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Abstract Compared with continuous-time memris-

tor (CM), discrete memristor (DM) has not been

received adequate attention. In this paper, a new n-

dimensional generalized DMmodel is proposed based

on the discrete theory. Two 2-D discrete mathematical

models satisfying the three fingerprints characteristics

of memristors are designed. Applying the mathemat-

ical model into the Sine map yields a new hyper-

chaotic map called discrete memristor-based Sine

(DM-S) map. The DM-Smap has a line of fixed points,

and its dynamical behaviors including nonparametric

bifurcation and hyperchaos are explored by phase

diagrams, bifurcation diagrams, and Lyapunov expo-

nent spectrums. The i–v characteristics of the DM and

the attractors of the DM-S map are implemented by

digital signal processor. In addition, the sequences of

map are tested by using SP800-22 NIST software.

Keywords Discrete memristor � Hyperchaos �
Nonparametric bifurcation

1 Introduction

The memristor was first proposed by Chua [1],

referring to a kind of two-terminal device that exhibits

a pinched hysteresis loop in the voltage–current plane.

All memristors can be classified into ideal memristor,

generic memristor, and extended memristor [2]. Later,

Chua [3] proposed that the concept of memristor can

be extended to a much more general class of dynam-

ical systems called memristive systems (or general-

ized memristors), and the memristor is only a special

case of the systems.

In 2008, HP Laboratory constructed the first real

memristor by using TiO2 [4]. Later, Chew et al. [5]

realized a real discrete memristor by ZnO nanowires

synthesized on a printed circuit board. Due to the

unique nonlinear properties of memristors, there have

been lots of literatures about its theoretical exploration

and practical applications in many fields, such as

neural networks [6, 7], information encryption [8, 9],

chaotic memristive systems [10, 11], and nonlinear

electronic circuits [12–16]. It is important to note that

compared with CMs, DMs have not been received

adequate attention. In recent years, Karthikeyan et al.

[17] proposed a discrete fractional-order differential

memristor system and its dynamic properties were

explored. Sun et al. [18, 19] were put forward to a

discrete mathematical model of the charge-controlled

memristor and a higher-dimensional chaotic map with

discrete memristor, and the authors held the opinion
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that the DM can expand the scope of the memristor. In

Ref. [20], a discrete charge-controlled HP memristor

model was proposed by using backward differential

theory, and its application in Hénon map was inves-

tigated. In Ref. [21], a new DM-based map was

proposed based on a sampling switch-based memris-

tor–capacitor circuit, which can generate hyperchaos.

In Ref. [22], a general two-dimensional memristive

map model was studied by coupling the discrete

memristor with an existing discrete map. These

literatures presented some ideal charge-controlled

DM models and verified that they could be directly

introduced into the discrete systems. In this paper, a n-

dimensional generalized discrete model conforming to

the definition of memristor is proposed. As far as we

know, there are no reports on the modeling of the n-

dimensional generalized DM.

Compared with chaotic systems, hyperchaotic

systems have more complex behaviors and a relatively

better application prospect, especially discrete hyper-

chaotic maps, because it only needs two dimensions

and less resources’ cost [23–25]. However, most of

existing discrete maps cannot generate hyperchaotic

sequences, such as sine map, logistic map, Hénon

map, and so on. Hence, designing a discrete hyper-

chaotic map is still a novel and valuable research topic.

Meanwhile, a lot of works have been done on the

dynamical analysis of memristor-based systems, in

which nonparametric bifurcation is a hot topic often

occurring in CM-based systems [26–29]. Due to the

special form of the CM model, infinite number of

equilibria may exist and be formed m-dimensional

manifolds of equilibria, where m is the number of

memristor in n-dimensional systems (n[m). Nor-

mally hyperbolic manifolds of equilibria are charac-

terized by m zero eigenvalues, whereas other

eigenvalues are not equal to zero or purely imagine.

This kind of systems with normally hyperbolic

manifolds of equilibria have a significant property of

the existence of nonparametric bifurcation when the

requirements of normal hyperbolicity are not satisfied

at some equilibria. So far, this phenomenon has not

been reported in DM-based systems.

In this paper, a new n-dimensional generalized

model of DM is proposed, whose memristance is

controlled by a discrete function. At present, most of

the existing CMs are designed based on the analog

circuits and various materials. However, the DMs can

be naturally realized in digital circuits such as DSP and

FPGA. As Chua mentioned in Ref. [3], the input and

the output signals of the generalized memristors are

not only limited to voltage and current. If it exhibits a

pinched hysteresis loop for the periodic input current

signals, regardless of the state xwhich incorporates the

memory effect, it is a memristor [3]. Hence, DM could

extend the input and output of memristors to other

signals. Moreover, many complex problems that occur

in the real world are necessarily described by discrete

systems. Thus, we can apply those potential DMs but

not the CMs to discrete systems.

In order to provide the potential application, an

ideal and a nonideal DM mathematical model is

designed. Their i–v cures are explored by numerical

simulations, and the results show that two DMmodels

accord with the characteristics of memristors. Intro-

ducing the mathematical model of the proposed ideal

DM into the sine map yields a new second-order

discrete map called DM-S map, which can generate

hyperchaos under some suitable parameters. Com-

pared with the original sine map, the DM-S map has a

line of fixed points, whose eigenvalue k1 is always

equal to 1 and the other eigenvalue k2 depends on both
the parameters and the initial position of the fixed

point on the y-axis. Because of this, the DM-S map has

a significant property of nonparametric bifurcation. In

addition, the DM-S map has a larger chaotic region, a

lager parameter space and a greater Lyapunov expo-

nent than that of the original sine map. The hyper-

chaotic sequence generated by DM-S map is

implemented by DSP platform and tested by using

SP800-22 NIST software. The results show that the

hyperchaotic sequence passes through all the subtests,

which means it has great randomness.

The rest of the paper is summarized as follows: In

Sect. 2, a new generalized model of DM is deduced.

An ideal and a nonideal DM model is proposed based

on the generalized model, and their properties are

simulated. In Sect. 3, applying the mathematical

model of the proposed ideal DM into the sine map

yields a new second-order DM-S map. Then, the

stability for a line of fixed points is investigated.

Section 4 explores the bifurcation without or with

parameters in detail. Section 5 contains the DSP

hardware implementation of the DM and the DM-S

map. The random sequences are generated by the DM-

S map and tested by SP800-22 NIST software. Finally,

conclusions are drawn in the last section.
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2 A generalized DM mathematical model

2.1 Derivation of generalized DM mathematical

model

A continuous-time n-dimensional generalized mem-

ristor model [3, 30] can be expressed as

yðtÞ ¼ gðx; uÞuðtÞ
_xðtÞ ¼ f ðx; uÞ

�
ð1Þ

where g(x) is sectional continuous scalar function. x, y

and u are the state, input, and output of the memristors.

f(x, u) is a continuous n-dimensional vector function,

expressed as its state-space model Ax ? Bu in this

paper, where A and B are n-dimensional constant

vectors. Hence, the generalized CM model can be

rewritten as

yðtÞ ¼ gðx; uÞuðtÞ
_xðtÞ ¼ Axþ Bu

�
ð2Þ

The sampling discrete method is an effective

discrete method, which makes continuous models

transform to their discrete models. In this paper, a

discretization method for time-invariant continuous

systems is used, whose mathematical essence is to

derive an equivalent discrete state-space model from

its corresponding continuous state-space model and

establish the relationship between each coefficient

matrix of the two. Suppose the sampling period is T, so

the continuous state space model Eq. (2) can trans-

form to the discrete state-space model, which is

expressed as

yðKTÞ ¼ gðx; uÞuðKTÞ
xðKT þ TÞ ¼ GðTÞxðKTÞ þ HðTÞuðKTÞ

�
ð3Þ

It is worth noting that discretization is mainly for

differential equations describing dynamic character-

istics. For the static equation, the first equation in

Eq. (3), it is unchanged after discretization. Hence, we

just derive an equivalent discrete state-space model of

the second equation in Eq. (3). Next, the relationship

between each coefficient matrix of Eqs. (2) and (3)

will be analyzed.

The solution formula of the continuous state

equation is given as

xðtÞ ¼ Uðt � t0Þxðt0Þ þ
Z t

t0

Uðt � sÞBuðsÞds ð4Þ

where U is the state transition matrix of A. In order to

make the discretization be an equivalent transforma-

tion process from continuous system to discrete

system, the values of state variables, input variables

and output variables of the system at each sampling

moment remain unchanged after discretization. Con-

sidering the state response during a sampling period

from the sampling time KT to the time (K ? 1)T, and

assuming that u(KT) is constant over the sampling

period, that is u(s) = u(KT), Eq. (4) can be derived as

Eq. (5) by letting t0 = KT and t = (K ? 1)T.

xððK þ 1ÞTÞ ¼ UðTÞxðKTÞ þ
Z ðKþ1ÞT

KT

U½ðK þ 1ÞT

� s�dsBuðKTÞ
ð5Þ

Assuming t* = (K ? 1)T – s, Eq. (5) can be rewritten
as

xððK þ 1ÞTÞ ¼ UðTÞxðKTÞ þ
Z T

0

Uðt�Þdt�BuðKTÞ

ð6Þ

Compared with Eqs. (3) and (6), one gets

GðTÞ ¼ UðTÞ ¼ eAT

HðTÞ ¼
R T
0
UðtÞdtB ¼

R T
0
eAtdtB

�
ð7Þ

Letting tn = KT and tn?1 = KT ? T, a n-dimensional

generalized DM model can be derived as

yðtnÞ ¼ gðx; uÞuðtnÞ
xðtnþ1Þ ¼ eATxðtnÞ þ

R T

0
eAtdtBuðtnÞ

�
ð8Þ

Hence, the other types of DM mathematical models

can be obtained as Table 1

2.2 Two mathematical DM models

In this subsection, two mathematical voltage-con-

trolled DM models are proposed as follows:

Model 1 :
iðtnÞ ¼ ½auðtnÞ þ bu2ðtnÞ�vðtnÞ
uðtnþ1Þ ¼ TvðtnÞ þ uðtnÞ

�
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Model 2 :
iðtnÞ ¼ �Ga þ Gbv

2
0ðtnÞ

� �
vðtnÞ

v0ðtnþ1Þ ¼ e�bTv0ðtnÞ þ
a

b
ðe�bT � 1ÞvðtnÞ

(

We can see Model 1 is an ideal DM, where the

variables a and b are coefficients controlling the

memristance.Model 2 is a non-ideal memristor, whose

continuous model was proposed in Ref. [31]. Variable

v0 is the internal voltage that controls the memristor,

whose memristance depends on the control parameters

Ga, and Gb.

Set the parameters of Model 1 and Model 2 as

Table 2, and the excitation signal is given by v(n) = A

sin(wtn), where tn is a discretized time with step

T. Varying the frequencyw, the different v–i curves for

two models are plotted in Fig. 1a, b, respectively.

All the results indicate that the hysteresis loops

confined to the first and third quadrants on the v–

i plane are always pinched at the origin, which satisfy

the character of a memristor [2, 31]. In addition, the

enclosed lobe area of the hysteresis loop increases

monotonically with the decrease of the frequency

w. Finally, the hysteresis loop will shrink to a single-

valued function when the frequency w & 10 kHz for

Model 1 and 100 Hz for Model 2 under the above

parameters in Table 2. Thus, these three fingerprint

characteristics indicate that the DM models are

accorded to the definition of the memristor. In

addition, when the frequency w = 1 Hz, while the

other parameters are set as Table 2, the v–i curves of

their DM models and CM models of Model 1 and

Model 2 are shown in Fig. 1c, d, where the blue curves

represent the results of CM and the red dots represent

DM. It can be seen that the curves of DM and CM

basically match. Hence, the DM model can retain the

properties of the CM.

Non-volatile analog memories refer to a class of

memory devices that can store a continuous ranges of

resistance values [2]. In the past, Chua proposed the

following criterions (not all) for non-volatile memris-

tors in Refs. [2, 32, 33]. First, all ideal memristors are

non-volatile analog memories [2]. Second, a memris-

tor is non-volatile, when its power-off plot (POP), just

a curve in the f(x, 0) versus x plane, intersects the x-

axis at 2 or more points with a negative slope [32, 33].

The next but not the last one, if a memristor whose

pinched hysteresis loop depends not only on the input

waveform i(t) or v(t), but also on the initial conditions

of the relevant state variables, is non-volatile [33].

As we know, the DM models are accorded to the

definition of the memristor, and they can retain the

properties of the CM. Thus, we can exert the criterions

of non-volatile to the DM.

Letting v = 0 for Model 1; it is easy to see that f(x,

0) = 0, which means the POP intersects the x-axis at

an infinite number of points. For Model 2, f(x, 0) is a

linear function, f(x, 0) = e�bTx, where e�bT is coeffi-

cient. Thus, the POP for Model 2 intersects the x-axis

at only one point. In short,Model 1 is non-volatile, and

Model 2 is volatile.

Setting the parameters as Table 2, the i–v curves

with different initial values for Model 1 and Model 2

are shown in Fig. 2. It can be clearly seen that the i–

v curve of Model 1 changes with the varying of the

initial value, while the i–v curve of Model 2 does not

change. In terms of the third criterion, we also can

Table 1 Different kinds of

DM mathematical models
Items Current-controlled Voltage-controlled

Ideal DM vðtnÞ ¼ gðqÞiðtnÞ
qðtnþ1Þ ¼ TiðtnÞ þ qðtnÞ

�
iðtnÞ ¼ gðuÞvðtnÞ
uðtnþ1Þ ¼ TvðtnÞ þ uðtnÞ

�

Generic DM vðtnÞ ¼ gðxÞiðtnÞ
xðtnþ1Þ ¼ eATxðtnÞ þ

R T

0
eAtdtBiðtnÞ

�
iðtnÞ ¼ gðxÞvðtnÞ
xðtnþ1Þ ¼ eATxðtnÞ þ

R T

0
eAtdtBvðtnÞ

�

Extended DM vðtnÞ ¼ gðx; uÞiðtnÞ
xðtnþ1Þ ¼ eATxðtnÞ þ

R T

0
eAtdtBiðtnÞ

�
iðtnÞ ¼ gðx; uÞvðtnÞ
xðtnþ1Þ ¼ eATxðtnÞ þ

R T

0
eAtdtBvðtnÞ

�

Table 2 Simulation parameters for Model 1 and Model 2

Model 1 Model 2

Parameters Values Parameters Values

a 0.1 Ga, Gb 0.0004, 0.00004

b 1 a, b 2.5, 1

T 0.1 T 0.1

A 0.4 A 2
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directly indicate that the Model 1 is non-volatile, and

Model 2 is volatile.

3 The application of DM mathematical model

in the Sine map

3.1 A DM-S map

Since the special form of the DM, it is more suitable to

use in discrete systems and digital circuits than the

(c) (d)

(a) (b)

Fig. 1 The i–v curves with
different frequencies of

a Model 1 and b Model 2
with setting initial values as

0.1. The v–i curves of the
DMmodel and CMmodel of

c Model 1 and d Model 2

(a) (b)

Fig. 2 The i–v curves with
different initial values for

a Model 1 with w = 10 and

b Model 2 with w = 1

123

Nonparametric bifurcation mechanism 4605



CM. In this section, we construct a DM-based map by

using the proposed Model 1.

The equation of the Sine map is expressed by

xðnþ 1Þ ¼ l sin½pxðnÞ� ð11Þ

where l is a constant.

In mathematical sense, the second equation in

Eq. (9) can be transformed into

uðtnþ1Þ ¼ uð1Þ þ T
Xn
j¼1

vðtjÞ ð12Þ

Combining with Eqs. (9) and (12) yields

iðtnÞ¼ auð1ÞþaT
Xn�1

j¼1

vðtjÞþb uð1ÞþT
Xn�1

j¼1

vðtjÞ
" #2

2
4

3
5vðtnÞ
ð13Þ

Assuming that x(n) = v(tn), x(j) = v(tj),

A(n) = i(tn), and k = T, so the DM model is presented

as

AðnÞ¼ auð1Þþak
Xn�1

j¼1

xðjÞþb uð1Þþk
Xn�1

j¼1

xðjÞ
" #2

2
4

3
5xðnÞ

ð14Þ

Adding the DM model into the original Sine map

for the state x(n) control, a new map called the DM-S

map is designed. The model structure of the new map

is given in Fig. 3, and its equation can be expressed as

xðnþ1Þ¼lsin p auð1Þþak
Xn�1

j¼1

xðjÞþb uð1Þþk
Xn�1

j¼1

xðjÞ
" #2

2
4

3
5xðnÞ

2
4

3
5

ð15Þ

The equation shows that the present state of x

depends on the initial state of the DM and the sum of

all the past states of x. Therefore, the special ‘‘memory

effect’’ is reflected in the new map. Moreover, due to

adding a DM to the sine map, the new map increases

one dimension. Therefore, Eq. (15) can be derived

into the 2-D equations expressed as Eq. (16) by

assuming

yðnÞ ¼ uð1Þ þ k
Xn�1

j¼1

xðjÞ

xðnþ 1Þ ¼ l sin½pðayðnÞ þ by2ðnÞÞxðnÞ�
yðnþ 1Þ � yðnÞ ¼ kxðnÞ

�
ð16Þ

The parameters are selected as a = 7.2, b = 50,

k = 1.2, and the initial values are set as x(1) = 0.2 and

y(1) = 0.2. Set different values of parameter u as

shown in Table 3 and Lyapunov exponents are

obtained in Table 3.

In order to make the simulation results more

accurate, we set the number of calculations as

100,000. The results show that if the value of the

Lyapunov exponent is greater than about 0.01, it can

be considered as a positive value.

It is obvious that the proposed DM-S map has three

kinds of dynamic behaviors and their phase portraits

and iterative sequences are plotted in Fig. 4, where the

iterative sequences are limited to the first 150 itera-

tions to make the graphs clear. When l = 0.24, the

map behaves the irregular movements at the beginning

and then enters a stable state. When l = 0.14, the map

is chaotic because of a positive exponent, and the

points on the trajectory are uniformly distributed in the

plane. As l changes to 2.9, the scope of the map

becomes larger, and more points appear in the

boundary and negative region. Because the Lyapunov

exponents are all greater than zero, the map can

generate hyperchaos.

Furthermore, without the sine function, the accu-

mulator will cause the value of y(n) to increase

infinitely, resulting in the divergence of the map. It is

because the sine function can always keep the

sequence of x(n) balance between positive and neg-

ative values, that the y(n) sequence will not diverge.

Fig. 3 The structure of the DM-S map

Table 3 Lyapunov exponents and dynamic behaviors for

different values of parameter l

Values of l Lyapunov exponents Dynamic behaviors

0.14 0.0142 – 0.7277 Chaos

0.24 3.7745e-05 – 1.8608 Period

2.9 10.4587 0.2138 Hyperchaos
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3.2 Stability for DM-S map

The stability of a discrete map depends on its fixed

point that is regarded as an element mapping to itself

in its domain [34]. For the original sine map xn?1 = l
sin(pxn), the number of the fixed points and the

stability relies on the parameter l. For example, if

setting l = 4, the original sine map has two fixed

unstable points E0 = 0 and Em = xm, where xm is

solved by xm = 4 sin(pxm); if setting l = 0.5, the

original sine map has two fixed stable points E0 = 0

and Em = 0.5; if setting l = 0.1, the original sine map

has only one fixed stable point E0 = 0.

The fixed points of the DM-S map marked as (x*,

y*) are obtained by the following equations

x� ¼ l sin½pðay� þ by�2Þx��
y� ¼ y� þ kx�

�
ð17Þ

Obviously, the DM-S map has infinitely many line

fixed points, denoted as (x*, y*) = (0, M), where M is

an arbitrary constant.

The Jacobin matrix J at the fixed points can be

calculated as

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Some simulation

results for the map: a phase

portrait for l = 0.24 and

b the corresponding iterative
sequences, c phase portrait
for l = 0.12 and d the

corresponding iterative

sequences, e phase portrait
for l = 2.9 and f the
corresponding iterative

sequences
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J ¼ lpðaM þ bM2Þ 0

k 1

� �
ð18Þ

The characteristic equation of the Jacobin matrix is

derived as

ðk� 1Þ½k� lpðaM þ bM2Þ� ¼ 0 ð19Þ

One gets

k1 ¼ 1; k2 ¼ lpðM þ bM2Þ ð20Þ

In terms of the stability criterion of discrete systems

[34], if the absolute values of both eigenvalues are less

than 1, the fixed point is stable; otherwise, it is

unstable. Note that the term unstable (or stable) point

means the trajectories are attracted (or repelled) in the

neighborhood of the fixed point. Obviously, the

Jacobin matrix (18) has one eigenvalue that is always

equal to 1. The other eigenvalue depends on both the

parameters and the initial position of the fixed point on

the y-axis.When |k2|[ 1, the fixed points are unstable.

When |k2|\ 1, the fixed points are critically stable.

Hence, we can consider the set |k2| = 1 as the condition

of the critical bifurcation. For example, if the param-

eter u and initial state M are set as l = 1 and M = 1,

respectively, the stability region of DM-S map with

the varying of parameters a and b is obtained as Fig. 5.

When the parameters a and b locate in the closed blue

area, the DM-S map is critically stable. When a and

b locate in red lines, the system shows the critical

bifurcation at a fixed point.

4 Bifurcations without or with parameters

4.1 Nonparametric bifurcations

Based on the above analyses of stability, the eigen-

value k1 of each fixed point is always on the unit circle,
whereas the second eigenvalue k2 is in or out of the

unit circle in most instances. However, when the

second eigenvalue k2 is on the unit circle, the DM-S

map has a significant property of nonparametric

bifurcations.

Suppose parameter l = 1/p yields

k2 ¼ aM þ bM2 ð21Þ

For different ranges of parameter b, the corre-

sponding unstable regions are obtained in Table 4. In

case b\ - a2/4, starting from the vicinity of the

stable point (0, M1), where

�aþ
ffiffiffiffiffiffiffiffiffiffi
a2�4b

p

2b \M1\ �a�
ffiffiffiffiffiffiffiffiffiffi
a2�4b

p

2b , the phase point moves

away from the initial state and then settles down into a

stable point or periodically oscillates with different

amplitudes.

Instead, if the phase point starts from the vicinity of

unstable points, it may behave different motions.

Thus, one can observe that for fixed parameters, any

changes of initial values give rise to the bifurcational

changes in phase trajectories, which is called non-

parametric bifurcations in this paper.

Let the parameters as a = 2, k = 0.1, l = 1/p, and
initial values x(1) = 0.1. For different values of

parameter b, bifurcation diagrams of various initial

values y(1) are plotted in Fig. 6a–c, respectively.

According to Table 4, when b = - 2 and 2, the

stable regions are - 0.366\M\ 1.366 and -

1.366\M\ 0.366. The corresponding bifurcation

diagrams are shown in Fig. 6a, b, respectively. Note

that when - a2/4\ b\ a2/4, there are two continu-

ous stable ranges. In case b = - 0.5, the stable ranges

are - 0.45\M\ 0.58 and 3.41\M\ 4.45, and

the corresponding bifurcation diagram is shown in

Fig. 6c. One can observe that these structures of a

bifurcation consist of three parts. One is a set of rest

points on the x-axis, another is a set of periodic points

moving up and down around the x-axis, and the last is a

set of disorganized points on limited two-dimensional

Fig. 5 The stability region

of DM-S map with the

varying of parameters a and

b for parameter u = 1 and

initial state M = 1

Table 4 Unstable regions related to different ranges of b

b Stable regions

b[ a2/4 �a�
ffiffiffiffiffiffiffiffiffiffi
a2þ4b

p

2b \M\ �aþ
ffiffiffiffiffiffiffiffiffiffi
a2þ4b

p

2b

- a2/4\ b\ a2/4 �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2b
\M\

�aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b

p

2b
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b

p

2b
\M\

�a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2b

- a2/4[ b �aþ
ffiffiffiffiffiffiffiffiffiffi
a2�4b

p

2b \M\ �a�
ffiffiffiffiffiffiffiffiffiffi
a2�4b

p
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plane. All figures indicate that if the phase point starts

from the vicinity of stable points, it behaves the first

motion. As the initial value changes to the critical

value that makes the stability change, the behavior of

trajectory becomes the second type. Otherwise, when

the initial value is very far from stable fixed points, it is

chaotic.

In order to investigate the mechanism of nonpara-

metric bifurcations, we focus on attractor evolutions

with the varying initial values y(1). Let the parameters

as a = 2, k = 0.1, l = 1/p, and b = - 0.5. Starting

from the initial point (0.1, - 2), near a set of

unstable fixed points (shown by the red dashed line

in Fig. 7a), the phase point moves away from the

initial point and behaves irregular movements in a

limited space because of the repellency from

unstable points.

As the initial value gets closer to the stable fixed

points, the map will lose the chaotic state. When the

phase point starts from point S (0.1, - 1), whose

trajectory is plotted as Fig. 7b, where a set of

stable (unstable) fixed points are described by black

(red) dashed line. The sequence of x(n) always shifts

symmetrically about the x-axis, resulting in the

sequence of y(n) oscillates with a small amplitude.

Hence, the phase point moves upward along a spiral-

like trajectory to the vicinity of stable fixed points and

then culminates in motion shifting between two points

marked T1 and T2 in Fig. 7b.

(a) (b) (c)

Fig. 6 Bifurcation

diagrams of various initial

values y(1) for different
parameter b: a b = - 2,

b b = 2, and c b = - 0.5.

Note that, the first 100

iterations are ignored to

intuitively describe

bifurcation diagrams

(a) (b)

(c) (d)

Fig. 7 Phase portraits of

various initial values y(1) for
b = - 0.5: a y(1) = - 2,

b y(1) = - 1, c y(1) = 0.1,

and d y(1) = 1.5
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As shown in Fig. 6c, when the phase point starts

from the vicinity of unstable points

(- 0.45\ y(1)\ 0.58 and 3.41\ y(1)\ 4.45), it

will move toward and quickly settle down into a

stable point, which can be observed in Fig. 7c with

y(1) = 0.1. Another case is that when the initial value

y(1) is located in the unstable range close to two

stable ranges, the phase point is also attracted to a fixed

point on the x-axis. Suppose the initial values

y(1) = 1.5 and x(1) = 0.1, whose phase portrait is

shown in Fig. 7d. The phase point moves rapidly with

the increase in the number of iterations, until it arrives

at the vicinity of unstable points. Since the attraction

of the stable points, the phase point enters into a

stable state of a single point.

4.2 Bifurcations with parameters

This subsection shows the bifurcation and Lyapunov

exponents of the sine map and the DM-S map with the

varying parameters. The parameters of the DM-S map

are set as a = 7.2, b = 50, k = 1.2, and the initial

values are selected as x(1) = 0.2 and y(1) = 0.2.

Changing the parameter l in the range of [0.01, 3]

with the step of 0.001, the bifurcation diagram and the

corresponding Lyapunov exponent spectrum of the

sine map are illustrated in Fig. 8a, b, and those of the

DM-S map are shown in Fig. 8c, d, respectively.

We can see from Fig. 8 that the bifurcation

diagrams and their corresponding Lyapunov exponent

spectrums are consistent. The chaotic ranges of the

sine map are discontinuous, which means that a small

change of l may lead the sine map to be periodic.

However, the chaotic region of the DM-S map is

continuous when l is approximately greater than 0.6.

Furthermore, compared with Fig. 8b, d, the maximum

Lyapunov exponent of the DM-S map is much greater

than that of the original Sine map.

Since the DM-S map has more control parameters

than that of the sine map, it has more complex

dynamical behaviors and larger parameter space.

Setting the parameters as l = 2 and k = 1.2, two

Lyapunov exponents with the varying parameters

a and b in the range of [1, 50] are shown in Fig. 9. One

can see that the first Lyapunov exponent is almost

always positive over the parameter ranges, and the

second one is also positive in a large range.

(a) (b)

(c) (d)

Fig. 8 Bifurcation diagram

and its corresponding

Lyapunov exponent

spectrum with varying

u a bifurcation diagram of

sine map, b Lyapunov

exponent spectrum of sine

map, c bifurcation diagram

of DM-S map and

d Lyapunov exponent

spectrum of memristor-

based sine map
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5 Hardware implementation and NIST test

In this section, the hardware implementation of the

DMs and the DM-S map is obtained by DSP board,

whose experiment device mainly consists of core

processing chip (TMS320C5509) with an evaluation

board (ICETEK-VC5509-AE) and a digital oscillo-

scope (DSO-X3034A). The data are generated through

the microcontroller, then converted and shown by the

converter and the oscilloscope, respectively.

Set the parameters of the DMs as Table 2, and the

hysteresis loops of the Model 1 and Model 2 are

obtained as Fig. 10a, b, respectively. These results are

consistent with the simulation results shown in Fig. 1,

which indicates that the DM can naturally be realized

by digital circuit.

Set the parameters of the map as a = 7.2, b = 50,

k = 1.2, and l = 2.9. The obtained sequences of xn and

yn, and the experimental prototype are shown as

Fig. 10c, d, respectively. These results are consistent

with the simulation results shown in Fig. 4f.

In order to verify the randomness of the sequences

obtained by the proposed DM-S map, the National

Institute of Standards and Technology (NIST) SP800-

22 test is applied, which consists of 15 subtests. Each

subtest can produce two results, P value and propor-

tion of the passed binary sequences.

Since the DA converter only owns 8 bits, we select

the last 8-bit [21: 28] of each sequence to generate the

test sequences and export them into binary files. In our

experiment, we generate 50 sequences, and the length

of each sequence is 1,048,576. The test results are

listed as Table 5. According to the criteria, the

minimum proportion and P value are 0.9628 and

0.0001, respectively. One can see that two sequences

pass all the subtests, which means the hyperchaotic

sequences generated by DM-S map have high

randomness.

6 Conclusions

In this paper, a new n-dimensional generalized model

of discrete memristor is proposed by using the precise

discrete method. Two different mathematical models

of DM are obtained and their i–v cures are explored,

whose results show that the DM models accord with

the characteristics of memristors. Applying the math-

ematical model into the sine map, it yields a new

discrete map called DM-S map. From the simulation

results, we can find that DMs can be used to increase

the complexity of the nonlinear chaotic map and

construct the low-dimensional hyperchaotic map.

Moreover, the hardware implementation of the DMs

and the DM-S map is obtained by DSP.

Indeed, the DM proposed in this paper is different

from the existing memristors that designed by various

materials and analog circuits. The DM can be naturally

realized in digital circuits (such as DSP and FPGA).

As we know, systems can be divided into continuous

systems and discrete systems. At present, DM can be

used into discrete maps to increase the complexity and

even generate hyperchaotic sequences because of the

ease of implementation. Hence, the DM may have

long-term application prospects. Moreover, DMs,

whose values are changed with the input, can be

applied to simulate cognitive function, neuromorphic

computations, modulators, and other applications such

as information encryption, programmable digital cir-

cuit and logical operations.

Compared with the real memristor, the research of

discrete memristor is still in its infancy, and many

(a) (b)

Fig. 9 Two Lyapunov

exponents of the DM-S map

with varying parameters

a and b: a LE1 and b LE2
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theories have not been applied yet. Just like other

researchers working on DMs, we hold the opinion that

the input and the output of the memristors are not only

limited to voltage and current but can be extended to

other signals. We expect DM will expand the scope of

the memristor, and more interested scholars will join

and continue this work.
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