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Abstract In this paper, an extended state observer-

based adaptive prescribed performance control tech-

nique is proposed for a class of nonlinear systems with

full-state constraints and uncertainties. An extraordi-

nary feature is that not only the control problem of

prescribed performance tracking and full-state con-

straints are solved simultaneously, but also the para-

metric uncertainties and disturbances are considered,

which will make it difficult to design a stable con-

troller. For this purpose, the extended state observer

and adaptive technique are integrated to obtain

estimations of disturbances and parameters. Then,

based on the combination of prescribed performance

and barrier Lyapunov function, a novel backstepping

control scheme is developed with feedforward com-

pensation of parameters and disturbances to ensure

that the tracking error is kept within a specified

prescribed performance bound without violation of

full states at all times. Moreover, the boundedness of

all signals in the closed-loop system is proved and

asymptotic tracking can be realized if the disturbances

are time-invariant. Finally, two simulation examples

are performed to highlight the efficiency of the

proposed approach.

Keywords Nonlinear systems � Uncertainties �
Prescribed performance control � Barrier Lyapunov
function � Full-state constraints � Extended state

observer � Adaptive control

1 Introduction

For practical control systems, high-performance con-

trol of nonlinear systems has always attracted much

attention due to uncertainties (including parametric

uncertainties and disturbances), which exist in most

physical systems and may reduce the tracking accu-

racy and even lead to system instability. Many

nonlinear control approaches are designed for nonlin-

ear systems to improve their performance, such as

adaptive control [1], adaptive robust control [2],

robust adaptive control [3], sliding mode control

(SMC) [4] and H? control [5]. However, when the

disturbance becomes the main obstacle for high-

performance control of the system, the above

approaches always employ high-gain feedback to

suppress the influence of disturbance on the system.
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As we know, high-gain feedback should be avoided in

practical control systems due to high-frequency

dynamics and measurement noise, which can deteri-

orate the control performance of the system and even

destabilize system. If disturbances are known, they

can be simply compensated by feedforward to elim-

inate their influence on the control performance. But in

fact, the disturbances are unknown and generally

immeasurable. Thus, based on disturbance observer,

which is employed to get the estimated value of the

disturbance, disturbance compensation control

approaches are developed to eliminate its adverse

effect on the control performance and enhance the

anti-disturbance capability of the system. In recent

years, nonlinear control strategies based on distur-

bance observers for total uncertainties were developed

[6–12]. However, due to the bandwidth limitation of

the observer caused by noise, the performance of the

disturbance observer is limited, so it is difficult to

achieve the perfect compensation of the total uncer-

tainties. Putting system parametric uncertainties into

system total interference will increase observer burden

and reduce observation accuracy. When the uncer-

tainties of the system mainly come from the strong

parametric uncertainties, the control performance of

disturbance compensation approach is often inferior to

the nonlinear adaptive control with strong learning

ability for parametric uncertainties [13]. Thus, adap-

tive control for parametric uncertainties was inte-

grated into the disturbance compensation control, and

better control effect was obtained [14–16].

However, transient control performance of tracking

error is not considered emphatically in the above

control strategies, and the performance indexes such

as overshoot, convergence speed and steady-state

tracking error should be guaranteed by the proposed

control scheme in practical engineering. Recently,

because of the ability to constrain the tracking

performance of the system, prescribed performance

control (PPC) attracts a lot of attention [17–19]. In

order to suppress uncertainties, an adaptive dynamic

surface controller with prescribed tracking perfor-

mance was proposed for MIMO nonlinear systems in

[17]. Based on a new formulation of performance, an

improved prescribed performance controller was

designed for nonaffine pure-feedback systems in

[18]. When the system suffers from strong distur-

bance, these disturbance suppression control strategies

still rely on high gain feedback to achieve good control

accuracy, which are conservative. Furthermore, some

compensation strategies for uncertainties are designed

[20–23]. An adaptive prescribed performance motion

controller and a RISE-based asymptotic prescribed

performance tracking controller were proposed for

nonlinear servo mechanisms [20, 21], where neural

network was applied to approximate the system

unknown dynamics. A composite controller with

sliding mode disturbance observer is designed for

space manipulators with prescribed performance [23].

On the other hand, as many practical systems are

subject to the effect of the constraints, state constraint

control also attracts many researchers. However, the

existing PPC studies rarely take into account the

system state constraints except [24–28]. In [26], an

improved prescribed performance constraint control

method was proposed for a strict-feedback nonlinear

dynamic system. However, this control strategy only

estimates the upper bound of the disturbance to

suppress the influence of the disturbance on the

control performance, which will cause the control

strategy to be conservative. In [27], based on barrier

Lyapunov function (BLF), a PPC method with neural

network was proposed for Euler–Lagrange systems to

constrain full states and achieve prescribed perfor-

mance tracking, where the adaptive neural network

was designed to approximate system uncertainties. In

[28], a prescribed performance output feedback

dynamic surface control is proposed for a class of

strict-feedback uncertain nonlinear systems, full-state

constraints is guaranteed by BLF, and neural network

is also applied to approximate the system unknown

dynamics. As we all know, neural network needs a lot

of data for training, which may lead to the accurate

estimation convergence time is too long.

Inspired by the above studies, drawn on the

experience of the controller design idea in [29, 30],

an extended state observer-based adaptive prescribed

performance control is studied for a class of nonlinear

systems with full-state constraints and uncertainties.

Table 1 Parameters of the spring, mass and damper system

k Spring stiffness constant 8 N/m

c Damping coefficient 2 N s/m

m Object mass 1 kg
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The main contributions of the proposed controller are

as follows:

(1) This paper studies a more general class of

nonlinear systems with parametric uncertainties

and disturbances; the disturbance observer and

adaptive control are first integrated into area of

prescribed performance-full-state constraints

control of nonlinear systems. Compensation

strategy for uncertainties is designed. Hence, the

control performance is expected to be improved

without high gain feedback and the conser-

vatism of controller can be reduced in this study.

More importantly, the elimination of uncertain-

ties can improve the feasibility of prescribed

performance and state constraints.

(2) In order to solve synthetically the control

problem of prescribed performance tracking

and full-state constraints, a backstepping design

with uncertainties compensation is proposed by

integrating prescribed performance function

(PPF) and full-state constraint function, which

can guarantee that the constraints of all the state

are not violated and the tracking error is kept

within a specified bound at all times,

simultaneously.

2 Problem formulation and preliminaries

Consider a class of full-state constrained single-input

single-output (SISO) nonlinear systems with

uncertainties:

_xi ¼ xiþ1 þ hTui xið Þ þ di tð Þ; 1� i� n� 1

_xn ¼ uþ hTun xð Þ þ dn tð Þ
y ¼ x1

8
<

:
ð1Þ

where xi = [x1, x2, …, xi]
T [ Ri with i = 1, 2, …,

n.xn = x = [x1, x2, …, xn]
T [ Rn is the state vector,

u [ R is control input, y [ R is system output, ui 2
Rq; i ¼ 1; . . .; n; are known shape functions, which are

also assumed to satisfy the Lipchitz condition,

h¼ ½h1;. . .;hq�T 2 Rq is unknown constant parameters

vector, di tð Þ [ R, i = 1, …, n, are disturbances.

In order to ensure that: (1) All signals in the closed-

loop system are bounded; (2) all system states xi, i = 1,

…, n, are constrained in Xxi ¼
xi : xij j � ci; i ¼ 1; :::; nf g for all t C 0 when

x 0ð Þ 2 Xxi ,ci [ 0 are constants; (3) the high control

performance with prescribed tracking precision is also

achieved. Then, the following assumptions are given

and the proposed controller is designed in next section.

Assumption 1 The time derivative _di is as follows
[31], i.e.,

_di
�
�
�
�� did; i ¼ 1; :::; n: ð2Þ

where did [ 0 are constants.

Assumption 2 [32] The desired trajectory x1d(t) and

its ith-order derivatives x
ið Þ
1d tð Þ, i = 1,..., n satisfy

x1d tð Þ� t0 � c1 � q0 and x
ið Þ
1d tð Þ
�
�
�

�
�
�� ti, ti [ 0 are

constants.

Remark 1 Assumption 1 is a basic premise for

extended state observer (ESO)-based control and has

been given in [33–35], and these studies show that this

assumption is applicable to physical applications.

The following lemmas will be used in our design.

Lemma 1 [36] There exist positive definite contin-

uous functions Vi:(-ci, ci) ? R? , i = 1, 2,…, n,

which are also differentiable onXxi . Vi(xi) ? ?when

xi ? ± ci, i = 1,2,…,n. If dVi(xi)/dt B 0 in set Xxi ,

then for all t [ [0, ? ?], x(t) [ Xxi .

Lemma 2 [37] Consider error e(t) and transformed

errors z1(t). If z1(t) is bounded, prescribed perfor-

mance of e(t) is satisfied for all t C 0.

3 The controller design and stability analysis

3.1 Extended state observer

In order to estimate all uncertainties, we extend the

uncertainties as additional states xe1, xe2,…, xen,

respectively, and let hi(t), i = 1, 2, …, n represent

their time derivatives. Different from Cheng et al.

[38], this structure cannot be used to estimate the state

of the system. Throughout this paper, �̂ represents the

estimation of � and ~� ¼ � � �̂ denotes the estimation

error. ESOs are constructed for each equation of the

system model (1) as:
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_̂xi ¼ xiþ1 þ ĥTui xið Þ þ x̂ei xi; tð Þ þ l1xi xi � x̂ið Þ
_̂xei ¼ l2x2

i xi � x̂ið Þ; i ¼ 1; :::; n� 1

(

_̂xn ¼ uþ ĥTun xð Þ þ x̂en x; tð Þ þ l1xn xn � x̂nð Þ
_̂xen ¼ l2x2

n xn � x̂nð Þ

(

ð3Þ

where xi[ 0, i = 1, …, n are design parameters of

observers, l1 and l2 are factors of the Hurwitz

polynomial s2 ? l1s ? l2. Since the uncertainties of

each equation in (1) consist of both disturbances

di xi; tð Þ and parametric uncertainties ~h, two definitions
of the extended states are given.

Case 1 We extend xei = di, i = 1,…,n., let hi(t) be

the time derivatives of xei. Then, we have

_xi ¼ xiþ1 þ ĥTui xið Þ þ xei xi; tð Þ þ ~hTui xið Þ
_xei ¼ hi tð Þ; i ¼ 1; :::; n� 1

(

_xn ¼ uþ ĥTun xð Þ þ xen x; tð Þ þ ~hTun xð Þ
_xen ¼ hn tð Þ

( ð4Þ

Define ei ¼ ei1; ei2½ �T¼ ~xi; ~xei=xi½ �T; i ¼ 1; :::; n,

the estimation error dynamics are obtained as follows:

L1 ¼ kc1 � A0 ð5Þ

where A ¼ �l1 1

�l2 0

� �

, B1 ¼ 1; 0½ �T, B2 ¼ 0; 1½ �T.

Case 2 We extend xei ¼ di þ ~hTui, i = 1, …, n.

Then, the dynamic of estimation errors can be

obtained by

_ei ¼ xiAei þ B2

hi tð Þ
xi

ð6Þ

As the matrix A is Hurwitz, ATPþ PA ¼ �2I is

established with a positive definite matrix P, the

matrix I is an identity matrix.

Remark 2 In the above two cases, the structures of

ESOs are the same, according to the different defini-

tions of extended states; we have different dynamic

state estimation errors. Based on the BLF with this

property, two different results can be obtained by two

stability analyses discussed later.

3.2 Controller design

Let the tracking error e(t) = x1 - x1d satisfy strictly

the following inequality to realize the prescribed

performance.

�qðtÞ\e tð Þ\qðtÞ; 8t[ 0 ð7Þ

where dl[ 0 and du[ 0 are design parameters. The

performance function q(t) is given in (8), which is

strictly positive decreasing smooth and bounded:

qðtÞ ¼ ðq0 � q1Þe�kt þ q1
lim
t!1

qðtÞ ¼ q1 [ 0
ð8Þ

where q0, q? and k are positive constants. The

approximate curve of prescribed performance index

inequality (7) is shown in Fig. 1.

Obviously, in (7), �q0 and q0 constrain the lower

bound of the undershoot and the upper bound of the

overshoot of the output control error e(t), respectively.

k is the convergence rate, and q? constrains the

steady-state bound of e(t). By selecting appropriate

parameters such as q0, q? and k, the transient and

stability performance of output control error can be

planned in advance, and the improvement of transient

performance can be completed according to the actual

demand of the system.

Define zi = xi - ai - 1, i = 2, …, n, ai - 1 are

virtual controllers. The controller design process is

given as follows:

Step 1: Define the positive definite BLF as follows:

V1 ¼
1

2
log

q2ðtÞ
q2ðtÞ � e2 tð Þ ¼

1

2
log

1

1� z21
ð9Þ

where log(v) is the natural logarithm of

v,z1 ¼ e tð Þ=q tð Þ.
Differentiating V1, substituting (1) into it yields

Fig. 1 The prescribed performance diagram
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_V1 ¼
z1q�1

1� z21
_e� _qz1ð Þ

¼ z1q�1

1� z21
z2þa1 þ hTu1 x1ð Þ þ d1 x1; tð Þ � _x1d � _qz1
� �

ð10Þ

The virtual controller a1 is designed to be

a1 ¼ �ĥTu1 x1ð Þ � x̂e1 þ _x1d þ _qz1 � k1z1

� x2
1q

�1z1

2 1� z21
� � ð11Þ

where k1[ 0 is a design parameter.

Then, the dynamic _z1 becomes

_V1 ¼
z1q�1

1� z21
z2 � k1z1ð Þ

þ z1q�1

1� z21

~hTu1 x1ð Þ � x̂e1 þ d1 x1; tð Þ
� �

� x2
1q

�2z21

2 1� z21
� �2 ð12Þ

Step 2: Define the following positive definite BLF

V2 ¼
1

2
log

L22
L22 � z22

þ V1 ð13Þ

where L2[ 0 is a design parameter.

Differentiating (13) and noting (1), we have

_V2 ¼
z2 _z2

L22 � z22
þ _V1

¼ z2
L22 � z22

z3 þ a2 þ hTu2 x2ð Þ þ d2 x2; tð Þ � _a1
� �

þ _V1

ð14Þ

The virtual controller a2 is designed to be

a2 ¼ �ĥTu2 x2ð Þ � x̂e2 þ _a1c � k2z2

�
q�1z1 L22 � z22

� �

1� z21
� x2

2z2

2 L22 � z22
� ��

x1
oa1
ox1

� �2
z2

2 L22 � z22
� �

ð15Þ

where k2[ 0 is design parameter, _a1 ¼ _a1c þ _a1u, _a1c
and _a1u are the calculable part and incalculable part,

respectively.

_a1c ¼
oa1
ot

þ oa1
ox1

_̂x1 þ
oa1
ox̂e1

_̂xe1 þ
oa1

oĥ

_̂h

_a1u ¼
oa1
ox1

~_x1

ð16Þ

Then, we have

_V2 ¼
z2

L22 � z22

~hTu2 x2ð Þ � x̂e2 � _a1u þ d2 x2; tð Þ
� �

� k2z
2
2

L22 � z22
þ z2z3
L22 � z22

� x2
2z

2
2

2 L22 � z22
� �2

�
x1

oa1
ox1

� �2
z22

2 L22 � z22
� �2 þ

�q�1k1z
2
1

1� z21

þ z1
1� z21

q�1 ~hTu1 x1ð Þ � x̂e1 þ d1 x1; tð Þ
� �

� x2
1q

�2z21

2 1� z21
� �2

ð17Þ

Step i: (3 B i B n - 1): Define the following

positive definite functions

Vi ¼
1

2
log

L2i
L2i � z2i

þ Vi�1; i ¼ 3; :::; n� 1 ð18Þ

where Li[ 0 are design parameters.

Differentiating (18) and noting (1), we have

_Vi ¼
zi _zi

L2i � z2i
þ _Vi�1 ¼

zi _xi � _ai�1ð Þ
L2i � z2i

þ _Vi�1

¼
zi xiþ1 þ hTui xið Þ þ di xi; tð Þ � _ai�1

� �

L2i � z2i
þ _Vi�1

¼
zi ziþ1 þ ai þ hTui xið Þ þ di xi; tð Þ � _ai�1

� �

L2i � z2i
þ _Vi�1

ð19Þ

Similar to (15), the virtual controllers ai are

developed to be

ai ¼ �ĥTui xið Þ � x̂ei þ _a i�1ð Þc � kizi �
zi�1 L2i � z2i
� �

L2i�1 � z2i�1

� �

� x2
i zi

2 L2i � z2ið Þ �
Pi�1

k¼1 xk
oai�1

oxk

� �2
zi

2 L2i � z2ið Þ
ð20Þ

where ki[ 0 are design parame-

ters, _ai�1 ¼ _a i�1ð Þc þ _a i�1ð Þu, _a i�1ð Þc and _a i�1ð Þu are the

calculable part and incalculable part, respectively.
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_a i�1ð Þc ¼
oai�1

ot
þ
Xi�1

k¼1

oai�1

oxk
_̂xk þ

Xi�1

k¼1

oai�1

ox̂ek
_̂xek þ

oai�1

oĥ

_̂h

_a i�1ð Þu ¼
Xi�1

k¼1

oai�1

oxk
~_xk

ð21Þ

Then, we have

_Vi ¼ _Vi�1 �
kiz

2
i

L2i � z2i
þ ziziþ1

L2i � z2i

þ
zi di xi; tð Þ þ ~hTui xið Þ � x̂ei � _a i�1ð Þu

� �

L2i � z2i

� zizi�1

L2i�1 � z2i�1

� x2
i z

2
i

2 L2i � z2ið Þ2

�
Pi�1

k¼1 xk
oai�1

oxk

� �2
z2i

2 L2i � z2ið Þ2

ð22Þ

From (22), we have

_Vi ¼
ziþ1zi
L2i � z2i

�
Xi

k¼2

kkz
2
k

L2k � z2k

þ
Xi

k¼2

zk dk xk; tð Þ þ ~hTuk xkð Þ � x̂ek

� �

L2k � z2k

�
Xn

k¼2

z2k
Pk�1

j¼1 xj
oak�1

oxj

� �2

2 L2k � z2k
� �2

�
Xi

k¼2

zk _a k�1ð Þu

L2k � z2k
�
Xi

k¼2

x2
kz

2
k

2 L2k � z2k
� �2

� q�1k1z
2
1

1� z21
þ z1
1� z21

q�1 ~hTu1 x1ð Þ � x̂e1 þ d1 x1; tð Þ
� �

� x2
1q

�2z21

2 1� z21
� �2

ð23Þ

Step n: Choose nth positive definite function as

follows:

Vn ¼
1

2
log

L2n
L2n � z2n

þ Vn�1 ð24Þ

where Ln[ 0 is a design parameter.

Differentiating Vn, substituting (1) into it yields

_Vn ¼
zn _zn

L2n � z2n
þ _Vn�1 ¼

zn _xn � _an�1ð Þ
L2i � z2i

þ _Vn�1

¼
zn uþ hTun xð Þ þ dn x; tð Þ � _an�1

� �

L2n � z2n
þ _Vn�1

ð25Þ

The input u is designed as

u ¼ �ĥTun xð Þ � x̂en þ _a n�1ð Þc � knzn �
zn�1 L2n � z2n

� �

L2n�1 � z2n�1

� �

� x2
nzn

2 L2n � z2n
� ��

Pn�1
k¼1 xk

oan�1

oxk

� �2
zn

2 L2n � z2n
� �

ð26Þ

where kn[ 0 is a design parameter,

_an�1 ¼ _a n�1ð Þc þ _a n�1ð Þu, _a n�1ð Þc denotes the calcula-

ble part, _a n�1ð Þu denotes the incalculable part.

_a n�1ð Þc ¼
oan�1

ot
þ
Xn�1

k¼1

oan�1

oxk
_̂xk þ

Xn�1

k¼1

oan�1

ox̂ek
_̂xek þ

oan�1

oĥ

_̂h

_a n�1ð Þu ¼
Xn�1

k¼1

oan�1

oxk
~_xk

ð27Þ

When the following conditions hold:

(1) Suitable parameters ki, xi and Li are selected to

satisfy

ciþ1 � aij jmaxþLiþ1

(2) The initial conditions zi(0) satisfy

z1 0ð Þj j � q0; zi 0ð Þj j � Li; i ¼ 2; :::; n

The following two theorems are carried out to

ensure the stability of the closed-loop system.

Theorem 1 If the disturbances di, i = 1,…, n, are

time-invariant in system (1), i.e., hi (t) = 0, with the

proposed controller (26) with the adaptation law as

follows:

_̂h ¼ C
Xn

j¼2

zjuj xð Þ
L2j � z2j

�
Xn

k¼2

zk
Pk�1

j¼1
oak�1

oxj
uj xj
� �

L2k � z2k
þ
Xn

i¼1

eTi PB1ui

 

þ z1
1� z21

q�1u1 x1ð Þ
	

ð28Þ
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where C[ 0 is a diagonal adaptation rate matrix.

Then, all signals of closed-loop system can be

guaranteed to be bounded with prescribed perfor-

mance tracking, the constraints of full states are not

violated, and asymptotic track performance is also

achieved, i.e., z1 ? 0 as t ? ?.

Proof See Appendix 1.

Theorem 2 If the disturbances di, i = 1,..., n, are

time-variant, i.e., hiðtÞ 6¼ 0, all signals are bounded

with the proposed control law (26), prescribed

performance tracking is obtained and the constraints

of full states are not violated. The following positive

definite Lyapunov function

Vb ¼ Vn þ
Xn

i¼1

1

2
eTi Pei ð29Þ

is bounded by

Vb tð Þ� exp �ktð ÞVb 0ð Þ þ r
k
1� exp �ktð Þ½ � ð30Þ

where k ¼ 2q�1
0 k1; 2k2; :::; 2kn;



2x1�n�1
2kmax Pð Þ ; :::;

2xn�n�1
2kmax Pð Þ gmin, kmax(P) is the maximum eigenvalue of

matrix P, r ¼
Pn

i¼1
PB2k k2 hi tð Þj j2max

2x2
i

.

Proof. See Appendix 2.

4 Simulation

Two simulation examples are carried out to testify the

validity of the proposed algorithm as follows.

Example 1. A spring, mass and damper system given

in [3, 39] is considered. The dynamic model is

modeled as follows:

_x1 ¼ x2

_x2 ¼
u

m
� hTuþ d tð Þ

ð31Þ

where x1 is the position and x2 is the velocity, h = [h1,

h2]
T = [k/m, c/m]T, u ¼ x1; x2½ �T. The system param-

eters are found in Table 1.

The ESO is constructed for (31):

_̂x1 ¼ x2 � 3x1 x1 � x̂1ð Þ

_̂x2 ¼
u

m
þ ĥTuþ x̂e � 3x2

1 x1 � x̂1ð Þ

_̂xe ¼ �x3
1 x1 � x̂1ð Þ

8
>>>>>>><

>>>>>>>:

ð32Þ

The controller is designed as

u ¼ m ĥTu� x̂e þ _a1 � k2z2 �
q�1z1 L22 � z22

� �

1� z21
� x4

1z2

2 L22 � z22
� �

 !

ð33Þ

The virtue controller is designed as

a1 ¼ _x1d þ _qz1 � k1z1 ð34Þ

The adaptation law is designed as

_̂h ¼ C1

z2u

L22 � z22
þ eT1PB1u

� 	

ð35Þ

where C1 [ 0 is a diagonal adaptation rate matrix,

e1 ¼ e11; e12; e13½ �T¼ ~x1; ~x2=x1; ~xe=x2
1

� 
T
,

B1 ¼ 0; 1; 0½ �T .
The parameters of the proposed controller (i.e.,

APC) are selected as k1 = 200, k2 = 500, L2 = 2,

x1 = 200, h0 = 100, ĥ 0ð Þ = [5, 3]T, C1 ¼ 5:7; 2:2½ �T,
q0 = 0.3, q? = 0.012, k = 0.0009, c1 = 0.8, c2 = 2.

The desired trajectory yd(t) = 0.5sin(0.5pt)[1 - exp

(-t3)], the initial value of x1 is set as x1(0) = 0.2,

d(t) = sin(2pt).

Remark 3 As the accurate disturbance estimation

can be guaranteed by increasing the observer param-

eters, in order to test the performance of ESO, large

disturbance is added into the system; In addition, the

initial value of x1(0) is assigned to be 0.2 to test the

effectiveness of the prescribed performance control

and state constraint control.

The simulation results are exhibited in Figs. 2, 4, 5,

6, 7 and 8. Figure 2 shows the desired trajectory x1d and

output state x1. After a short transient response process,

the output trajectory can track the desired trajectory

quite well. Figure 3 presents the control input u. The

tracking error e(t) and prescribed performance bounds

are given in Fig. 4. Obviously, the output tracking error

of the proposed controller converges to the neighbor-

hood of zero and the prescribed performance bounds
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are not violated. From Figs. 5 and 6, it can be seen that

the proposed controller can meet the requirements of

state constraints. The parameters estimation is pre-

sented in Fig. 7. The real parameters of the system are

estimated accurately. Figure 8 illustrates d and distur-

bance estimations. Obviously, the actual disturbances

are obtained by ESO.

Example 2. A single inverted pendulum (SIP) sys-

tem [40, 41] is given as follows:

_x1 ¼ x2

_x2 ¼ b1 xð Þuþ hTuþ d tð Þ

(

ð36Þ

where hT ¼ h1; h2½ � ¼ 1; 1½ �, u ¼ f1 xð Þ;�f2 xð Þ½ �T,
f1 xð Þ ¼ g sin x1

l 4=3�m cos2 x1= mcþmð Þð Þ,

Fig. 2 Desired trajectory x1d(t) and the trajectory x1(t)

Fig. 3 Control input u

Fig. 4 Tracking error e(t) and prescribed performance bounds

Fig. 5 Output x1

Fig. 6 Output x2
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f2 xð Þ ¼ mx2
2
cos x1 sin x1= mcþmð Þ

4=3�m cos2 x1= mcþmð Þ ,

b1 xð Þ ¼ cos x1= mcþmð Þ
l 4=3�m cos2 x1= mcþmð Þð Þ.

The SIP is described by the states found in Table 2.

The ESO is constructed for (36):

_̂x1 ¼ x2 � 3x1 x1 � x̂1ð Þ
_̂x2 ¼ b1 xð Þuþ ĥTu2 þ x̂e � 3x2

1 x1 � x̂1ð Þ
_̂xe ¼ �x3

1 x1 � x̂1ð Þ

8
<

:
ð37Þ

The controller is designed as

u ¼ �ĥTu� x̂e þ _a1 � k2z2 �
q�1z1 L22 � z22

� �

1� z21
� x4

1z2

2 L22 � z22
� �

 !

=b1

ð38Þ

The virtue controller is designed as

a1 ¼ _x1d þ _qz1 � k1z1 ð39Þ

The adaptation law is designed as

l ¼ C1

z2u

L22 � z22
þ eT1PB1u

� 	

ð40Þ

where C1 [ 0 is a diagonal adaptation rate matrix,

e1 ¼ e11; e12; e13½ �T¼ ~x1; ~x2=x1; ~xe=x2
1

� 
T
,

B1 ¼ 0; 1; 0½ �T .
In this simulation, the desired trajectory yd(-

t) = 2sin(pt)[1 - exp(-0.01t3)], d = 30sin(2pt). In

order to prove the validity of disturbance compensa-

tion term, adaptive law, prescribed control perfor-

mance of the proposed controller, the initial values of

the states are x1(0) = 0.2. The parameters of the

proposed controller (i.e., APC) are given as k1 = 5,

k2 = 50, L2 = 2, x1 = 300, h0 = 20, ĥ 0ð Þ = [1.6,

1.6]T, C1 ¼ 10; 4:2½ �T, q0 = 0.3, q? = 0.0005,

k = 0.003, c1 = 0.4, c2 = 2.

The simulation results are shown in Figs. 9, 10, 11,

12, 13, 14 and 15. Figure 9 shows the desired

trajectory x1d and output state x1. The output trajectory

can track the desired trajectory quite quickly and well.

Figure 10 presents the control input u. The tracking

error e(t) and prescribed performance bounds are

given in Fig. 11. Obviously, the output tracking error

of the proposed controller converges to the neighbor-

hood of zero within the bounds of the prescribed

performance function limitation. From Fig. 12 and

Fig. 13, it can be seen that the requirements of state

constraints can be satisfied by the proposed controller.

As presented in Fig. 14, the real parameters of the

system are estimated accurately. Figure 15 illustrates

d and disturbance estimations. Obviously, the actual

disturbances are obtained by ESO.

Fig. 7 Parameter estimations

Fig. 8 Disturbance d and disturbance estimation

Table 2 Parameters of SIP

m Mass of the pendulum 0.2 kg

mc Mass of the cart 1 kg

g Gravitational constant 9.8 m/s2

l Length to pendulum center of mass 0.3 m
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5 Conclusion

In this study, an ESO-based adaptive prescribed

performance controller is developed for a class of

nonlinear systems with full-state constraints and

uncertainties. Adaptive control for the system para-

metric uncertainties and multiple ESOs for distur-

bances are integrated into the prescribed performance

and full-state constraints design via backstepping

technique to achieve prescribed performance tracking

of output error without violation of full states. The

global stability of the proposed control approach is

proved. Finally, two simulation examples are

employed to demonstrate the performance of the

proposed method.

Fig. 9 Desired trajectory x1d(t) and the trajectory x1(t)

Fig. 10 Control input u

Fig. 11 Tracking error e(t) and prescribed performance bounds

Fig. 12 Output x1 of two controllers

Fig. 13 Output x2 of two controllers
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Appendix 1

Proof of Theorem 1. If the disturbances di, i = 1,..., n,

are time-invariant, the following positive definite

Lyapunov function is defined with xei = di in this case

Va ¼ Vn þ
Xn

i¼1

1

2
eTi Pei þ

1

2
~hTC�1~h ð41Þ

Differentiating Vn, substituting (5) into it yields

_Va ¼ _Vn þ
Xn

i¼1

1

2
_eTi Pei þ

1

2
eTi P _ei

� 	

� ~hTC�1 _̂h

¼ _Vn � ~hTC�1 _̂hþ
Xn

i¼1

1

2
xiAei þ B1

~hTui

� �T
Pei þ

1

2
eTi P xiAei þ B1

~hTui

� �� 	

¼ _Vn � ~hTC�1 _̂hþ
Xn

i¼1

1

2
xie

T
i A

TPei þ
1

2
xie

T
i PAei þ eTi PB1

~hTui

� 	

ð42Þ

As the matrix A is Hurwitz,ATPþ PA ¼ �2I is

established, noting (23)–(26), we have

_Va � �
Xn

j¼2

kjz
2
j

L2j � z2j
� q�1k1z

2
1

1� z21
þ
Xn

j¼2

zj~h
Tuj xj
� �

L2j � z2j

þ
Xn

k¼2

zk dk xk; tð Þ � x̂ekð Þ
L2k � z2k

�
Xn

k¼2

zk _a k�1ð Þu

L2k � z2k
�
Xn

k¼2

z2k
Pk�1

j¼1 xj
oak�1

oxj

� �2

2 L2k � z2k
� �2

�
Xn

k¼2

x2
kz

2
k

2 L2k � z2k
� �2 þ

q�1z1
1� z21

~hTu1 x1ð Þ

þ q�1z1
1� z21

d1 x1; tð Þ � x̂e1ð Þ � x2
1q

�2z21

2 1� z21
� �2

� ~hTC�1 _̂h�
Xn

i¼1

xi eik k2 þ
Xn

i¼1

eTi PB1
~hTui

¼ �
Xn

j¼2

kjz
2
j

L2j � z2j
� q�1k1z

2
1

1� z21
þ
Xn

j¼2

zj~h
Tuj xj
� �

L2j � z2j

þ q�1z1
1� z21

~hTu1 x1ð Þþ
Xn

k¼2

zk ~xek xk; tð Þ
L2k � z2k

�
Xn

k¼2

zk
Pk�1

j¼1
oak�1

oxj
~hTuj xj

� �
þ ~xej xj; t

� �� �

L2k � z2k

�
Xn

k¼2

z2k
Pk�1

j¼1 xj
oak�1

oxj

� �2

2 L2k � z2k
� �2 �

Xn

k¼2

x2
kz

2
k

2 L2k � z2k
� �2

þ q�1z1
1� z21

~xe1 �
x2

1q
�2z21

2 1� z21
� �2 � ~hTC�1 _̂h

�
Xn

i¼1

xi eik k2 þ
Xn

i¼1

eTi PB1
~hTui

ð43Þ

Fig. 14 Parameter estimations

Fig. 15 Disturbance d and disturbance estimation
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Utilizing the Young’s inequality, we obtain

Xn

k¼2

zk ~xek
L2k � z2k

�
Xn

k¼2

x2
kz

2
k

2 L2k � z2k
� �2 þ

Xn

k¼2

e2k2
2

Xn

k¼2

zk
Pk�1

j¼1
oak�1

oxj
~xej xj; t
� �

L2k � z2k
�
Xn

k¼2

z2k
Pk�1

j¼1 xj
oak�1

oxj

� �2

2 L2k � z2k
� �2

þ
Xn

k¼2

Xk�1

j¼1

e2j2
2

q�1

1� z21
z1 ~xe1 �

x2
1q

�2z21

2 1� z21
� �2 þ

e212
2

ð44Þ

Substituting (28) and (44) into (43), then we have

_Va � �
Xn

j¼2

kjz
2
j

L2j � z2j
� q�1k1z

2
1

1� z21
�
Xn

i¼1

xi eik k2

þ
Xn

k¼2

Xk�1

j¼1

e2j2
2
þ
Xn

k¼1

e2k2
2

� ~hT C�1 _̂h�
Xn

j¼2

zjuj xj
� �

L2j � z2j
þ
Xn

k¼2

zk
Pk�1

j¼1
oak�1

oxj
uj xj
� �

L2k � z2k

 

�
Xn

i¼1

eTi PB1ui �
q�1z1
1� z21

u1 x1ð ÞÞ� �
Xn

j¼2

kjz
2
j

L2j � z2j

� q�1k1z
2
1

1� z21
�
Xn

i¼1

2xi � n

2
eik k2

¼ �W

ð45Þ

According to Lyapunov’s theorem, Va is uniformly

ultimately bounded; thus, errors zi, ~h, and ~e are

bounded. This further guarantees the boundedness of

e1. Moreover, the adaptive parameters ĥ and x̂ei are all
bounded. As x1 = e(t) ? x1d(t), z1 ¼ e tð Þ=q tð Þ,
z1j j � 1 with Assumption 2 and (8), we have

x1j j � c1, and x1 is bounded. a1 in (12) is a function

of x1, z1,ĥ, _x1d and x̂e1. Since the boundedness of x1, z1,

ĥ, _x1d and x̂e1, a1 is guaranteed. As x2j j � a1j jmaxþ z2j j
and z2j j � L2, we obtain x2 � c2 and a2 is bounded.

Similarly, xiþ1j j, ai, i = 3,…, n-1 and the control input

u are bounded. Consequently, all signals in the closed-

loop system are bounded, prescribed performance

tracking is obtained and full states are ensured to

remain in the constrained field.

Appendix 2

Proof of Theorem 2. If the disturbances di, i = 1,..., n,

are time-variant, xei = di xi; tð Þ þ ~hTui xið Þ. With (6),

differentiating Vb defined in (29), we have

_Vb ¼ _Vn þ
Xn

i¼1

1

2
xie

T
i A

TPei þ
1

2
xie

T
i PAei þ eTi PB2

hi tð Þ
wi

� 	

ð46Þ

AsATPþ PA ¼ �2I, noting (23), (25) and (28), we

have

_Vb � _Vn �
Xn

i¼1

xi eik k2 þ
Xn

i¼1

eTi PB2

hi tð Þ
xi

� �
Xn

j¼2

kjz
2
j

L2j � z2j
� q�1k1z

2
1

1� z21

þ
Xn

k¼2

zk dk xk; tð Þ þ ~hTuk xkð Þ � x̂ek

� �

L2k � z2k

�
Xn

k¼2

zk
Pk�1

j¼1
oak�1

oxj
~xej xj; t
� �� �

L2k � z2k

�
Xn

k¼2

z2k
Pk�1

j¼1 xj
oak�1

oxj

� �2

2 L2k � z2k
� �2 �

Xn

k¼2

x2
kz

2
k

2 L2k � z2k
� �2

þ q�1z1
1� z21

d1 x1; tð Þ þ ~hTu1 x1ð Þ � x̂e1

� �

� x2
1q

�2z21

2 1� z21
� �2 �

Xn

i¼1

xi eik k2 þ
Xn

i¼1

eTi PB2

hi tð Þ
xi

� �
Xn

j¼2

kjz
2
j

L2j � z2j
� q�1k1z

2
1

1� z21
�
Xn

i¼1

xi eik k2

þ
Xn

j¼2

Xj�1

k¼1

e2k2
2

þ 1

2

Xn

i¼1

eik k2 þ
Xn

i¼1

eik k2

2

þ
Xn

i¼1

PB2k k2 hi tð Þj j2

2x2
i

� �
Xn

j¼2

kjz
2
j

L2j � z2j
� q�1k1z

2
1

1� z21
�
Xn

i¼1

2xi � n� 1

2
eik k2

þ
Xn

i¼1

PB2k k2 hi tð Þj j2

2x2
i

ð47Þ

As log
L2j

L2j �z2j
� z2j

L2j �z2j
in the interval zj\ Lj [42], then
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_Vb � �
Xn

j¼2

kj log
L2j

L2j � z2j
� q�1k1 log

1

1� z21

�
Xn

i¼1

2xi � n� 1

2kmax Pð Þ eTi Pei þ r

� � kVa þ r

ð48Þ

which leads to (30). Similar to the proof of Theorem 1,

all signals in the closed-loop system are also bounded

and prescribed performance tracking is obtained

without violation of constraints of the full states.
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