressure differential increases. Note
that for a constantΔT Sim, themean deformation grows
with the pressure differential which stiffens the struc-
ture and causes the oscillations to diminish. In this
region of the parameter space, the aeroelastic response
exhibits features of chaotic and periodic attractors
depending on the operating conditions. This is con-
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Fig. 11 Effect ofΔT and pc on the simulated deformation time history for caseswithΔp < 0 kPa in Fig. 9. x/L p = 0.75, y/L p = 0.25,
p∞ = 48.4 kPa, ReL p = 7.70 × 106

sistent with the behavior observed in the experiment
as the cavity pressure was returned to the initial con-
dition. The panel response also shifts from cross-well
oscillations centered about a mean deformation of zero
to single-well motions about a buckled shape, as shown
in Fig. 11a.

For ΔT Sim in the range of [7.5, 10] K and Δp
near 0 kPa, the variation in amplitude is discontinu-
ous as the response shifts from large-amplitude, cross-
well to small-amplitude, single-well simple harmonic
motions. The latter result is illustrated by the dashed
red line in Fig. 11a corresponding to pc = 52.7 kPa,
Δp = −1.71 kPa, andΔT Sim = 8.8 K. Note that these
oscillations have an amplitude of approximately 0.6h.
For reference, the measured amplitudes for conditions
without cross-well motions in the experiments are in
the range of 0.2h to 0.5h. These low-amplitude, forced
oscillations are governed by the turbulent boundary
layer induced pressure fluctuations. Thus, the simu-
lated simple harmonic oscillations are likely unobserv-
able in the experiments since these motions may be

obscured by the forced response arising from the tur-
bulent boundary layer acoustic loading.

For the largest static pressure and temperature dif-
ferentials, the maps in Fig. 9 exhibit two regions of
dynamic response. A subset of these responses are also
shown in Fig. 11b. Similar results are not shown for
Δp > 0 kPa due to the approximate symmetry in the
system. The responses in this region primarily resem-
ble periodic attractors, although there are limited cases
of potentially chaotic behavior. The periodic motions
are typically quite complex and tend to exhibit multi-
ple frequencies. This type of periodic behavior is char-
acteristically similar to that measured during a previ-
ous entry in RC-19 [44]. In contrast to the results for
Δp ≈ 0 kPa, the oscillation amplitude decreases with
increasing ΔT Sim. This trend is also consistent with a
thermally buckled structure and is tied to the stiffening
of the panel as ΔT Sim increases. Given the compari-
son between the simulated and measured responses in
Fig. 9, larger temperature and static pressure differen-
tials are required in the experiment in order to study
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Fig. 12 Comparison of the time history for the cross-well oscillations with features of chaos. y/L p = 0.25, p∞ = 48.4 kPa,
ReL p = 7.70 × 106

these two upper lobes in the response map. Note that
this is a test objective for future campaigns in RC-19.

A detailed comparison of the measured and pre-
dicted time histories of the response along the midspan
are provided inFigs. 12 and13.The responses inFig. 12
exhibit a large, broad peak in the PSD at a lower fre-
quency which is indicative of chaotic oscillations. The
dominant frequency is approximately 260 Hz. Two dif-
ferent predictions corresponding to a higher and lower
ΔT Sim are provided. For the more extreme tempera-
ture differential, there is a 0.8% and 7.5% difference
in pc and ΔT , respectively, between the computations
and experiments. While the responses exhibit similar
mean deformations, there are some differences in the
higher frequency content. Possible explanations for this
discrepancy include the omission of turbulent bound-
ary layer fluctuating pressure loads as well as improper

damping of the higher modes in the Rayleigh damping
model.Nevertheless, there is good agreement in the fre-
quency content, particularly with regard to the broad,
dominant peak. The error in the dominant frequency is
approximately 1%. The simulations also overestimate
the oscillation amplitude by 20.5%. This error is likely
due to differences in the estimated and actual distribu-
tions of ΔT . As noted above, there is a gradient in ΔT
near the panel edges in the experiments as the temper-
ature transitions from an adiabatic wall condition over
a majority of the panel to the cooler frame. This gradi-
ent is not included in the thermal mode for the ROM.
The panel thermocouple is also located in this region of
elevated temperature gradients, which introduces addi-
tional uncertainty in the magnitude of the temperature
differential. As ΔT Sim decreases, the location of the
dominant peak in the PSD does not change apprecia-
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Fig. 13 Comparison of the
time history of the periodic
deformations. y/L p = 0.25,
p∞ = 48.4 kPa,
ReL p = 7.70 × 106

bly. Instead, the amplitude approaches the experimen-
tal condition, where the error in oscillation amplitude is
9.5% for the simulated response in Fig. 12d. However,
the error inΔT is significantly higher at 34.0%. Again,
uncertainty in the estimated distribution of the temper-
ature differential is a probable source of error. Finally,
these comparisons indicate that the panel is buckled
in both the computations as well as the experiments.
Moreover, the depth of the potential wells for the buck-
led panel decreases with the temperature, resulting in
smaller amplitude, aperiodic oscillations.

The measured periodic oscillations are compared
with the corresponding companion simulations in
Fig. 13. While there is only a 4.6% difference between
the predicted and measured cavity pressured, the error

inΔT and oscillation amplitude are 44.5% and 31.7%,
respectively. The simulated response captures the dom-
inant frequency peak at 236 Hz in the PSD as well as
the corresponding harmonics. Note that the decrease in
frequency relative to the results in Fig. 12 is due to a
reduction in the cavity pressure and temperature dif-
ferential for the buckled panel. However, there is an
additional peak in the simulated PSD at 113 Hz with
harmonics at higher frequencies that is not observed in
the experiments.Again, a potential source of error is the
discrepancy between the estimated and actual distribu-
tions of ΔT . This uncertainty highlights the need for
accurate full-field temperature measurements. In addi-
tion, the simulated response occurs about a positive, i.e.
into the flow, mean deformation in Fig. 13c, whereas
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Fig. 14 Effect of initial condition on the oscillation amplitude
response map for the thin panel where the mean static pressure
differential, Δp, and pc are provided on the upper and lower x-

axes, respectively. x/L p = 0.75, y/L p = 0.25, p∞ = 48.4 kPa,
ReL p = 7.70 × 106

the mean of the measured response in Fig. 13b is into
the cavity. This result is consistent with the sign of Δp
for the simulations and experiments. While the tem-
perature differential is relatively low, it is still above
the critical buckling temperature of 5.6 K. Therefore,
both the simulated and measured periodic oscillations
are likely cross-well with a bias towards one of the co-
existing equilibrium positions. Furthermore, the dif-
ference in the buckling direction of the mean shapes
suggests the existence of additional dynamic solutions
for Δp > 0 kPa that are not present in Fig. 9. Possi-
ble explanations for the lack of dynamic activity in this
region include differences in initial conditions between
the computations and experiments as well as the omis-
sion of hysteresis effects in the model predictions.

7 Initial condition dependence of the aeroelastic
model

As mentioned in Sect. 6, each simulation is computed
for an independent set of parameters using the first
initialization procedure discussed in Sect. 5.3. Thus,
the predicted responses neglect any hysteresis effects
due to the continuous changes in ΔT and pc during
the experiments. A potential consequence of this omis-
sion is that the simulations and experiments start from
different initial conditions. Note that even minor per-
turbations in the initial condition for a nonlinear cou-

pled system can yield significant differences in the final
solution. Initial condition dependence of the aeroelastic
simulations is assessed using the alternate initialization
presented in Sect. 5.3. For this approach, the static solu-
tion used to initialize the dynamic simulations includes
the effects of the temperature and static pressure dif-
ferentials. The aeroelastic coupling terms from piston
theory are then added at the start of the dynamic simu-
lation. This alternate initialization results in a smaller
perturbation and reduces the regions of dynamic activ-
ity in Fig. 14a compared to Fig. 9a, particularly at lower
ΔT Sim. The large-amplitude, cross-well behavior is
still evident for Δp ≈ 0 kPa in Fig. 14a, as are the
two regions of predominantly periodic oscillations at
higher ΔT Sim. Although not shown, the time histories
of the simulated responses in these regions are char-
acteristically similar to those provided in Figs. 10 and
11.

Once the dynamic oscillations settle, amode1veloc-
ity perturbation is applied to the results in Fig. 14a in
order to observe the effects on the coupled response.
Interestingly, a comparison of Figs. 14b and 9a illus-
trates that the perturbed system recovers a majority of
the oscillations originally observed. These results indi-
cate the presence of multiple dynamic solutions for
the nonlinear system, which is a particularly trouble-
some scenario when designing aerospace structures.
The system response map for the perturbed solution
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also exhibits oscillations that are not present in any of
the previous results and suggests that other unobserved
dynamic solutions likely exist. This is particularly evi-
dent for lower pc, i.e., the left side of Fig. 14b.Although
not shown, oscillations in this region exhibit frequen-
cies and amplitudes similar to the simulated responses
provided in Fig.11. However, the oscillations are cen-
tered about a mean deformation that is into the cavity
sinceΔp > 0 kPa. This is consistent with themeasured
results in Fig. 13a.

8 Effect of different fluid models on the aeroelastic
response

All of the system response maps presented in the pre-
vious sections exhibit asymmetry about Δp = 0 kPa
for lower temperature differentials. Symmetry in the
response reappears for ΔT Sim larger than approxi-
mately 11.0 K. This behavior is likely tied to the inclu-
sion of flat plate boundary layer displacement effects
in the local flow conditions used to enrich piston the-
ory. At lower ΔT Sim, the buckled panel is softer and
the effects of the boundary layer on the response are
more pronounced. The panel stiffness increases with
ΔT Sim whichminimizes these effects.Note that bound-
ary layer displacement effects due to surface inclination
are not included in the current fluid model formulation
but are expected to intensify the asymmetry. Additional
computations exploring this hypothesis are currently
underway.

While the symmetry of the nonlinear system was
not explicitly explored during the experiments in RC-
19, previous computational studies on nonlinear panel
oscillations [17,18] have noted symmetry in related
configurations. However, these studies relied on a clas-
sical linear piston theory as opposed to the enriched
model used in this study. Therefore, the effect of the
fluidmodel on the response is evaluated in Fig. 15 using
classical piston theory with the original initial condi-
tion procedure detailed in Sect. 5.3 and implemented
in Sect. 6. Although not shown, simulations conducted
with first-order enriched piston theory produced almost
identical results to those with second-order enriched
piston theory in Fig. 9, including the asymmetry. It is
evident that replacing the enriched piston model with
the classical linear versionyields a symmetric response,
centered about the freestream pressure of 48.4 kPa. The
classicalmodel still predicts the large-amplitude, cross-

well behavior for static pressure differentials near zero
in Fig. 15b as well as the transition to periodic attrac-
tors as the temperature and static pressure differentials
increase. The differences in the responsemaps obtained
using the classical and enriched piston theory models
indicate the need for additional experiments to explore
the symmetry of the aeroelastic system.

9 Identification of chaos in the aeroelastic system

The results in Sects. 6–8 illustrate that large-amplitude
oscillations with features of chaos occur for Δp ≈
0 kPa. As shown in Fig. 12, this behavior is present in
both the simulations and experiments. Several indirect
tests are applied to the data in Fig. 12 in order to sup-
port the existence of chaos. The results are provided in
Fig. 16. The deformation, w, and velocity, ẇ, time his-
tories are extracted along the midspan at x/L p = 0.75.
A visual evaluation of the plots reveals evidence of
chaos. The phase portraits contain an irregular set of
open loops, there is clear broad frequency content in
the power spectra, and the Poincaré maps consists of
multiple unevenly spaced points. While these indirect
tests are generally required when dealing with exper-
imental data, a more rigorous test for chaos involves
computing the LLE using the approach outlined in
Sect. 3.

The LLE is computed for a subset of oscillations
from the response map in Fig. 9. The cavity pres-
sure for the selected cases is 51.1 kPa, i.e. Δp ≈
0 kPa, and ΔT Sim ranges from 5.7 K to 11.7 K.
Although not included in this analysis, there are spo-
radic regions of dynamic behavior forΔT Sim > 11.7K
that were identified as chaotic. The time histories of
the modal response for each case are substituted into
Eq. 19, and the solution is marched forward in time.
The estimate for λLLE , Eq. 23, is monitored as a
function of time. After an initial series of oscilla-
tions, λLLE quickly converges to an approximately
constant value, as shown in Fig. 17 (a). Note that
the LLE is zero for periodic responses and positive
for chaos. The solution is not shown for t > 2 s
since the system rapidly diverges due to the large
λLLE .

The computed range of λLLE for the selected aeroe-
lastic simulations is [61, 222] Hz, which is consis-
tent with the values reported in Cheng and Mei [8].
However, these values are 1 to 2 orders of magni-
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Fig. 15 Aeroelastic response prediction for the thin panel using classical linear piston theory. x/L p = 0.75, y/L p = 0.25, p∞ =
48.4 kPa, ReL p = 7.70 × 106

tude larger compared to the λLLE for many clas-
sical low-order systems such as Logistic, Hénon,
Lorenz, and Rössler. These systems are typically nor-
malized to have a natural frequency of unity. Thus,
the λLLE is normalized by the frequency of the
aeroelastic system, denoted as f AE . The normalized
LLE, shown in Fig. 17b, represents the approximate
growth rate of the distance between nearest neigh-
bors per period of the aeroelastic response. The com-
puted range of λLLE/ f AE for the selected cases is
[0.22, 0.80]. All of the values are positive, which
proves that the motions are chaotic. Interestingly,
λLLE/ f AE linearly increases with ΔT Sim. While this
result is still under investigation, a possible explana-
tion is that the depth of the co-existing wells grows
with the temperature differential, which in turn yields
increasingly chaotic oscillations with larger ampli-

tudes. This is consistent with the observations in
Sect. 6.

Since the fluid load predictions do not include tur-
bulent boundary layer fluctuating pressures, the self-
excited chaotic response is a product of aeroelastic cou-
pling. As noted previously, the presence of co-existing
equilibria for buckled structures can predispose the sys-
tem to chaos. Here, the equilibrium positions corre-
spond to the static buckled shapes of the thin panel into
and out of the flow. A static load-displacement curve is
computed using the arc-length method [42] in order to
confirm the existence ofmultiple equilibrium solutions.
The thermal force induced by ΔT Sim is fixed for this
analysis and the force due to the static pressure differen-
tial is allowed to vary. The results are shown in Fig. 18
for a point along the midspan at x/L p = 0.75. In addi-
tion to the load-displacement curve, the first eigenvalue
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Fig. 16 Diagnostic plots for the time histories of the measured
and simulated chaotic, cross-well oscillations in Fig. 12. y/L p =
0.25, x/L p = 0.75, p∞ = 48.4 kPa, ReL p = 7.70×106. Exper-

iment: pc = 51.5 kPa, Δp = −0.47 kPa, ΔTTC = 14.7 K. Sim-
ulations: pc = 51.1 kPa, Δp = −0.06 kPa, ΔT Sim = 13.6 K

Fig. 17 Computation of λLLE for the aeroelastic response. pc = 51.1 kPa, Δp = −0.06 kPa, p∞ = 48.4 kPa, ReL p = 7.70 × 106
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Fig. 18 Modified Riks analysis for a thermally buckled panel where the starting point of the analysis is denoted by x. x/L p = 0.75,
y/L p = 0.25, ΔT Sim = 11.7 K, p∞ = 48.4 kPa, ReL p = 7.70 × 106

of the tangent stiffness matrix is provided as a function
of the displacement at x/L p = 0.75. A stable system
will exhibit eigenvalueswith a positive real component,
whereas an unstable system will produce eigenvalues
with a negative real component. The undamped eigen-
valueswill also tend to zero as the systemapproaches an
unstable point. The complex behavior of the nonlinear
system is clear from the results in Fig. 18, which further
highlight the presence of co-existing potential wells.

10 Concluding remarks

Co-existing, nonlinear dynamic responses of a thin
panel in turbulent flow were captured in a super-
sonic wind-tunnel experiment. A reduced-order com-
putational framework is developed in this study to
explore and interpret the observed aeroelastic behav-
ior. A quasi-steady enriched piston theory model is
used for the prediction of the mean flow. Fluctuat-
ing pressures from the turbulent boundary layer are
not considered. The structure is approximated using a
nonlinear reduced-order model (ROM) which is cal-
ibrated so that the fundamental frequency matches
that of the installed panel. The sensitivity of the sys-
tem to various parameters is investigated in terms of
the oscillation amplitude and standard deviation of
velocity. These analyses yield the following conclu-
sions:

1. There is reasonable agreement in the prediction of
the post-flutter response using the reduced aeroe-
lastic model. In particular, the computations pre-
dict the self-excited chaotic motions observed
in the experiment with excellent agreement in
terms of the dominant frequency but overesti-
mate the oscillation amplitude by approximately
21%.

2. The fundamental frequency has a pronounced
effect on the coupled response. Thus, calibra-
tion of this quantity in the structural ROM is
necessary in order to reproduce the observed
aeroelastic behavior. Estimates of the installed
panel frequencies are required for this analy-
sis.

3. System response maps constructed for the aeroe-
lastic configuration highlight the importance of
the temperature differential between the panel and
frame. Differences in the spatial variation of the
temperature differential are a primary source of
error between the theory and experiments. Higher-
fidelity modeling of the temperature differential
or full-field measurements of the surface temper-
ature is needed in order to confirm this hypothe-
sis.

4. The static pressure differential is also a key param-
eter. For values near zero, the oscillations exhibit
features of chaos with corresponding amplitudes
that increase with the temperature differential.
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This behavior is consistent with a buckled panel,
where the depth of the co-existing potential wells
increases with the temperature differential, result-
ing in larger deformations. As the magnitude
of the pressure differential increases, the system
transitions to predominantly periodic attractors.
These conditions were not explored during pre-
vious entries in RC-19 and motivate the need for
additional experimental campaigns targeting these
conditions.

5. A linearized equationgoverning thedistancebetween
neighboring aeroelastic solutions is derived. The
cross-well oscillations for static pressure differ-
entials near zero are proven to be chaotic with
a normalized largest Lyapunov exponent rang-
ing from 0.22 to 0.80. The coexistence of mul-
tiple stable equilibria predisposes the aeroelas-
tic system to self-excited chaos. The omission
of boundary layer induced pressure fluctuations
highlights that the chaotic motions are an aeroe-
lastic phenomena. However, these fluctuations
likely influence the onset of the cross-well behav-
ior.

6. The nonlinear system is sensitive to initial con-
ditions and perturbations. Thus, characterizing
the initial conditions in the experiments is criti-
cal for accurate response predictions. The simu-
lated results also indicate the existence of mul-
tiple dynamic solutions for the coupled system,
which significantly complicates structural design
and analysis.

7. A classical piston theory model produces sym-
metry in the system response map about a zero
static pressure differential. When the effects of a
flat plate boundary layer are introduced in enriched
piston theory, the response exhibits some asymme-
try. This is particularly evident at lower tempera-
ture differentials. The asymmetry is expected to
be more pronounced when boundary layer effects
due to surface deformation are included in the pis-
ton model. Exploring asymmetry in the coupled
response is an objective for future experiments in
RC-19.

The comparisons between the computations and
experiments afford valuable insight into the aeroelas-
tic behavior observed in the experiments as well as
the accuracy bounds of the computational framework.
In general, the agreement suggests that the reduced-

order fluid and structural models reasonably capture
the pertinent physics for fluid-structure interactions in
turbulent flows. However, future work is required to
explore the effects of turbulent boundary layer pres-
sure fluctuations on the aeroelastic response. This
effort will primarily rely on semi-empirical models
due to the computational costs associated with large-
eddy simulation and direct numerical simulation pre-
dictions. Continued assessment of the reduced-order
framework will also focus on modeling the effects
of shock/boundary-layer interactions on the aeroelas-
tic response. These efforts will provide an improved
understanding of the physical mechanisms that gov-
ern the panel behavior and will guide the design
of future experiments targeting aeroelastic instabili-
ties.
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