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Abstract We use the physics-informed neural net-

work to solve a variety of femtosecond optical soliton

solutions of the high-order nonlinear Schrödinger

equation, including one-soliton solution, two-soliton

solution, rogue wave solution, W-soliton solution and

M-soliton solution. The prediction error for one-

soliton, W-soliton and M-soliton is smaller. As the

prediction distance increases, the prediction error will

gradually increase. The unknown physical parameters

of the high-order nonlinear Schrödinger equation are

studied by using rogue wave solutions as data sets. The

neural network is optimized from three aspects

including the number of layers of the neural network,

the number of neurons, and the sampling points.

Compared with previous research, our error is greatly

reduced. This is not a replacement for the traditional

numerical method, but hopefully to open up new ideas.

Keywords High-order nonlinear Schrödinger

equation � Physics-informed neural network � Forward

and inverse problems � Data-driven optical soliton

excitations � Parameters discovery

1 Introduction

With the development of plasma physics, optical fiber

communication and other disciplines, the nonlinear

problem has attracted more and more attention [1–3].

These nonlinear phenomena can be described by

nonlinear partial differential equations (NPDEs).

Solving the NPDEs, one can reveal the nature of

nonlinear phenomena [4, 5]. The nonlinear Schrödin-

ger equation (NLSE) can be used to describe the

propagation of optical solitons in optical fibers. In

recent years, the research of ultrashort pulse lasers has

become a popular direction. But for describing the

femtosecond light pulses propagating in optical fibers,

the standard NLSE becomes insufficient. High-order

effects, such as third-order dispersion (TOD) and

nonlinear response effects, will play a crucial part in

the propagation of ultrashort pulses, such as fem-

tosecond pulses. In order to understand this phe-

nomenon, the high-order nonlinear Schrödinger

equation (HNLSE) was proposed [6]. Recently, neural

networks have also been used to study NLSE and other

partial differential equations [7–9] and get multiple

forms of solutions [10, 11]. However, they have not

been extended to study optical soliton excitations of

HNLSE.

In recent decades, the rapid development of data

processing and computing capabilities has promoted

the application of deep learning in the field of data

mining, such as face recognition, machine translation,

biomedical analysis, traffic prediction, and
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autonomous driving [12–14]. However, the acquisi-

tion of data is a huge challenge. How to obtain

information effectively and accurately when part of

the data is missing is an urgent and arduous task

[15, 16]. At the same time, due to the lack of sample

data and poor robustness, the results obtained by the

traditional maximum likelihood method are often

unreliable. In fact, it seems impossible to use the

maximum likelihood method of input and output data

to draw conclusions related to the laws of physics,

especially for high-dimensional problems [15, 17].

Researchers speculate that defects in the prior laws

related to physical systems may be one of the main

reasons. Therefore, many researchers try to use the

maximum likelihood algorithm and some physical

laws to improve the accuracy of the unknown solution

of the physical model [18, 19].

Recently, Raissi et al. fully integrated the informa-

tion related to the physical system into the neural

network, using the maximum likelihood technique to

establish a deep learning method for physical con-

straints [20, 21], called the physics-informed neural

network (PINN) and its related improvements [22, 23].

It is a method that is not only suitable for solving the

forward problem of NPDEs, but also suitable for

solving the inverse problem of NPDEs [24, 25]. The

PINN can obtain very accurate solutions with less data

and has good robustness [26]. At the same time, the

physical information is expressed by differential

equations, which also provides good physical meaning

for predicting the solution [27]. This paper proposed a

data-driven algorithm with high computational effi-

ciency to derive solutions of more complex NPDEs.

The general form of HNLSE is as follows [28]

iQtþk1Qxxþk2 Qj j2Qþ i½k3Qxxxþk4ð Qj j2QÞx
þ k5Qð Qj j2Þx� ¼ 0;

ð1Þ

where Q is a complex function related to the delay

time x and longitudinal propagation distance t in

Eq. (1). k1,k2,k3,k4 and k5 are the real parameters,

respectively, related to group velocity dispersion, Kerr

nonlinearity, TOD, self-steepening, and self-fre-

quency coming from stimulated Raman scattering. If

a picosecond optical pulse is studied, then k3,k4 and k5

in Eq. (1) are all zero, and the HNLSE degenerates

into the standard NLSE. If the duration of the pulse is

less than 100 fs,k3, k4 and k5 will not be zero.

The main novelty of this paper is as follows. (i) The

HNLSE is firstly studied by the PINN; (ii) five

femtosecond optical soliton excitations including

one-soliton, two-soliton, rogue wave and W-soliton,

M-soliton solutions of the HNLSE are trained by the

PINN. Compared with the previous research [26], the

error in this paper is smaller. (iii) In the inverse

problem, the structure of the neural network is

optimized from three aspects: the number of layers

of the neural network, the number of neurons, and the

sampling points. These research perspectives are not

considered by previous literatures.

The main content of this paper is as follows. In

Sect. 2, we introduce the PINN method. In Sect. 3, we

derive the one-soliton, W-soliton solution, M-soliton

solution, two-soliton solution and rogue wave solution

of the HNLSE. In Sect. 4, the higher order model is

established by using the rogue wave data set in PINN.

The conclusion is given in the Sect. 5.

2 PINN method

Neural networks have the properties of general

function approximators and can approximate any

function. Therefore, it can be directly used to deal

with nonlinear problems, avoiding limitations such as

preset, linearization, or local time stepping. In this

paper, the improved PINN method is used to recon-

struct the dynamic characteristics of the HNLSE, and

the parameters of the HNLSE are obtained by data

driving. The general form of (1 ? 1)-dimensional

complex NPDE is as follows

Qt þ Nðk;Q;Qx;Qxxx; � � � ; Þ ¼ 0; x 2 ðx1; x2Þ; t
2 ðt1; t2Þ; ð2Þ

where N is a combination of linear and nonlinear terms

about Q. Equation (1) is the underlying physical

constraint, thus forming one multilayer feed forward

neural network ~Qðt; xÞ and PINN f ðt; xÞ that share

parameters with each other (such as, scaling factors,

weights, and deviations). Neural networks learn

shared parameters by minimizing the mean square

error (MSE) caused by the initial boundary value

conditions associated with the feed forward neural

network ~Qðt; xÞ and PINN f ðt; xÞ. Since Qðt; xÞ is a

complex valued number, we need to separate the real

and imaginary parts of Qðt; xÞ, whose real part is
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gðt; xÞ and imaginary part is hðt; xÞ. From Eq. (2), we

get

fg :¼ gt þ Ngðk;g; gx; gxxx; � � � ; Þ; ð3Þ

fh :¼ ht þ Nhðk;h; hx; hxxx; � � � ; Þ: ð4Þ

The predicted solution Q̂ðt; xÞ ðQ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ h2
p

Þ is

embedded in PINN through Eqs. (3) and (4), which are

used as physical constraints to prevent the overfitting

phenomenon of the neural network, as well as to

predict the solution, which provides a good physical

interpretation. The loss function C has the following

form

C ¼ CgþChþCfgþCfh ð5Þ

in which

Cg ¼
1

Nq

X

Nq

l¼1

gðtlg; xlgÞ � gl
�

�

�

�

�

�

2

; ð6Þ

Ch ¼
1

Nq

X

Nq

l¼1

hðtlh; xlhÞ � hl
�

�

�

�

2
; ð7Þ

Cfg ¼
1

Nf

X

Nf

j¼1

fgðt jfg ; x
j
fg
Þ

�

�

�

�

�

�

2

; ð8Þ

Cfh ¼
1

Nf

X

Nf

j¼1

fhðt jfh ; x
j
fh
Þ

�

�

�

�

�

�

2

: ð9Þ

Here, the initial value and boundary value data

about Qðt; xÞ are obtained from tlg; x
l
g; g

l
n oNq

l¼1
,and

tlh; x
l
h; h

l
� �Nq

l¼1
, In the same way, the collocation points

of fhðt; xÞ and fgðt; xÞ are specified by t jfg ; x
j
fg

n oNf

j¼1
and

t jfh ; x
j
fh

n oNf

j¼1
.In this paper, Nq ¼ 100, Nf ¼ 10000: In

PINN, we choose to use the Adam optimizer to

optimize the loss functions expressed by Eq. (5),

combining the advantages of AdaGrad and RMSProp,

which has become one of the mainstream optimizers.

In addition, we choose the hyperbolic tangent function

tanh as the activation function, which has better

learning ability, especially in the early stage of

training, and has greatly improved the convergence

speed and solving precision [29]. The specific form is

as follows tanhðnakLðzk�1ÞÞ; where n� 1 is a prede-

fined scaling factor, the variable a 2 R is the slope of

the activation function, and Lðzk�1Þ is the output of the

k � 1 layer of the neural network. In this article, the

initial na ¼ 1; n ¼ 20; a ¼ 0:05:

3 Data-driven optical soliton solutions

In this section, we investigate HNLSE by using a

PINN, and train five femtosecond optical soliton

excitations including one-soliton, two-soliton, rogue

wave and W-soliton, M-soliton solutions via PINN.

3.1 One-soliton solution

We take the parameter k1 ¼ 0:5,k2 ¼ 1,k3 ¼
�0:18,k4 ¼ �1:08 and k5 ¼ 1:08 in Eq. (1), and the

exact solution of the one soliton is as follows [30]

Qðt; xÞ ¼ �0:5sechð0:5xþ 0:0225tÞe0:125it; x
2 ½�15; 15�; t 2 ½0; 5�: ð10Þ

To use the PINN deep learning, we let the initial

condition

Qð0; xÞ ¼ �0:5sechð0:5xÞ; x 2 ½�15; 15�; ð11Þ

and the Dirichlet–Neumann periodic boundary

condition

Qðt;�15Þ ¼ Qðt; 15Þ; t 2 ½0; 5�: ð12Þ

The sampling points set is obtained by means of

pseudo-spectral method with space–time region

ðx; tÞ 2 ½�15; 15� � ½0; 5�½0; 5�, and the exact one-

soliton solution is discretized into ½256 � 201� data

points. The initial and Dirichlet periodic boundary

data are obtained by Latin hypercube sampling [31].

The sampling points set used in the nine-layer neural

networks consists of points Nq ¼ 100 randomly sam-

pled from the initial data given by Eq. (11), and the

periodic boundary data given by Eq. (12), and collo-

cation points Nf ¼ 10000 for the PINN f ðt; xÞ given by

Eq. (1). In addition, the MSE loss function given by

Eq. (5) is learned by using a PINN with seven hidden

layers of 30 neurons in each layer. After 4000

iterations of learning, the network achieved a relative
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error L2 as L2 ¼ ½ Q̂ðt; xÞ � Qðt; xÞ
�

�

�

��=Qðt; xÞ of

9:125253 � 10�3 in about 5545:7248 seconds.

Figure 1 exhibits reconstructed one-soliton space–

time dynamics. In Fig. 1a, the sampling point config-

uration jQðt; xÞj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2ðt; xÞ þ h2ðt; xÞ
p

of the initial and

boundary is clearly analyzed. Figure 1b reconstructs

the space–time dynamics of one-soliton for the

HNLSE. We compare the predicted solution with

exact solution for three different distances t ¼
1:5; 2:5; 4 in Fig. 1d. Figure 1d shows an Error Er ¼

Q̂ðt; xÞ � Qðt; xÞ
�

�

�

� between the predicted solution

Q̂ðt; xÞ and exact solution Qðt; xÞ.

3.2 Two-soliton solution

Here, we consider two-soliton interaction and take the

parameter k1 ¼ 0:5,k2 ¼ 1,k3 ¼ 1
30

,k4 ¼ 0:2 and

k5 ¼ �0:2 in Eq. (1). Exact solution of the two-

soliton interaction is given in Ref [32] as follows

Fig. 1 One-soliton solution Qðt; xÞ: a Exact one-soliton

solution Qðt; xÞj j with the boundary and initial sampling points

depicted by the cross symbol; b Reconstructed one-soliton

space–time dynamics; c Comparison between exact and

predicted solutions at three distances, with the red hollow dots
as the predicted values and the blue solid lines as the exact

values; d Three-dimensional stereogram of error. (Color figure

online)
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Among the region x 2 �10; 10½ �; t 2 �5; 5½ �, we

get the initial condition

and the Dirichlet–Neumann periodic boundary

condition

Qðt;�10Þ ¼ Qðt; 10Þ; t 2 ½�5; 5�: ð15Þ

The sampling points set is obtained by means of

pseudo-spectral method with space–time region

ðx; tÞ 2 ½�10; 10� � ½�5; 5�, and the exact two-soliton

solution is discretized into ½512 � 401� data points.

Similar to the procedure of one-soliton, after 4000

iterations of learning, the network achieved a relative

error L2 of 1:633679 � 10�2 in about 11801:0978

seconds.

Figure 2 exhibits reconstructed two-soliton space–

time dynamics. In Fig. 2a, the sampling point config-

uration of the initial and boundary is clearly analyzed.

Figure 2b reconstructs the space–time dynamics of the

two solitons of the HNLSE. In Fig. 2c, we compare the

predicted solution with exact solution at three different

distances t ¼ �2:5; 0; 2:5. Figure 2d shows the Error

Er ¼ Q̂ðt; xÞ � Qðt; xÞ
�

�

�

� between the predicted and

exact solutions. It can be seen from the density map

that the optimized PINN prediction results have good

accuracy in the whole time and space domains.

3.3 Rogue wave solution

We take the parameter k1 ¼ 0:5,k2 ¼ 1,k3 ¼ 0:1,k4 ¼
0:6 and k5 ¼ �0:6 and derive exact solution of rogue

wave for Eq. (1) as follows [30]

Qðt; xÞ ¼ eitð�0:5x2 � 0:5t2 þ tiþ 0:6xt � 0:18t2 þ 0:375Þ
0:5t2 þ 0:5x2 � 0:6xt þ 0:18t2 þ 0:125

;

x 2 ½�2; 2�; t 2 ½�1:5; 1:5�;
ð16Þ

and thus

Qð�1:5; xÞ ¼ e�1:5ið�0:5x2 � 1:155 � 1:5i� 0:9xÞ
1:655 þ 0:5x2 � 0:9x

; x

2 ½�2; 2�;
ð17Þ

with the Dirichlet–Neumann periodic boundary

condition

Qðt;�2Þ ¼ Qðt; 2Þ; t 2 ½�1:5; 1:5� ð18Þ

The sampling points are obtained by means of

pseudo-spectral method with space–time region

ðx; tÞ 2 ½�2; 2� � ½�1:5; 1:5�, and the rogue wave

solution is discretized into ½513 � 401� data points.

Similar to the procedure of one-soliton, after 4000

iterations of learning, the network achieved a relative

error L2 of 2:555952 � 10�2 in about 47319:1462

seconds.

Figure 3 exhibits space–time dynamics of recon-

structed rogue wave. In Fig. 3a, the sampling point

configuration of the initial and boundary is clearly

analyzed. Figure 3b reconstructs the space–time

dynamics of the rogue wave for the HNLSE. In

Fig. 3c, we compare the predicted solution with exact

solution at three different distances

t ¼ �0:375; 0; 0:375. Figure 3d shows the Error Er ¼

Qðt; xÞ ¼ 0:02205 coshð1:1xþ 0:1331tÞei0:5t � 0:024255 coshðxþ 0:1tÞei0:605t

0:0025 coshð2:1xþ 0:2331tÞ þ 1:1025 coshð0:1xþ 0:0331tÞ � 1:1 cosð0:105tÞ : ð13Þ

Qð�5; xÞ ¼ 0:02205 coshð1:1x� 0:6655Þe�2:5i � 0:024255 coshðxþ 0:5Þe�3:025i

0:0025 coshð2:1x� 1:1655Þ þ 1:1025 coshð0:1x� 0:1655Þ � 1:1 cosð�0:525Þ ; ð14Þ
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Q̂ðt; xÞ � Qðt; xÞ
�

�

�

� between the predicted and exact

solutions with an error below 2 � 10�1, and thus these

predictions are relatively accurate.

3.4 W-soliton solution

We take the parameters k1 ¼ 0,k2 ¼ 0:1,k3 ¼
0,k4 ¼ 0:01 and k5 ¼ �0:015 in Eq. (1), and exact

solution of W-soliton is as follows [33]

Qðt; xÞ ¼ i� ið1 þ
ffiffiffi

2
p

Þsechðx� tÞ; x 2 ½�10; 10�; t
2 ½0; 5�;

ð19Þ

with the initial conditions

Qð0; xÞ ¼ ið1 � ð1 þ
ffiffiffi

2
p

ÞsechðxÞÞ; x 2 ½�10; 10�;
ð20Þ

and the periodic condition

Qðt;�10Þ ¼ Qðt; 10Þ; t 2 ½0; 5�: ð21Þ

Fig. 2 Two-soliton solution Qðt; xÞ: a Exact two-soliton

solution Qðt; xÞj j with the boundary and initial sampling points;

b Reconstructed two-soliton space–time dynamics; c Compar-

ison between exact and predicted solutions at three distances,

with the red hollow dots as the predicted values and the blue
solid lines as the exact values; d The error density plot. (Color

figure online)

123

608 Y. Fang et al.



The sampling points set is obtained by means of

pseudo-spectral method with space–time region

ðx; tÞ 2 ½�10; 10� � ½0; 5�, and the W-soliton solution

is discretized into ½256 � 201� data points. Similar to

the procedure of one-soliton, the MSE loss function

given by Eq. (5) is learned by using a PINN consisting

of seven hidden layers with 40 neurons in each layer.

After 4000 iterations of learning, the network achieved

a relative error L2 of 9:128569 � 10�3 in about

3826:5934 seconds.

Figure 4 displays space–time dynamics of recon-

structed W-soliton. In Fig. 4a, the sampling point

configuration of the initial and boundary is clearly

analyzed. Figure 4b reconstructs the space–time

dynamics of the W-soliton for the HNLSE. In Fig. 4c,

we compare the predicted solution with exact solution

at three different distances t ¼ 0:55; 2:5; 4:5. Fig-

ure 4d shows that the error between the predicted and

exact solutions is very small, and the predicted result is

accurate in the whole time and space domains.

3.5 M-soliton solution

We take the parameters k1 ¼ 0,k2 ¼ 2,k3 ¼ 0,k4 ¼
0:0247 and k5 ¼ �0:03705 in Eq. (1), and the exact

solution of M-soliton is as follows [34]

Fig. 3 Rogue wave solution Qðt; xÞ: a Exact solution Qðt; xÞj j
with the boundary and initial sampling points; b Reconstruct

spatiotemporal dynamics of rogue wave solution; c Comparison

between the exact and predicted solutions at three distances,

with the red hollow dots as the predicted values and the blue
solid lines as the exact values; d The three-dimensional

stereogram of error. (Color figure online)
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Qðt; xÞ ¼ sechð0:5ðx� tÞÞ tanhðx� tÞeiðt�80:97xÞ; x
2 ½�10; 10�; t 2 ½0; 5�:

ð22Þ

To use the PINN deep learning, we consider the

initial condition

Qð0; xÞ ¼ sechð0:5xÞ tanh xe�80:97xi; x 2 ½�10; 10�;
ð23Þ

and the Dirichlet–Neumann periodic boundary

condition

Qðt;�10Þ ¼ Qðt; 10Þ; t 2 ½0; 5�: ð24Þ

Similar to the procedure of W-soliton, after 4000

iterations of learning, the network achieved a relative

error L2 of 6:015803 � 10�3 in about 7924:9628

seconds. Figure 5 displays space–time dynamics of

reconstructed M-soliton. In Fig. 5a, the sampling

point configuration of the initial and boundary is

clearly analyzed. Figure 5b reconstructs the space–

time dynamics of the M-soliton for the HNLSE. In

Fig. 5c, we compare the predicted solution with exact

solution at three different distances t ¼ 0:55; 2:5; 4:5.

Figure 5d represents the density map of the error

between the predicted and exact solution. From the

density map, it can be seen that the prediction results

of the optimized PINN are very accurate globally.

Fig. 4 W-soliton solution Qðt; xÞ: a Exact solution Qðt; xÞj j
with the boundary and initial sampling points; b Reconstructed

W-soliton space–time dynamics; c Comparison between the

exact and predicted solutions at three distances, with the red

hollow dots as the predicted values and the blue solid lines as the

exact values; d The three-dimensional stereogram of error.

(Color figure online)
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4 Data-driven parameter discovery of HNLSE

In this section, we considered the data-driven param-

eters discovery of the HNLSE using the PINN.

Mathematically, for Eq. (1), many authors have

studied the completely integrable case, which called

Hirota equation [30]. The HNLSE is as follows

iQt þ k1Qxx þ k2 Qj j2Qþ iðk3Qxxxþk4 Qj j2QxÞ ¼ 0;

ð25Þ

where the pulse envelope Q ¼ uðx; tÞ þ ivðx; tÞ with

the real and imaginary parts u,v, coefficients

k1; k2; k3; k4 are unknown parameters that need to be

determined by the PINN training.

The network f ðx; tÞ is defined as

f :¼ iQt þ k1Qxx þ k2 Qj j2Qþ iðk3Qxxxþk4 Qj j2QxÞ;
ð26Þ

and the f ðx; tÞ has both real and imaginary parts as

f ðx; tÞ ¼ fuðx; tÞ þ ifvðx; tÞ, thus

fu :¼ ut þ k1vxx þ k2ðu2 þ v2Þvþ k3uxxx þ k4uxðu2 þ v2Þ
fv :¼ vt � k1uxx � k2ðu2 þ v2Þuþ k3vxxx þ k4vxðu2 þ v2Þ;

ð27Þ

Fig. 5 M-soliton solutionQðt; xÞ: aExact solution Qðt; xÞj jwith

the boundary and initial sampling points; b Reconstructed

M-soliton space–time dynamics; c Comparison between the

exact and predicted solutions at three distances, with the red
hollow dots as the predicted values and the blue solid lines as the

exact values; d The error density plot. (Color figure online)
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to build a multi-output neural network with the

output being the complex value of network f ðx; tÞ.
These unknown parameters in PINN can be learned by

minimizing the MSE loss function

LOSS ¼ 1

Nf

X

Nf

j¼1

ð uðx j; t jÞ � u j
�

�

�

�

2þ vðx j; t jÞ � v j
�

�

�

�

2

þ fuðx j; t jÞ
�

�

�

�

2þ fvðx j; t jÞ
�

�

�

�

2Þ:
ð28Þ

According to the previous research [26], we use the

rogue wave solution as the data set. By using the

pseudo-spectral method, exact rogue wave solution for

the HNLSE (25) with parameters k1¼ 0:5; k2¼ 1; k3¼
0:1; k4 ¼ 0:6 is considered to make sampling pointsets

with space–time region ðx; tÞ 2 ½�8; 8� � ½�2; 2�, and

exact rogue wave solution is discretized into ½256 �
201� data points.

In order to learn these unknown parameters

k1,k2,k3 and k4 via the PINN, the number of samples

is randomly selected from the sampling points

Nf ¼ 5000, and six layers of deep neural network

and network structure of 50 neurons in each layer are

chosen to learn the PINN f ðx; tÞ. Tables 1, 2, 3

illustrate the training results of unknown parameters in

different situations and show the training error is given

at the last column. In Table 1, parameters k3 and k4 are

fixed as 0.1 and 0.6 in the neural network, and

parameter k4 is fixed as 0.6 in the neural network in

Table 2. We find that even if the sampling points are

destroyed by noise, the PINN can correctly identify

unknown parameters and give very high accuracy. The

network can recognize HNLSE with significant accu-

racy, even if the sampling points are corrupted by 1%

irrelevant noise. Meanwhile, with the gradual increase

in training parameters, the error will gradually add, but

these results are still robust.

Under the condition of a small amount of sampling

points, our main purpose is to predict the important

physical parameters of the model and make our error

Table 1 Correct HNLSE and the identified equation obtained by learning the unknown parameter k1 and k2

Correct HNLSE iQt þ 0:5Qxx þ Qj j2Qþ ið0:1Qxxxþ0:6 Qj j2QxÞ ¼ 0 Error

Identified HNLSE (clean data) iQt þ 0:50004Qxx þ 1:0003 Qj j2Qþ ið0:1Qxxxþ0:6 Qj j2QxÞ ¼ 0 k1¼ 0:00739%; k2 ¼ 0:00254%

Identified HNLSE (1% noise) iQt þ 0:49982Qxx þ 0:99982 Qj j2Qþ ið0:1Qxxxþ0:6 Qj j2QxÞ ¼ 0 k1¼ 0:03508%; k2 ¼ 0:01777%

Table 2 Correct HNLSE and the identified equation obtained by learning the unknown parameter k1,k2 and k3

Correct HNLSE iQt þ 0:5Qxx þ Qj j2Qþ ið0:1Qxxxþ0:6 Qj j2QxÞ ¼ 0 Error

Identified HNLSE (clean

data)
iQt þ 0:50006Qxx þ 1:0004 Qj j2Qþ ið0:10003Qxxxþ0:6 Qj j2QxÞ ¼ 0 k1¼ 0:01121%; k2 ¼ 0:00397%

k3 ¼ 0:02848%

Identified HNLSE (1%

noise)
iQt þ 0:50001Qxx þ 0:99997 Qj j2Qþ ið0:09995Qxxxþ0:6 Qj j2QxÞ ¼ 0 k1¼ 0:00177%; k2 ¼ 0:00311%

k3 ¼ 0:05355%

Table 3 Correct HNLSE and the identified equation obtained by learning the unknown parameter k1,k2,k3 and k4

Correct HNLSE iQt þ 0:5Qxx þ Qj j2Qþ ið0:1Qxxxþ0:6 Qj j2QxÞ ¼ 0 Error

Identified HNLSE

(clean data)
iQt þ 0:50008Qxx þ 0:99997 Qj j2Qþ ið0:10001Qxxxþ0:59992 Qj j2QxÞ ¼ 0 k1¼ 0:01578%; k2 ¼ 0:00308%

k3 ¼ 0:01290%; k4 ¼ 0:01366%

Identified HNLSE

(1% noise)
iQt þ 0:50022Qxx þ 1:00009 Qj j2Qþ ið0:09971Qxxxþ0:59848 Qj j2QxÞ ¼ 0 k1¼ 0:04470%; k2 ¼ 0:00870%

k3 ¼ 0:28720%; k4 ¼ 0:25308%
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further reduced. However, our optimization for

HNLSE may be effective for this model, but not for

other models, so we need to find a more general rule.

This will be our next research direction.

Fig. 6 Training errors of

unknown parameters

(k1; k2; k3; k4) with different

number of neurons in each

layer. The neural network

structure is chosen as eight

layers, and the sampling

points Nf ¼ 5000

Fig. 7 Training errors of unknown parameters (k1;k2; k3; k4) in different sampling sizes and hidden layers with a 8 hidden layers with

50 neurons in each layer, and b 50 neurons in each layer. Here, the sampling points Nf ¼ 5000

Table 4 Time cost of structures of the neural network in Fig. 6

Neurons 10 20 30 40 50 60 70 80 90 100

Time/s 805.64 916.99 1057.99 1207.20 1358.45 1497.68 1727.77 1853.80 2008.44 2287.70
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In order to further analyze how to reduce the

training error, we conducted a systematic study on the

total number of sampling points, the number of

neurons and the number of hidden layers of neural

networks. We use the control variable method to find

an optimal structure for the neural network. These

results are shown in Figs. 6 and 7. Even if the number

of neurons changes, the training results are still stable.

By observing the training results of four unknown

parameters, we find 50 neurons per layer is a

suitable choice considering the operation speed of

neural network. In Fig. 7, by changing the randomly

sampled sampling points and the number of hidden

layers, we find that the sampling points as Nf ¼ 5000

and the hiding layer as 6 will be a better choice. Time

cost of different structures of the neural network

corresponding to Figs. 6, 7a, b is given in Tables 4, 5,

6. Increasing the number of neurons, the sampling

points, and the number of layers of the neural network,

the time cost will gradually increase. Because the

neural network structure is more complex, the amount

of calculation is even greater. Due to different

computer performance, time will change, but the

growth trend will not change. Compared with previous

literatures on data-driven parameter discovery

[20, 26], our error is greatly reduced. Similar training

results can be obtained by using bright solitons and

other exact solutions as data sets.

Of course, our neural network structure is only a

local optimal choice, and we are not sure whether there

will be better results if we continue to increase these

three variables, that is, the total number of sampling

points, the number of neurons and the number of

hidden layers of neural networks. We hope to find a

general rule in the next research.

5 Conclusion

In conclusion, we study the one-soliton solution, two-

soliton solution, rogue wave solution, W-soliton

solution and M-soliton solution of HNLSE via the

multilevel PINN deep learning method under different

initial and periodic boundary conditions. In particular,

when we use the network to train W-soliton and M-

soliton, we find that the relative error L2 of the

predicted results reaches 1 � 10�3, and the training

speed is fast. The results show that the training effect
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for simple soliton is better. In Figs.4d and 5d, as the

learning distance increases, the error gradually

increases. Since the sampling position is on the initial

boundary, as the learning distance increases, the error

between the predicted result and the actual situation

will gradually increase.

In addition, based on rogue wave solution, the data-

driven parameter discovery of HNLSE is studied. We

add the noise to judge the stability of the neural

network. The prediction error will increase as the

number of unknown parameters adds. These changes

of error are within the controllable range, which is

enough to prove the excellent performance of PINN.

We have optimized the structure of the neural network

mainly from three aspects including the number of

layers of the neural network, the number of neurons,

and the sampling points. Compared with previous

studies [26], our error is greatly reduced.

In this work, we use a data-driven algorithm to

predict solutions of HNLSE, and physical parameters

of the model. We want to apply neural networks into

optical fields, such as dynamical behavior prediction

of solitons and model predictive control. The present

work is our first step. We expect to derive partial

soliton image data by experimental means to predict

the propagation process of solitons.
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