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Abstract In this paper, the event-triggered control of
a class of cascaded switched nonlinear systems is stud-
ied. By applying a designed event-triggered sampling
strategy, the minimum inter-event interval is obtained
and the Zeno behavior is successfully avoided during
the sampling process. Besides, the globally uniform
boundedness of the closed-loop system is achieved by
virtue of the average dwell-time method and the sta-
bility of the switched nonlinear system is guaranteed.
A numerical example is provided in the end to support
the main results.

Keywords Switched nonlinear system · Globally
uniform boundedness · Event-triggered control

1 Introduction

Switched systems, which are a class of special hybrid
systems, include a group of continuous or discrete sub-
systems and a switching rule governing the activated
subsystem [1]. Switched control has much more supe-
riorities than the traditional single control in model-
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ing complex systems. Thus, switched systems have
an extensive range of practical applications in many
fields of control, such as mechanical systems, chemi-
cal procedure systems, and power systems [2,3].More-
over, switched control provides more effective tech-
niques than the traditional single control, which even
can improve transient performance and control pre-
cision of systems better [4]. Generally speaking, the
switched control has become one of the hottest topics
in the control field.

With the increasing integration and complexity of
the industry, switched systems play a more critical role
than ever before; more and more results of switched
systems have been obtained in recent years. Stabil-
ity is a fundamental and essential issue when analyz-
ing the performance of systems [5]. Compared with
the non-switched systems, the switched systems have
hybrid dynamic features, so it is more of complexity
and challenge to analyze the stability of the switched
systems. For a class of switched nonlinear systems
whose subsystems are not supposed to be stable when
the delay is present, Wang et al. provided sufficient
conditions to ensure that the system is globally expo-
nentially stable [6]. Wu et al. investigated the stabil-
ity of switched systems with stochastic switching sig-
nals by using the probability analysis method [7]. By
utilizing the nonlinear related techniques, the stability
criteria for switched nonlinear sampled data systems
are derived in [8]. Zhang et al. studied the stability of
cascaded switched systems by using an input-to-state
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Lyapunov function method [9]. In addition to stability,
there are many issues worthy of studying for switched
nonlinear systems. Su et al. studied H∞ control prob-
lem for cascaded switched nonlinear systems in [10].
By the virtue ofmultiple Lyapunov functional and aver-
age dwell-time approach, Park et al. constructed a fault
estimator and the H∞ fault estimation problem for a
class of discrete-time switched nonlinear systems was
solved [11]. Moreover, the dissipative control problem
for wireless networked control systems was concerned
in [12]. Zheng et al. proposed a performance index for a
class of switched nonlinear systems in [13], which can
be viewed as the mixed H∞ performance and passive
performance.

Many results show that the system may be unstable
if the system switches so fast, even if every subsystem
is stable. The simplest way to control the switching fre-
quency is the activating time of each subsystem should
not be too short; therefore, the concept of dwell time
is proposed [5]. However, it is too restrictive to specify
a dwell time. Thus, it is of interest to relax the condi-
tion of the dwell time concept, allowing the possibility
of switching fast when necessary and then compen-
sating for it by switching sufficiently slowly later. The
concept of average dwell time serves this purpose. As a
proven effective designmethod, the average dwell time
technology has been adopted in [11–14]; what’s more,
this technology was also used to study asynchronous
control of switched systems [9].

The feedback controllers of switched systems are
mostly continuous in the existing results. However,
controllers are implemented on a digital platform in
the actual operation. Therefore, an effective research
method, event-triggered control, plays an important
role in this situation. Event-triggered control means
that the system performs control tasks after an exter-
nal event occurs [15]. In detail, its signal samplings
and controller operations are triggered by a specific
event, rather than being executed regularly over time
[16]. There is a lot of interaction between sensors, con-
trollers, and actuators, which leads to information load
problems and a waste of computational resources [17].
These problems can be effectively solved by apply-
ing the event-triggered control method. Owing to the
excellent capability, the event-triggered strategy is used
in the research of many control problems. Xiao et al.
studied the event-triggered control of discrete-time and
continuous-time switched linear systems in [18] and
[19], respectively. Su et al. adopted the event-triggered

mechanism to the study of sliding mode control of
hybrid switched systems [20]. Li et al. applied the
event-triggered method to study the H∞ control prob-
lem for switched systems [21]. Qi and Cao introduced
an event-triggered mechanism with a fixed threshold
and the finite-time boundedness in [22], and the stabi-
lization of switched linear systems is concerned.

Generally, if the event-triggered scheme is intro-
duced into the system, then in the process of control,
the actuator performs the operations in time-varying
periods, besides, the intervals between events are also
variable. That is, infinite events may appear in a limited
time. Thence, Zeno behavior was concerned in [23]. It
is a challenging task to exclude Zeno behavior. In the
existing research results, Ni et al. proposed the positive
lower bound for inter-event intervals for a class of lin-
ear systems [24]; Fei and Zhao extended this method
to switched linear systems [25]. Li and Lian designed
a Zeno-free event-triggered scheme for switched lin-
ear systems [26]. However, due to the complexity of
switched nonlinear systems, there still are few results
referring to this class of systems by virtue of the event-
triggered scheme, not to mention the results of exclud-
ing the Zeno behavior. In [27], Li et al. introduced the
event-triggered scheme to the output tracking control
problemof switched nonlinear strict-feedback systems,
while the Zeno behavior was not considered. Fortu-
nately, this problemwas concerned by Huo et al. where
they studied the adaptive fuzzy output feedback control
of MIMO switched nonlinear systems [28].

Most of the current-based event-triggered control
theories refer to linear systems and are not fully applica-
ble to nonlinear systems. In addition, switched systems
are different from non-switched systems; even though
each subsystem is stable, the switched system may be
unstable if the switching signal is not selected prop-
erly. The study of event-triggered control for switched
nonlinear systems is not the simple superposition of the
properties of each subsystems. At the same time, cas-
cade systems are an important class of systems [29].
This class of systems has special structure and facil-
itates the wide range of applications. Therefore, it is
necessary and meaningful to study the event-triggered
control of cascade switched nonlinear systems.

Motivated by the above discussion, we mainly stud-
ied the event-triggered control problem for switched
nonlinear systems by an average dwell-time method.
Our main contributions are in the following aspects:
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(1) For the cascaded switched nonlinear system, an
event-triggered control scheme is first presented,
under which the communication resources are
effectively saved.

(2) For the resulting closed-loop system, the suffi-
cient condition for globally uniform boundedness
is obtained by the virtue of an average dwell time
method, and the exponential stability is guaranteed
by the conditions we provided.

(3) The case that infinite eventsmayhappen in a limited
time interval is considered. The minimum interval
of inter-event lower bound is calculated by applying
the event-triggered sampling mechanism and the
Zeno behavior is successfully excluded during the
sampling procedure.

Notations: Unless otherwise stated, the notations
used in this paper are standard. Rn denotes the
Euclidean space with n dimensions. N represents the
natural number.The superscriptT denotesmatrix trans-
position. P > 0 means that the matrix P is real sym-
metric and positive definite. I represents the identity
matrix with appropriate dimension. ‖ · ‖ denotes the
Euclidean vector norm.

2 Preliminaries

Consider the following cascade switchednonlinear sys-
tem

⎧
⎪⎨

⎪⎩

ẋ1(t) = A1σ(t)x1(t) + A2σ(t)x2(t) + Bσ(t)uσ(t)(t)

ẋ2(t) = f2σ(t)(x2(t))

y(t) = Cσ(t)x1(t)
(1)

where x = [x1, x2]T is the state vector and x1(t) ∈
Rn−d , x2(t) ∈ Rd ; y(t) ∈ Rq means the output of
the system; σ(t) : [0,∞) → M̄ = {1, 2, . . . , M}
is a piecewise constant value function with respect
to time, called switching signal, where M̄ is a finite
index set, the i th subsystem is active when σ(t) = i .
ui (t) ∈ Rm represents the control input of subsystem
i . A1i , A2i , Bi ,Ci are constant matrices with appropri-
ate dimensions, i ∈ M̄ . f2i (·) are known smooth vector
fields with appropriate dimensions and f2i (0) = 0

According to the switching signal σ(t), we can get
a group switching sequence presenting as follows:

{xt0; (l0, t0), (l1, t1), . . . , (li , ti ), . . . |li ∈ M̄, i ∈ N }
(2)

where li means the serial number of the subsystem and
ti is the switching instant. That is, the li subsystem is
active when t ∈ [ti , ti+1). Supposing that there is no
system state jump at the moment of switching.

Denoting instant with an event happens by {t̂k}∞k=0,
t̂k < t̂k+1, and the error e(t) = x1(t) − x1(t̂k). The
condition of event-triggered can be described as

‖e(t)‖2 ≥ η‖x1(t)‖2 + ε (3)

where η and ε are positive parameters. Sampling is per-
formed immediately once the event is triggered. The
value e(t) will be reduced to 0 if an event happens;
besides, it begins to increase until the next event hap-
pens. Assume that when t̂0 = t0, the first event occurs.
With the state x1(t̂k) sampled at the time t̂k , we can
describe the next sampling instant t̂k+1 by

t̂k+1 = inf
{
t > t̂k | ‖e(t)‖2 = η‖x1(t)‖2 + ε

}
(4)

A controller is obtained under the above condition (3).
Assume that there are n samplings occurred during
t ∈ [ti , ti+1), and denote the first sampling instant by
t̂k+1. Under the switching sequence (2), each interval
corresponds to an active subsystem; then, the controller
can be designed as follows:

uσ(t) = ui =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ki x1(t̂k), t ∈ [ti , t̂k+1)

Ki x1(t̂k+1), t ∈ [t̂k+1, t̂k+2)

...

Ki x1(t̂k+n), t ∈ [t̂k+n, ti+1)

(5)

where Ki is the controller gain.

Definition 1 [13] For any σ and ∀t ≥ s ≥ 0, Nσ (s, t)
means the number of switchings on the interval (s, t).
If Nσ ≤ 1 and t − s ≤ τd , then τd is called a dwell
time; for τa > τd and N0 ≥ 1, if there exists Nσ (s, t) ≤
N0 + ((t − s)/τa), then τa is called the average dwell
time.

Definition 2 [14] For any constant γ > 0, if there is a
switching signal σ and a constant β̃, satisfying

‖x(t0)‖ < γ ⇒ ‖x(t)‖ < β̃,∀t > t0 (6)

123



1536 X. Dong et al.

where β̃ = β̃(γ ) < ∞ is positive and independent
from t0, then the considered switched nonlinear system
is globally uniformly bounded.

Lemma 1 [14] For any u, v and positive definite
matrix G,

uT v + vT u ≤ uT Gu + vT G−1v (7)

holds, where u, v are real vectors and G has the appro-
priate dimension.

3 Main results

We will study the stability of the switched nonlinear
system (1) in this section.

3.1 Event-triggered control

Substitute the controller (5) into the system (1) with
the error e(t) = x1(t) − x1(t̂k+ j ), ( j = 0, 1, . . . , n)

for∀t ∈ [ti , t̂i+1), [t̂i+1, t̂i+2), . . . , [t̂i+n, ti+1), and the
closed-loop system is presented as

⎧
⎪⎨

⎪⎩

ẋ1(t) = (A1i + Bi Ki )x1(t) + A2i x2(t) − Bi Ki e(t)

ẋ2(t) = f2i (x2(t))

y(t) = Ci x1(t)
(8)

Theorem 1 Consider the closed-loop system (8). If the
system (8) satisfies the following conditions:

(1) For the given scalars η > 0, μ > 1, ε > 0 and
N0 ≥ 1, there exist matrices Pi > 0, Pj > 0 and
Ki for ∀i, j ∈ M̄ satisfying

[
AT1i Pi + Pi Bi Ki + Pi A1i + KT

i BT
i Pi + (1 + η)I Pi Bi Ki

∗ −I

]

< 0

(9)

and

Pi ≤ μPj , Pj ≤ μPi (10)

(2) For the given constants β > 0, α1 > 0, α2 > 0,
there exist functions Wi (x2) satisfying

∂W (x2)

∂x2
f2i (x2) ≤ −β‖x2‖2 (11)

and

α1‖x2‖2 ≤ Wi (x2) ≤ α2‖x2‖2, (12)

then for any switching signal σ satisfying τa >

(lnμ)/γ , the system (1) is globally uniformbounded,
where γ > 0 can be calculated from valid matrix
solutions (9) and (10); the state exponentially con-
verges to the bounded region

B(ε) = {x(t) | ‖x(t)‖

≤
[
εeγ τa ((μ̃ − 1)eγ τa N0 + 1) − εμ̃

ςγ (eγ τa − μ̃)

] 1
2

⎫
⎬

⎭
(13)

where μ̃ = max
{
μ, α2

α1

}
, ς is a scalar which will

be determined later.

Proof Construct a Lyapunov function as follows:

V (t) = Vσ(t)(x1, x2) = xT1 (t)Pσ(t)x1(t) + lWσ(t)(x2)
(14)

when σ(t) = i , by virtue of Lemma 1, the derivative
of Vi is

V̇i (t) = xT1

[
(A1i + Bi Ki )

T Pi + Pi (A1i + Bi Ki )
]
x1

+xT2 AT
2i Pi x1

+xT1 Pi A2i x2 − eT K T
i BT

i Pi x1 − xT1 Pi Bi Ki e

+∂Wi (x2)

∂x2
f2i

≤ xT1

[
(A1i + Bi Ki )

T Pi + Pi (A1i + Bi Ki )
]
x1

+2xT1 Pi A2i x2

+eT e + xT1 Pi Bi Ki K
T
i BT

i Pi x1 − lβ‖x2‖2
(15)

Notice that there exist two positive constants ni andmi

satisfying

‖A2i x2‖ ≤ ni‖x2‖, ‖xT1 Pi‖ ≤ mi‖x1‖
Let p = max

i∈M {nimi }, we have
V̇i (t) ≤ xT1

[
(A1i + Bi Ki )

T Pi + Pi (A1i + Bi Ki )
]

x1 + eT e + xT1 Pi Bi Ki K
T
i BT

i Pi x1

+2p‖x1‖‖x2‖ − lβ‖x2‖2
≤ xT1

[
(A1i + Bi Ki )

T Pi + Pi (A1i

+Bi Ki ) + Pi Bi Ki K
T
i BT

i Pi + I
]
x1
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+eT e + 2P‖x1‖‖x2‖ − lβ‖x2‖2 − ‖x1‖2
≤ xT1

[
(A1i + Bi Ki )

T Pi + Pi (A1i + Bi Ki )

+Pi Bi Ki K
T
i BT

i Pi + I
]
x1

+eT e − (‖x1‖2 + 2P‖x1‖‖x2‖ + p2‖x2‖2
)

+p2‖x2‖2 − lβ‖x2‖2

≤ xT1 Qi x1 + ε − βl

2α2
Wi (x2) + βl

2α2
Wi (x2)

−lβ‖x2‖2 + p2‖x2‖2

≤ −λmin(−Qi )

λmax (Pi )
xT1 Pi x1 + ε − βl

2α2
Wi (x2)

−
(
1

2
lβ − p2

)

‖x2‖2 (16)

where Qi = (A1i + Bi Ki )
T Pi + Pi (A1i + Bi Ki ) +

Pi Bi Ki K T
i BT

i Pi + (1 + η) I .

Let γi = min
{

λmin(−Qi )
λmax(Pi )

,
βl
2α2

}
, l ≥ 2p2

β
. According

to the linear matrix inequality (9), we can get Qi < 0;
therefore,

V̇i ≤ −γi Vi + ε (17)

Integrating (17) from ti to t yields

Vi (t) ≤ e−γi (t−ti )Vi (ti ) + ε

∫ t

ti
e−γi (t−s)ds (18)

According to the inequalities (10), (12), and (14), we
have

Vli (ti ) ≤ μ̃Vli−1

(
t−i
)
,∀li , li−1 ∈ M̄ (19)

where μ̃ = max
{
μ, α2

α1

}
. Let γ = min

∀li∈M̄
γli > 0. Com-

bining with the inequality (18) and Nσ ((t − ti )/τa) +
N0, we have

Vσ(t)(t) = Vli (t)

≤ e−γ (t−ti )μ̃Vli−1(t
−
i )

+ ε

γ

(
1 − e−γ (t−ti )

)

≤ e−γ (t−ti )μ̃
(
e−γ (t−ti )Vli−1(ti−1)

+ ε

γ

(
1 − e−γ (t−ti )

))

+ ε

γ

(
1 − e−γ (t−ti )

)

≤ e−γ (t−ti )μ̃Vli−1(ti−1)

+εμ̃

γ

(
e−γ (t−ti ) − e−γ (t−ti−1)

)

+ ε

γ

(
1 − e−γ (t−ti )

)

≤ e−γ (t−ti )μ̃2Vli−2(t
−
i−1)

+εμ̃

γ

(
e−γ (t−ti ) − e−γ (t−ti−1)

)

+ ε

γ

(
1 − e−γ (t−ti )

)

...

≤ e−γ (t−t0)μ̃Nσ (t0,t)Vl0(t0)

+εμ̃Nσ (t1,t)

γ

(
e−γ (t−t2) − e−γ (t−t1)

)

+εμ̃Nσ (t2,t)

γ

(
e−γ (t−t3) − e−γ (t−t2)

)

+ · · · + εμ̃2

γ

(
e−γ (t−ti−1) − e−γ (t−ti−2)

)

+εμ̃

γ

(
e−γ (t−ti ) − e−γ (t−ti−1)

)

+ ε

γ

(
1 − e−γ (t−ti )

)

≤ e−γ (t−t0)μ̃Nσ (t0,t)
(
Vl0(t0)

− ε

γ μ̃

)

+ ε(μ̃ − 1)

γ

Nσ (t2,t)∑

k=0

μ̃ke−γ (t−ti−k ) + ε

γ

≤ e−(γ−(ln μ̃/τa))(t−t0)μ̃N0
(
Vl0(t0)

−εμ̃

γ

)

+ ε(μ̃ − 1)

γ
eγ τa N0

Nσ (t2,t)∑

k=0

ek(ln μ̃−γ τa)

+ ε

γ
(20)

From (14), we know that

Vli (t) = xT1 (t)Pli x1(t) + lWli (x2)

≥ min∀li∈M
(
λ
(
Pli
)) ‖x1(t)‖2

+lα1‖x2(t)‖2 ≥ ς‖x(t)‖2

and

Vt0 ≤ max∀li∈M
(
λ
(
Pli
)) ‖x1(t0)‖2

+lα2‖x2(t0)‖2 ≤ ξ‖x(t0)‖2

where ς = min

{

min
∀ki∈M̄

(
λ
(
Pki
))

, lα1

}

, ξ =

max

{

max
∀ki∈M̄

(
λ
(
Pki
))

, lα2

}

.
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Thus, according to the above inequalities, we can
obtain that

‖x(t)‖2 ≤ 1

ς
Vli (t)

≤ ξ

ς
e−(γ−(ln μ̃/τa))(t−t0)μ̃N0

{

‖x(t0)‖2 − ε

γ μ̃ξ

}

+ε(μ̃ − 1)

ςγ
eγ τa N0

Nσ (t2,t)∑

k=0

ek(lnμ̃−γ τa) + ε

ςγ
(21)

The condition τa > (ln μ̃)/γ means thatγ−((ln μ̃)/τa)

> 0 and ln μ̃−γ τa < 0. Then, according to inequality
(21), we have

‖x(t)‖2 ≤ ξ

ς
e−(γ−(ln μ̃/τa ))(t−t0)μ̃N0

{

‖x(t0)‖2 − ε

γ μ̃ξ

}

+ ε(μ̃ − 1)

ςγ
eγ τa N0

Nσ (t2,t)∑

k=0

ek(lnμ̃−γ τa ) + ε

ςγ
(22)

which can guarantee the uniform boundedness of the
system (1).

Remark 1 Let ε = 0, the inequality (22) can be rewrit-
ten as

‖x(t)|2 ≤ ξ

ς
e−(γ−(ln μ̃/τa))(t−t0)μ̃N0‖x(t0)‖2

Thus, when ε = 0, the switched nonlinear system (8)
is exponentially stable.

Remark 2 According to Theorem 1, we assume the
controller gain is Ki = BT

i Pi , and the inequality (9)
can be transformed the following LMIs:

⎡

⎣
Xi AT

1i + 2Bi BT
i + A1i Xi Bi BT

i Xi

BT
i Bi −Xi 0
Xi 0 −(1 + η)I

⎤

⎦

< 0, Xi > I (23)

where Xi = P−1
i , i ∈ M̄ .

Remark 3 There is a lot of interaction between sen-
sors, controllers, and actuators, which leads to infor-
mation load problems and a waste of computational
resources. Different from periodic sampling, under the
event-triggered mechanism, data will only be transmit-
ted when the systemmeets the set requirements, so that
the amount of calculation can be saved.

3.2 Minimum inter-event interval

The Zeno behavior can be prevented in time-triggered
sampling control by setting a positive time inter-
val between two consecutive samples. However, this
method cannot successfully be used in event-triggered
sampling control. Therefore, a new method to exclude
Zeno behavior is proposed in this section.

Theorem 2 Under the condition in inequality (3), the
lower bound of the minimum inter-event interval is a
positive scalar.

Proof Firstly, we assume that there exist n sam-
plings on

[
ti , ti+1), and the corresponding moments

are t̂k+1, t̂k+2, . . . , t̂k+n . On any interval of
[
ti , t̂k+1

)
,[

t̂k+1, t̂k+2
)
, . . . ,

[
t̂k+n, t̂i+1

)
, the state x1(t̂k+ j ), j =

0, 1, . . . , n are always constants and e(t) = x1(t) −
x1(t̂k+ j ). Thus, we can obtain that

ė(t) = ṫ1(t) = A1i x1(t) + A2i x2(t) + Bi Ki x1(t̂k+ j )

= A1i
(
e(t) + x1(t̂k+l)

)+ A2i x2(t) + Bi Ki x1(t̂k+ j )

= A1i e(t) + (A1i + Bi Ki ) x1(t̂k+ j ) + A2i x2(t)

(24)

Therefore,

e(t) = eA1i (t−t̂k+ j )e(t̂k+ j ) +
∫ t

t̂k+ j

eA1i (t−s) ((A1i

+Bi Ki )x1(t̂k+ j ) + A2i x2(s)
)
ds

Due to e(t̂k+ j ) = x1(t̂k+ j ) − x1(t̂k+ j ) = 0, we have

e(t) =
∫ t

t̂k+ j

eA1i (t−s) ((A1i + Bi Ki )x1(t̂k+ j )

+A2i x2(s)) ds

Thence,

‖e(t)‖ ≤
∫ t

t̂k+ j

e‖A1i‖(t−s) (‖(A1i + Bi Ki )x1(t̂k+ j )‖
+‖A2i x2(s)‖) ds

≤
∫ t

t̂k+ j

e‖A1i‖(t−s)‖(A1i + Bi Ki )‖‖x1(t̂k+ j )‖ds

+
∫ t

t̂k+ j

e‖A1i‖(t−s)‖A2i‖‖x2(s)‖ds

According to (22), we can find a positive constant β̃

such that

‖e(t)‖ ≤
∫ t

t̂k+ j

e‖A1i ‖(t−s)‖(A1i + Bi Ki )‖‖x1(t̂k+ j )‖ds
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+
∫ t

t̂k+ j

e‖A1i ‖(t−s)‖A2i‖
√

β̃ds

≤ χ(t̂k+ j )

∫ t

t̂k+ j

e‖A1i‖(t−s)ds

where χ(t̂k+ j ) = ‖((A1i + Bi Ki ))‖ + ‖A2i‖
√

β̃. If
‖A1i‖ �= 0, then

‖e(t)‖ ≤ χ(t̂k+ j )

‖A1i‖
(
e‖A1i‖(t−s) − 1

)

According to (4),when ‖e(t)‖2 = η‖x1(t)‖2+ε, the
next eventwill occur. Let T = t− t̂k+ j denote the lower
bound of inter-event interval, and T is determined by

χ(t̂k+ j )

‖A1i‖
(
e‖A1i‖(t−s) − 1

)
=
√

η‖x1‖2 + ε

Thus

T = 1

‖A1i‖ ln

(
‖A1i

√
η‖x1‖2 + ε

χ(t̂k+ j )
+ 1

)

that means T > 0 for any given sampling instant.

4 Numerical example

In this section, we will prove the feasibility of the pro-
posed methods by a numerical example.

Example Consider system (1) with the subsystem,
where

A11 =
[−4.8 1

0 −2.9

]

, A21 =
[
1
0

]

, B1 =
[
0.18
1

]

,

C1 = [
1 0
]
, f21 = −x2 − x2 sin

2 x2;
A12 =

[−5 1
0 −3

]

, A22 =
[
0
1

]

, B2 =
[
0.2
1

]

,

C2 = [
0 1
]
, f22 = −x2 − x2

cos2x2.

Set η = 1, α1 = 0.4, α2 = 0.5, β = 1, μ = 1.1,
ε = 0, κ1 = 0.9426, κ2 = 1.3515. Choose W1 =
1
2 x

2
2 ,W2 = 2

5 x
2
2 , and l = 1. The controller gains are

chosen as

K1 = [−0.2 −0.5
]
, K2 = [−0.4 −0.6

]
.

By solving inequalities (9) and (10) in Theorem 1, we
get

P1 =
[
0.3952 0.0285
0.0285 0.5649

]

, P2 =
[
0.3687 0.0115
0.0115 0.5150

]

.

Fig. 1 State responses

Fig. 2 Event-triggered condition

γ = 1.76, μ̃ = 1.25 and τ ∗
a = (ln μ̃)/γ = 0.127.

Obviously, the conditions of Theorem 1 are satisfied;
therefore, the considered system is exponentially stable
under the switching signal σ . Figures. 1, 2, 3, 4, 5, 6
show the results of the simulation, respectively. Fig-
ure 1 illustrates the state response of the system. From
Fig. 1, we can see that the state of the system con-
verges to zero, which indicates that the system is sta-
ble; Figure 2 gives the event-triggered condition; Fig-
ure 3 demonstrates the switching signal; Figure 4 dis-
plays the control input of the system. Figures 5 and 6
depict the time-triggered instants and event-triggered
instants, respectively. One can obtain that, under the
time-triggered scheme, there are 60 sampling instants
in [0, 15s], by using the event-triggered scheme, only
45 sampling instants. In other words, 75% data infor-
mation is used to stabilize the controlled system, which
proves that the designed event-triggered scheme in (3)
can save the communication resource effectively.

5 Conclusions

In this paper, the problem of event-triggered control
has been studied for the cascade switched nonlinear
system. With the application of the average dwell time
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Fig. 3 Control input

Fig. 4 Switching signal

Fig. 5 Time-triggered instants

Fig. 6 Event-triggered instants

technique and the Lyapunov function method, we have
obtained sufficient conditions to guarantee the system
to be globally uniformly bounded and exponentially
stable.What’smore,we have obtained a lower bound of
the minimum inter-event interval to preclude the Zeno

behavior in the procedure of event-triggered sampling.
At present, the event-triggered control problems of the
cascaded switched nonlinear systems still need further
research. For example, noise signals arewidely existing
in theworld [30] andZenobehavior influencing the per-
formance of systems. Therefore, considering the effect
of noises in the framework of event-triggered systems
and excluding the Zeno behavior in real time are our
further research goals.
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