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Abstract The subject of this paper is a nonlocal
Hirota equation. Firstly, we provide associated Lax pair
and zero curvature condition to establish the integrabil-
ity. Secondly,we constructN-foldDarboux transforma-
tion (DT) by taking the form of determinants. Thirdly,
we derive parity-time (PT) symmetric broken bright
soliton solutions under zero background and PT sym-
metric unbroken dark (or antidark) soliton solutions
under plane wave background and simulate dynamic
behaviors of those solutions. Respectively, we call soli-
tons with instability as symmetry broken solitons and
with stability as symmetry unbroken solitons. The root
why two kinds of solitons occur is eigenvalue choices,
leading to self-induced potential’s change. For bright
solitons, potential terms both show unstable states,
while interestingly their product (namely self-induced
potential) is stable with the same parameter values. For
dark and antidark solitons, potentials and their product
all show stable states, and we present possible collision
combinations of two potentials with the help of DT.
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1 Introduction

Nonlinear Schrödinger (NLS) equation

iqt + qxx+ | q |2 q = 0, (1.1)

known as a prototypical completely integrable equa-
tion, possesses fundamental characters of integrable
models. It can describe many nonlinear wave phe-
nomena in Kerr media, plasma physics and optical
pulses [1–10]. Later in order to achieve in the high
intensity and short pulse subpicosecond, Kodama and
Hasegawa considered higher order NLS equation (1.2)
with higher-order terms describing linear and nonlinear
dispersion as well as dissipation effects [11]

iqt + 1

2
qxx− | q |2 q

+ iε(αqxxx − β | q |2 qx + γ q | q |2x ) = 0. (1.2)

Besides, derivative and discrete NLS equations are also
studied to apply in physical fields [12–16]. However,
we are supposed to obtain multiple equations with the
help of variable transformation and parameters con-
trol, such as KdV equation, mKdV equation, Hirota
equation, Sasa–Satsuma equation etc. [17–19]. Here,
we take the proportion α:β:γ = 1:6:0 to obtain Hirota
equation (1.3) [17]. It was found to apply in the study
of vortex motion [20], homoclinic orbit of laser [21].

iqt +αqxx −2α|q|2q− iβ(qxxx −6|q|2qx ) = 0. (1.3)
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On the other hand, nonlocality was introduced by
Ablowitz and Musslimani to study NLS equation (1.4)
which provided a PT symmetric structure with nonlin-
ear self-regulation in 2013 [22]

iqt − qxx − 2σqq∗(−x, t)q = 0, σ = ±1. (1.4)

PT symmetry, firstly proposed by Wadati [23], is an
important reason for the emergence of nonlocal models
which leads to real spectrum of non-Hamiltonian oper-
ator [24–26]. So it keeps system invariant under parity
and time inversion transformation: x → −x , t → −t ,
i → −i , where P: x → −x and T : t → −t and
i → −i [27,28,31]. Solutions q(x, t) and q∗(−x, t) is
determined both by the positions x and −x , and self-
induced potential V (x, t) = q(x, t)q∗(−x, t) meets
PT symmetry condition V (x, t) = V ∗(−x, t). In this
case, soliton structure exists a stable state under certain
conditions and propagation process is almost lossless.
Then, the nice property became so popular in soliton
theory that many nonlocal integrable equations [29–
38] were presented and differences between local and
nonlocal equations [38] were studied recently years.
For instance, nonlocal reverse space-time NLS equa-
tion [29], semi-discrete NLS equation [30], vector NLS
equation [31,32], derivative NLS equation [33,34],
Hirota equation [18], modified Korteweg–de Vries
equation [35,36], Sine-Gordon equation [37]. In 2017,
Stalin et al. discussed Eq. (1.4) and its parity transfor-
mation complex conjugate form (1.5) in a combined
manner [39]

iq∗
t (−x, t) + q∗

xx (x, t) + 2σq∗(−x, t)qq∗(−x, t) = 0,

σ = ±1. (1.5)

In Eqs. (1.4) and (1.5), more general bright soliton
solutions, including symmetry broken and unbroken
soliton solutions, have been solved using bilineariza-
tion method and dynamic behaviors have been formed.
For symmetry broken solutions, q(x, t) and q∗(−x, t)
unstable and V (x, t) is complex spectrum. For symme-
try unbroken solutions, they are stable and V (x, t) is
completely real spectrum.Based on theworks,we com-
bined nonlocal version of Eq. (1.3) with parity trans-
formation complex conjugate form to present nonlocal
continuous Hirota system (1.6) as the subject of this
paper

iqt = 2αq2q∗(−x, t) + 6iβqq∗(−x, t)qx

− αqxx − iβqxxx ,

iq∗
t (−x, t) = −2αq(q∗(−x, t))2

+ 6iβqq∗(−x, t)q∗
x (−x, t)

+ αq∗
xx (−x, t) − iβq∗

xxx (−x, t),

(1.6)

where ∗ means complex conjugate, q(x, t), q∗(−x, t)
are complex functions, andα, β are real constants. Sub-
scripts x, t denote partial derivatives with respect to
variables.

At present, only bright soliton solutions are obtained
in Eqs. (1.4) and (1.5) and there are no dark and anti-
dark soliton solutions [38]. For studied system (1.6),
bright soliton solution can be derived by DT. Here,
regarding q∗(−x, t) as a separate function is achieved
through setting two independent solutions. Indepen-
dence means that two eigenvalues, determining the
solution form, do not satisfy any conditions. So we
can get generalized solutions using independent eigen-
values, compared to the parallel solving methods. That
is, the eigenvalues are very significant to enrich soli-
ton models. From this perspective, more general dark
and antidark soliton solutions are developed, and differ-
ent collision combinations of potentials are obtained.
Besides, some figures show that q(x, t) describes dark
(or antidark) solitons,whileq∗(−x, t) exhibits antidark
(or dark) solitons with particular parameters. The rea-
son is exactly that q(x, t) and q∗(−x, t) are mutually
independent.

The paper is organized as follows. According to
given Lax pair, N-fold DT and bright soliton, dark and
antidark soliton solutions of system (1.6) are solved
in Sect. 2. In Sect. 3, one and two bright solitons are
plotted under zero background and relevant dynamic
behaviors are discussed. Then, we plot the dark and
antidark solitons and analyze asymptotic behaviors in
Sect. 4. Finally, our conclusions will be drawn in Sect.
5.

2 Darboux transformation

As an effective method to solve solutions, DT connects
the solutions of linear system skillfully [40–42]. In this
section, we are ready to construct DT for system (1.6)
by invariant 2 × 2 Lax pair, which is given by
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Ψx = AΨ = JΨ Λ + PΨ,

Ψt = BΨ = V3Ψ Λ3 + V2Ψ Λ2

+ V1Ψ Λ + V0Ψ,

(2.1)

where

A = JΨ ΛΨ −1 + P,

B = V3Ψ Λ3Ψ −1 + V2Ψ Λ2Ψ −1

+ V1Ψ ΛΨ −1 + V0,

with

J =
(
i 0
0 −i

)
, P =

(
0 q

q∗(−x, t) 0

)
,

V3 =
(−4iβ 0

0 4iβ

)
, V2 =

( −2iα 4βq
4βq∗(−x, t) 2iα

)
,

V1 =
( −2iβqq∗(−x, t) 2αq + 2iβqx
2αq∗(−x, t) + 2iβq∗

x (−x, t) 2iβqq∗(−x, t)

)
,

V0 =

⎛
⎜⎜⎜⎜⎝

−iαqq∗(−x, t) + β iαqx + β

(q∗(−x, t)qx + qq∗
x (−x, t)) (2q2q∗(−x, t) − qxx )

iαq∗
x (−x, t) + β iαqq∗(−x, t) − β

(2qq∗(−x, t)2 − q∗
xx (−x, t)) (q∗(−x, t)qx + qq∗

x (−x, t))

⎞
⎟⎟⎟⎟⎠ .

Ψ =
(

φ(x, t) φ∗(−x, t)
ψ(x, t) ψ∗(−x, t)

)
is vector eigenfunction

of spectral problem (2.1), andΛ =
(

λ 0
0 λ

)
is spectral

parameter. In order to derive soliton wave solutions for
system (2.1), Ψ must to meet compatibility condition
Ψxt = Ψt x . Then, from (2.1), we derive zero curvature
equation At − Bx +[A, B] = 0 ([A, B] = AB − BA)

and easily yield Eq. (1.6).
Here, we assume that Ψ j are N linear independent

solutions of system (2.1) at different Λ j (1 ≤ j ≤ N ),
where (φ j (x, t), ψ j (x, t))T are the solutions of (2.1) at
λ = λ j and (φ∗

j (−x, t), ψ∗
j (−x, t))T are the solutions

of (2.1) at λ = λ j (superscript T refers to vector trans-
pose). Moreover, λ j and λ j cannot take real number to
avoid trivial iteration of DT.

It is simple to transform system (2.1) into

Ψ [N ]
x = A[N ]Ψ [N ], A[N ] = (TNx + TN A)T−1

N ,

Ψ
[N ]
t = B[N ]Ψ [N ], B[N ] = (TNt + TN B)T−1

N

(2.2)

by taking a generalized gauge transformation

Ψ [N ] = TNΨ

= Ψ ΛN

+ t [N ]
1 Ψ ΛN−1 + t [N ]

2 Ψ ΛN−2 + · · · + t [N ]
N Ψ,

(2.3)

where t [N ]
1 = −∑N

i=1 Si , t
[N ]
2 = ∑N−1

i=1,i< j Si S j , t
[N ]
N

= ∏N
i=1 Si , S j = Λ − Ψ jΛ jΨ

−1
j , j = 1, 2, . . . , N .

According to Eqs. (2.2) and (2.3), we research that

A[N ]
t − B[N ]

x + [A[N ], B[N ]] = TN (At − Bx + [A, B])T−1
N

(2.4)

and know that A[N ] and B[N ] have same matrix forms
as A and B. If we would like to make the above equal
to zero, TN is so needed that to achieveN-iterated basic
solutions and N-fold DT transformation. Assume that
Ψ j is solutions of (2.1) at Λ = Λ j (1 ≤ j ≤ N ). With
the help of generalized relations Ψ j [N ] = 0, we can
derive

Ψ
[N ]
j = TN |λ=λ j Ψ j = 0. (2.5)

this is

Ψ jΛ
N
j + t [N ]

1 Ψ jΛ
N−1
j + t [N ]

2 Ψ jΛ
N−2
j + · · · + t [N ]

N Ψ j = 0

(2.6)
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Substituting (2.1) and (2.3) to (2.2) and using Cramer’s
rule, N-fold DT appears that

q[N ](x, t) = q(x, t) + 2i
Δ

[N ]
2

Δ[N ] ,

q[N ]∗(−x, t) = q∗(−x, t) − 2i
Δ

[N ]
3

Δ[N ] ,
(2.7)

where

Δ[N ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λN−1
1 φ1(x, t) · · · λN−1

N φN (x, t) λ1
N−1

φ∗
1 (−x, t) · · · λN

N−1
φ∗
N (−x, t)

· · · · · · · · · · · · · · · · · ·
φ1(x, t) · · · φN (x, t) φ∗

1 (−x, t) · · · φ∗
N (−x, t)

λN−1
1 ψ1(x, t) · · · λN−1

N ψN (x, t) λ1
N−1

ψ∗
1 (−x, t) · · · λN

N−1
ψ∗
N (−x, t)

· · · · · · · · · · · · · · · · · ·
ψ1(x, t) · · · ψN (x, t) ψ∗

1 (−x, t) · · · ψ∗
N (−x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Δ
[N ]
2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λN
1 φ1(x, t) · · · λN

NφN (x, t) λ1
N
φ∗
1 (−x, t) · · · λN

N
φ∗
N (−x, t)

· · · · · · · · · · · · · · · · · ·
φ1(x, t) · · · φN (x, t) φ∗

1 (−x, t) · · · φ∗
N (−x, t)

λN−2
1 ψ1(x, t) · · · λN−2

N ψN (x, t) λ1
N−2

ψ∗
1 (−x, t) · · · λN

N−2
ψ∗
N (−x, t)

· · · · · · · · · · · · · · · · · ·
ψ1(x, t) · · · ψN (x, t) ψ∗

1 (−x, t) · · · ψ∗
N (−x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Δ
[N ]
3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λN
1 ψ1(x, t) · · · λN

NψN (x, t) λ1
N
ψ∗
1 (−x, t) · · · λN

N
ψ∗
N (−x, t)

· · · · · · · · · · · · · · · · · ·
ψ1(x, t) · · · ψN (x, t) ψ∗

1 (−x, t) · · · ψ∗
N (−x, t)

λN−2
1 φ1(x, t) · · · λN−2

N φN (x, t) λ1
N−2

φ∗
1 (−x, t) · · · λN

N−2
φ∗
N (−x, t)

· · · · · · · · · · · · · · · · · ·
φ1(x, t) · · · φN (x, t) φ∗

1 (−x, t) · · · φ∗
N (−x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

3 Bright soliton

After having explicit form of DT, we consider con-
structing exact solutions of system (1.6). In this section,
we choose seed solutions q(x, t) = q∗(−x, t) = 0 to
obtain bright soliton solutions, which satisfy system

Ψx = JΨ Λ,

Ψt =
(−4iβ 0

0 4iβ

)
Ψ Λ3

+
(−2iα 0

0 2iα

)
Ψ Λ2. (3.1)

Let [Ψ1]Λ=Λ1 is a solution of the system (3.1). Sub-
stituting Ψ1 to (3.1) and using separation of variables,
we have

φ1(x, t) = c11e
K1 , ψ1(x, t) = c21e

−K1 ,

φ∗
1 (−x, t) = c11e

K1 , ψ∗
1 (−x, t) = c21e

−K1 ,
(3.2)

with K1 = −iλ1x − 2i(αλ21 + 2βλ31)t , K1 =
−iλ1x − 2i(αλ1

2 + 2βλ1
3
)t , α, β are real value and

c11, c21, c11, c21 are integration constants. Based on
obtained basic solution of system (3.1), two parameter
symmetry broken one-bright-soliton solution of system
(1.6) stands clearly out

q[1](x, t) = 2i(λ1 − λ1)κ11e2K1

e
2(K1−K1)+ln(

κ11
κ21

) − 1
,

q[1]∗(−x, t) = 2i(λ1 − λ1)κ21e−2K1

e
2(K1−K1)+ln(

κ11
κ21

) − 1
,

(3.3)
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Nonlocal continuous Hirota equation 621

with κ11 = c11
c21

, κ21 = c11
c21

. Figures of one bright
soliton are shown in Fig. 1 with parameter values.

If [Ψ1]Λ=Λ1 and [Ψ2]Λ=Λ2 are particular solutions
of system (3.1), then we get basic solutions

φ j (x, t) = c1 j e
K j , ψ j (x, t) = c2 j e

−K j ,

φ∗
1 (−x, t) = c1 j e

K j , ψ∗
j (−x, t) = c2 j e

−K j ,
(3.4)

with K j = −iλ j x − 2i(αλ2j + 2βλ3j )t , K j =
−iλ j x − 2i(αλ j

2 + 2βλ j
3
)t , α, β are real value and

c1 j , c2 j , c1 j , c2 j ( j = 1, 2) are integration constant.
Substituting basic solutions to twofold DT formulas,
we get two-bright-soliton solution which is observed
in Fig. 2 with parameter values.

Similarly, let [Ψ j ]Λ=Λ j ( j = 1, 2, . . . , N ) are the
solutions of system (3.1), we get basic solutions

φ j (x, t) = c1 j e
K j , ψ j (x, t) = c2 j e

−K j ,

φ∗
1 (−x, t) = c1 j e

K j , ψ∗
j (−x, t) = c2 j e

−K j ,
(3.5)

with K j = −iλ j x − 2i(αλ2j + 2βλ3j )t , K j =
−iλ j x − 2i(αλ j

2 + 2βλ j
3
)t , α, β are real value and

c1 j , c2 j , c1 j , c2 j ( j = 1, 2, . . . , N ) are integration con-
stant. Substituting obtained basic solutions to N-fold
DT formulas (2.7), we get concentrate N-order bright
soliton expression.

Figure 1 shows one-bright-soliton solution by first
DT, while Fig. 2 describes counterpart by second DT.
Two sets of pictures possess similar evolution mech-
anism and we take Fig. 1 as an example. Interest-
ingly, potentials q[1](x, t) and q[1]∗(−x, t) exist a huge
density difference in Fig. 1. In other words, as t →
∞ in x direction, q[1](x, t) increases (or decreases)
exponentially in amplitude, q[1]∗(−x, t) decreases (or
increases) exponentially in amplitude. In this sense,
nonlocal symmetry of potential is broken and the prop-
agations are PT symmetric broken. More interestingly,
product Q[1] of q[1](x, t) and q[1]∗(−x, t) remains
unchanged under regular changes of q[1](x, t) and
q[1]∗(−x, t). That is to say, interaction of q[1](x, t) and
q[1]∗(−x, t) achieve a stable state and it has certain
practical physical application.

4 Dark and antidark soliton

In this section, we assume that α = −1, β = 0
and take continuous waves (CW) q(x, t) = me2imnt ,
q∗(−x, t) = ne−2imnt as initial solutions to gain dark
and antidark solitons, which should satisfy

Ψx = JΨ Λ +
(

0 me2imnt

ne−2imnt 0

)
Ψ,

Ψt =
(
2i 0
0 −2i

)
Ψ Λ2

+
(

0 −2me2imnt

−2ne−2imnt 0

)
Ψ Λ

+
(
imn 0
0 −imn

)
Ψ.

(4.1)

4.1 One dark and antidark soliton

Let Ψ1 is corresponding eigenfunction at Λ = Λ1. We
substitute Ψ1 to system (4.1) and derive the solution of
obtained differential equations

φ1(x, t) = eimnt (c1e
�1σ1 + c2e

−�1σ1),

ψ1(x, t) = e−imnt
(c1
m

p2e
�1σ1 + c2

m
p1e

−�1σ1
)

,

φ∗
1 (−x, t) = eimnt (c1e

�2σ2 + c2e
−�2σ2),

ψ∗
1 (−x, t) = e−imnt

(
c1
m

p4e
�2σ2 + c2

m
p3e

−�2σ2

)
,

(4.2)

with �1 = x − 2λ1t , �2 = x − 2λ1t , σ1 =√
mn − λ21, σ2 =

√
mn − λ1

2
, p1 = iλ1 − σ1, p2 =

iλ1+σ1, p3 = iλ1−σ2, p4 = iλ1+σ2, and c1, c2, c1, c2
are integration constants. Substituting (4.2) into (2.7),
we arrive at dark and antidark soliton solution

q[1](x, t) = e2imnt (m + 2in(λ1 − λ1)χ1χ2

χ1χ4 − χ2χ3
,

q[1]∗(−x, t) = e−2imnt

(
n + 2i(λ1 − λ1)

n

χ3χ4

χ1χ4 − χ2χ3

)
,

(4.3)
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622 N.-N. Li, R. Guo

Fig. 1 One-bright-soliton evolution of system (1.6), when λ1 = 0.1 − 0.5i , λ1 = 1 + 0.5i , c11 = 0.5 + i , c11 = 1 − i , c21 = −1 − i ,
c21 = 0.5 − i , α = 0.05, β = 0

Fig. 2 Two-bright-soliton evolution of system (1.6), when λ1 =
−0.3+0.5i , λ1 = −0.6−0.5i , λ2 = 0.2−0.5i , λ2 = 0.5+0.5i ,

c11 = 0.5 + i , c11 = 1 − i , c21 = −1 − i , c21 = 0.5 − i ,
c12 = 0.5 + i , c12 = 1 − i , c22 = −1 − i , c22 = 0.5 − i ,
α = 0.05, β = 0
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Nonlocal continuous Hirota equation 623

where

χ1 = κ1e
�1σ1 + e−�1σ1 , χ2 = κ2e

�2σ2 + e−�2σ2 ,

χ3 = κ1 p1e
�1σ1 + p2e

−�1σ1 ,

χ4 = κ2 p3e
�2σ2 + p4e

−�2σ2 ,

with κ1 = c1
c2
, κ2 = c1

c2
.

By controlling proper parameters, profile maps of
onefold dark and antidark solitons are shown when
t = 1 in Fig. 3, 4, 5, 6, 7, 8, 9, 10 and 11. Based
on introduction part, we know that potentials q[1](x, t)
and q[1]∗(−x, t) both exhibit two solitons and each
soliton presents two possible shapes (namely dark or
antidark solitons) by first DT. From this, q[1](x, t) and
q[1]∗(−x, t) both have four possible collision combi-
nations. Under CW background, two potentials have
sixteen stable collision combinations and stably prop-
agate when we choose an appropriate eigenvalue λ.
Because of the similarity of figure types, nine different
combinations are summarized. According to the shape
of self-induced potential V (x, t) , combinations can
be classified as follows: (1) When V (x, t) is two dark
solitons, there are five possible combinations including
Figs. 3, 4, 5, 7 and 10; (2) When V (x, t) is dark and
antidark solitons, four combinations are supposed to
observed as Figs. 8, 9 and 11; (3) When V (x, t) is two
light solitons, only there are one combinations such as
Fig.6. Besides, We see that q[1](x, t) and q[1]∗(−x, t)
in Fig. 3, 4, 5, 6, 7, 8, 9, 10 and 11 exhibit noninteract-
ing characteristics due to independence of eigenvalues
and solution vectors, and show greater stability than
in Figs. 1 and 2. In this sense, the propagations are
PT symmetric unbroken. In addition, stable value of
the self-induced potential is also the product of poten-
tials’ stable values, which is an external manifestation
of the definition. The internalmanifestation is V (x, t)’s
change in energy that resulting from the potentials.

Asymptotic analysis

In this subsection, asymptotic analysis can be used to
better understand evolution process of soliton. It turns
out that (4.3) and (4.4) have four different asymptotic
behaviors when t → ±∞.

(1) Assume that Soliton 1 is in the vicinity of line
x = 2λ1t (�1 ≈ 0) . Then, we let ξ1 = x − 2λ1t to
change the frame co-moving. From �2 = x − 2λ1t =
ξ1 − 2(λ1 − λ1)t , we have �2 → ∓∞ as t → ±∞.

So we have asymptotic formulas of q[1](x, t) and
q[1]∗(−x, t)

q[1](x, t) →

⎧⎪⎪⎨
⎪⎪⎩
e2imnt

(
m + 2in(λ1 − λ1)

χ1

ϑ1

)
, t → −∞,

e2imnt
(
m + 2in(λ1 − λ1)

χ1

ϑ2

)
, t → +∞,

q[1]∗(−x, t) →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−2imnt

(
n + 2i(λ1 − λ1)

n

p3χ3
ϑ1

)
, t → −∞,

e−2imnt

(
n + 2i(λ1 − λ1)

n

p4χ3
ϑ2

)
, t → +∞,

(4.4)

with

ϑ1 = κ1(p3 − p1)e
�1σ1 + (p3 − p2)e

−�1σ1 ,

ϑ2 = κ1(p4 − p1)e
�1σ1 + (p4 − p2)e

−�1σ1 ,

χ1 = κ1e
�1σ1 + e−�1σ1 ,

χ3 = κ1 p1e
�1σ1 + p2e

−�1σ1 .

(2) On the other hand, Soliton 2 will stably propagate
near the line x = 2λ1t if we assume that �2 ≈ 0.
Taking an indefinitely small ξ2 = x−2λ1t , we get�1 =
x −2λ1t = ξ2 +2(λ1 −λ1)t . Therefore, �1 → ±∞ as
t → ±∞ and we obtain that asymptotic expressions

q[1](x, t) →

⎧⎪⎪⎨
⎪⎪⎩
e2imnt

(
m + 2in(λ1 − λ1)

χ2

ϑ3

)
, t → −∞,

e2imnt
(
m + 2in(λ1 − λ1)

χ2

ϑ4

)
, t → +∞,

q[1]∗(−x, t) →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−2imnt

(
n + 2i(λ1 − λ1)

n

p2χ4
ϑ3

)
, t → −∞,

e−2imnt

(
n + 2i(λ1 − λ1)

n

p1χ4
ϑ4

)
, t → +∞,

(4.5)

with

ϑ3 = κ2(p3 − p2)e
�2σ2 + (p4 − p2)e

−�2σ2 ,

ϑ4 = κ2(p3 − p1)e
�2σ2 + (p4 − p1)e

−�2σ2 ,

χ2 = κ2e
�2σ2 + e−�2σ2 ,

χ4 = κ2 p3e
�2σ2 + p4e

−�2σ2 .
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Fig. 3 a Two-dark-soliton collision of |q[1](x, t)|, b two-bright-soliton collision of |q[1]∗(−x, t)|, c two-dark-soliton collision of

|q[1](x, t)q[1]∗(−x, t)|, when λ1 = −1.5, λ1 = 1.2, c1 = −1 − 0.5i , c1 = −0.5 + 0.5i , c2 = 1, c2 = 1, m = 2, n = 1.5
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Fig. 4 a Two-bright-soliton collision of |q[1](x, t)|, b two-dark-soliton collision of |q[1]∗(−x, t)|, c two-dark-soliton collision of

|q[1](x, t)q[1]∗(−x, t)|, when λ1 = −1.5, λ1 = 1.2, c1 = 1 + 0.5i , c1 = 0.5 − 0.5i , c2 = 1, c2 = 1, m = 2, n = 1.5
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Fig. 5 a Two-dark-soliton collision of |q[1](x, t)| and b |q[1]∗(−x, t)|, (c) two-dark-soliton collision of |q[1](x, t)q[1]∗(−x, t)|, when
λ1 = 1, λ1 = −0.5, c1 = 1 + i , c1 = 1.5 − 3i , c2 = 1, c2 = 1, m = 2, n = 1.5

4.2 N dark and antidark soliton

Now we consider basic solutions

φ j (x, t) = eimnt (c1 j e
�1 jσ1 j + c2 j e

−�1 jσ1 j ),

ψ j (x, t) = e−imnt
( c1 j
m

p2 j e
�1 jσ1 j + c2 j

m
p1 j e

−�1 jσ1 j
)

,

φ∗
j (−x, t) = eimnt (c1 j e

�2 jσ2 j + c2 j e
−�2 jσ2 j ),

ψ∗
j (−x, t) = e−imnt

(
c1 j
m

p4 j e
�2 jσ2 j + c2 j

m
p3 j e

−�2 jσ2 j

)
,

(4.6)

with χ1 j = x − 2λ j t , �2 j = x − 2λ j t , σ1 j =√
mn − λ2j , σ2 j =

√
mn − λ j

2
, and p1 j = iλ j − σ1 j ,

p2 j = iλ j + σ1 j , p3 j = iλ j − σ2 j , p4 j = iλ j + σ2 j ,
j = 1, 2, . . . , N . Substituting solutions (5.5) to N-fold
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Fig. 6 a Two-bright-soliton collision of |q[1](x, t)| and b |q[1]∗(−x, t)|, c two-bright-soliton collision of |q[1](x, t)q[1]∗(−x, t)| when
λ1 = 0.01, λ1 = 0.5, c11 = 1 + 0.7i , c1 = −1.5 − 0.3i , c2 = 1, c2 = 1, m = 2, n = 1.5
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Fig. 7 a Two-dark-soliton collision of |q[1](x, t)|, b dark and antidark solitons collision of |q[1]∗(−x, t)|, c two-dark-soliton collision
of |q[1](x, t)q[1]∗(−x, t)|, when λ1 = 0.5, λ1 = 1, c1 = −1 − 0.7i , c1 = −0.5 + 0.3i , c2 = 1, c2 = 1, m = 2, n = 1.5
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Fig. 8 a Two-bright-soliton collision of |q[1](x, t)|, b dark and

antidark solitons collision of |q[1]∗(−x, t)|, c dark and anti-

dark solitons collision of |q[1](x, t)q[1]∗(−x, t)|, when λ1 = 1,
λ1 = −0.5, c1 = 1 − 0.7i , c1 = −0.5 + 0.3i , c2 = 1, c2 = 1,
m = 2, n = 1.5

formula (2.7), we can obtain N-order dark and anti-
dark solitons and 22N × 22N collision combinations of
potentials q[1](x, t) and q[1]∗(−x, t). Because of the
overlap between collision types, the number of colli-
sion combinations available is less than 22N × 22N .

5 Conclusions

In this paper, system (1.6) is studied in the field and par-
ity transformed complex conjugate field. To beginwith,
nonlinear system is converted to linear systemand solu-
tions of nonlinear system are converted to that of linear
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Fig. 9 a Dark and antidark solitons collision of |q[1](x, t)|, b
two-bright-soliton collision of |q[1]∗(−x, t)|, c dark and anti-
dark solitons collision of |q[1](x, t)q[1]∗(−x, t)|, when λ1 = 1,

λ1 = −0.5, c1 = −1 + 0.7i , c1 = −1 + 0.3i , c2 = 1, c2 = 1,
m = 2, n = 1.5
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Fig. 10 a Dark and antidark solitons collision of |q[1](x, t)|, b two-dark-soliton collision of |q[1]∗(−x, t)|, c dark and antidark solitons
collision of |q[1](x, t)q[1]∗(−x, t)|, when λ1 = 1, λ1 = 0.5, c1 = 1 + 0.7i , c1 = −0.5 + 0.3i , c2 = 1, c2 = 1, m = 2, n = 1.5
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Fig. 11 a Dark and antidark solitons collision of |q[1](x, t)| and b |q[1]∗(−x, t)|, c dark and antidark solitons collision of

|q[1](x, t)q[1]∗(−x, t)|, when λ1 = 0.2, λ1 = 0.5, c1 = −1 − 0.7i , c1 = −1.5 − 0.3i , c2 = 1, c2 = 1, m = 2, n = 1.5

system. Further, N-fold DT is constructed by Lax pair.
Moreover, we obtain bright soliton solutions under zero
background and dark and antidark soliton solutions
under CW background with the help of DT. Those soli-
ton solutions include two kinds of types: symmetry bro-
ken solutions and symmetry unbroken solutions. For
dark and antidark soliton solutions, we choose proper

parameters for q[1](x, t) and q[1]∗(−x, t) and clarify
evolution behaviors of each soliton in asymptotic anal-
ysis. The corresponding pictures are plotted, and they
are useful as a nonlocal wave model in physical prac-
tical application, such as nonlinear optical fibers, plas-
mas and fluids [43,44]. The contribution of this paper
is as follows: (1) Two independent spatial solutions are
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used to obtainmore general solitons; (2) all figure com-
binations between potentials are observed completely
under CW background. Next, we will study physical
meaning of explicit solutions, determine eigenvalue
conditions and choose the range. In this way, different
stable solitons can be found through symbolic calcula-
tion.
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