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Abstract In this article, a novel fractional order
model has been introduced in Caputo sense for HIV-
TB co-infection in the presence of exogenous reinfec-
tion and recurrent TB along with the treatment for both
HIVandTB.Themain aimof considering the fractional
order model is to incorporate thememory effect of both
diseases.Wehave analyzed both sub-models separately
with fractional order. The basic reproduction number,
which measures the contagiousness of the disease, is
determined. The HIV sub-model is shown to have a
locally asymptotically stable disease-free equilibrium
point when the corresponding reproduction number,
RH , is less than unity, whereas, for RH > 1, the
endemic equilibrium point comes into existence. For
the TB sub-model, the disease-free equilibrium point
has been proved to be locally asymptotically stable
for RT < 1. The existence of TB endemic equilib-
rium points in the presence of reinfection and recurrent
TB for RT < 1 justifies the existence of backward
bifurcation under certain restrictions on the parame-
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ters. Further, we numerically simulate the fractional
order model to verify the analytical results and high-
light the role of fractional order in co-infection mod-
eling. The fractional order derivative is shown to have
a crucial role in determining the transmission dynam-
ics of HIV-TB co-infection. It is concluded that the
memory effect plays a significant role in reducing the
infection prevalence of HIV-TB co-infection. An incre-
ment in the number of recovered individuals can also
be observed when the memory effect is taken into con-
sideration by introducing fractional order model.

Keywords HIV · Tuberculosis · Fractional order ·
Exogenous reinfection · Recurrent TB · Bifurcation

1 Introduction

Mathematical modeling is a process of developing a
mathematical model to describe and analyze a physi-
cal problem using the mathematical concepts. From a
mathematical and biological point of view, many dis-
eases are there that require adequate attention such
as COVID-19, dengue, HIV and tuberculosis (TB).
Among these, HIV and TB are two diseases which
have a synergistic relation between them and we will
be examining the dynamics of their co-infection in this
article.

TB is a contagious disease generated due to a rod-
shaped bacteria called mycobacterium tuberculosis,
which was first discovered in 1882. Around 90% of
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people infectedwith latent TB remains latently infected
and does not develop active TBdisease [1]. Progression
from latent TB to active TB can occur in two ways that
are endogenous reactivation and exogenous reinfec-
tion [2]. Endogenous infection describes a situation in
which an individual is already harboring the causative
agent, mycobacterium tuberculosis bacteria, which is
under control due to a healthy immune system and reac-
tivates to cause active TB due to the destabilization
of Immune system, whereas exogenous reinfection in
latent TB infectives occurs through the recent exposure
to some external infectious sources, generally through
contact with infectious individuals.

The human immunodeficiency virus weakens an
individual’s immune system by attacking the immune
system cells such as helper T cells, dendritic cells and
macrophages. Even if HIV/AIDS is not permanently
curable, antiretroviral therapy is used to improve the
health of HIV-infected individuals and to fight against
the opportunistic infections. HIV and TB are strongly
interrelated to each other and accelerates the progres-
sion of each other. Due to the deficiency in immunity,
HIV-infected individuals are at a higher risk of devel-
oping TB. In 2018, the number of individuals who
died from HIV-TB co-infection was estimated to be
251, 000 [3]. Collaborative anti-TB and HIV activities
such as HIV testing, antiretroviral therapy and TB pre-
ventive measures are required for the reduction in HIV-
TB co-infection prevalence. The emergent requirement
by the healthcare authorities led many researchers to
work upon various infectious diseases including HIV-
TB co-infection with an aim to provide strategies and
control policies which reduce the transmission of HIV-
TB co-infection [4–14].

Fractional calculus is an extension of ordinary cal-
culus, which is an emerging field in the area of applied
mathematics such as modeling of complex phenom-
ena, neural networks and signal processing [15]. Kang
et al. [16–18] have also worked on several physical
phenomena of dynamical systems using the fractional
order derivatives. It is a powerful tool that has been
recently used by various researchers to model the com-
plex dynamical systems such as modeling of infectious
diseases that consist of nonlinear behavior and involve-
ment of memory effect. The main advantage of frac-
tional calculus is the inclusion of memory concepts.
The memory features in fractional derivatives explore
hidden dynamics of the infection which is not feasible
to obtain with integer order derivatives. In case of dis-

ease modeling, memory effect also involves hereditary
properties of an individual and prior knowledge of the
disease which may come due to a previous exposure
of the disease. As the study of fractional order deriva-
tives incorporates memory effect of the disease (if any)
and the hereditary properties, the use of fractional order
differential equations proves to be more realistic dur-
ing the study of infectious diseases rather than classical
integer ordermodels as integer ordermodels do not take
these properties into consideration. It is also known that
individuals recovered from TB may not gain perma-
nent immunity and suffer through the recurrence of TB
either by the reinfection with a new strain of mycobac-
terium tuberculosis or relapse of original strain. This
emergence of the second episode of TB after the suc-
cessful recovery from the first episode of TB is termed
as recurrent TB [19]. Hence, fractional order deriva-
tives provide an excellent way to model the infectious
diseases such as HIV/AIDS and TB.

Recently, many researchers have started working on
the fractional order models to study the transmission
dynamics of HIV and TB [20–27]. Pinto and Carvalho
[28] proposed a fractional order HIV-TB co-infection
model in the presence of multidrug-resistant TB strains
and shows different dynamics of the model for various
orders of fractional derivatives α ∈ (0, 1], with biolog-
ically relevant parameters. Zafar et al. [29] presented a
fractional order model in Caputo sense to describe the
transmission dynamics of HIV with an aim to help the
researchers and policy makers in targeting, prevention
and treatment resources for maximum effectiveness. A
fractional order derivative model has been proposed by
Arshad et al. [30] by focusing on the degree of T cell
depletion to study the transmission dynamics of HIV
infection.

Directed by the aforementioned articles and the need
of including memory effects to analyze the dynamics
of HIV and TB, we have formulated and analyzed a
fractional order HIV-TB co-infection model in Caputo
sense by incorporating the effect of exogenous rein-
fection and recurrent TB. In this article, a nonlinear
mathematical model has been formulated in the third
section, together with the verification of existence and
uniqueness of positive solutions. The HIV sub-model
has been analyzed in the fourth section. The fifth sec-
tion deals with the analysis of TB sub-model along
with determining the conditions under which endemic
equilibrium point exists. The full model has been ana-
lyzed in the sixth section. Sensitivity analysis of the
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reproduction number to the parameters has been done
in the seventh section. In the eight section the system
is solved numerically for distinct values of the order of
fractional derivatives with biologically relevant param-
eters. Finally, in the last section, we conclude the study
with a brief discussion.

In this article, the quantitative and qualitative anal-
yses of the proposed model have been performed by
following [31,32].

2 Preliminaries

In this section, we will discuss some of the basic defini-
tions describing the Caputo fractional order derivative.

Definition 2.1 [15] The fractional integral of order
α > 0 for a function h : R+ → R is defined as

I α
t h(t) = 1

�(α)

∫ t

0
(t − χ)α−1h(χ)dχ,

where �(.) denotes the gamma function.

Definition 2.2 [15]TheCaputo fractional order deriva-
tive for a function h ∈ Cn of order α is given as:

Dα
t (h(t)) = I n−αDnh(t)

= 1

�(n − α)

∫ t

0

hn(χ)

(t − χ)α+n−1 dχ,

which is defined for absolutely continuous functions
and (n − 1) < α < n, where n ∈ N.

Definition 2.3 [33] The constant x∗ is called an equi-
librium point of the Caputo fractional dynamical sys-
tem given below

Dα
t x(t) = h(t, x(t)), α ∈ (0, 1],

if and only if, h(t, x∗) = 0.

3 Model formation

In this section, we formulate a mathematical model
to describe the transmission dynamics of HIV-TB co-
infection by assimilating the treatment for both dis-
eases along with the incorporation of exogenous rein-
fection and recurrent TB infection. We all know that

co-infection of HIV and TB is considered as a very
serious stage in an individual’s life regardless of the
stage of HIV. Thus, in this paper, we do not differenti-
ate between HIV and AIDS, which are the two clinical
stages of HIV. However, we have considered both the
forms of TB, that is, latent and active TB. In order to
formulate the model, it is assumed that the population
is entering into the susceptible class with a constant
recruitment rate �. It is also assumed that susceptibles
cannot become HIV-TB co-infected at the same time.
Further, we have assumed that the co-infected individ-
uals continuing HIV treatment after getting recovered
from TB will follow certain precautionary measures to
keep themselves away from TB-infected individuals in
order to avoid TB reinfection.

Different disease stages can be described bydividing
the total population N (t) into eight mutually exclusive
compartments, namely, the class of population suscep-
tible to both diseases (S(t)), latent TB-infected individ-
uals (LT (t)), tuberculosis-infected individuals (IT (t)),
individuals recovered from TB (RT (t)), only HIV-
infected individuals (IH (t)), individuals co-infected
with latent TB and HIV (LTH (t)), individuals actively
infected with TB and HIV (ITH (t)), individuals recov-
ered from TB and under treatment of HIV (RH (t)) in
such a manner that

N (t) = S(t) + LT (t) + IT (t) + RT (t)

+ IH (t) + LTH (t) + ITH (t) + RH (t).

Individuals infected with TB and those who are co-
infected with HIV and TB can spread TB among sus-
ceptible individuals with the force of infection, given
as

λT = βT

N
(IT + ITH ). (3.1)

Further, HIV can be acquired by susceptible indi-
viduals after coming in contact with HIV infectives,
HIV-TB co-infectives and individuals recovered from
TB but still continuing antiretroviral therapy. Thus, the
force of infection associated with HIV is given as

λH = βH

N

(
IH + LTH + ITH + ηRH

)
. (3.2)

The modification parameter considered in λH , that
is, η < 1, accounts for the fact that the class of indi-
viduals undergoing antiretroviral therapy has a restored
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immune system and hence lesser viral load of HIV due
to which they spread HIV at a lower rate. At the rate λT

and λH , susceptibles switch to the class of latent TB
and HIV infectives, respectively. Individuals latently
infected with TB progress to the class of active TB
infectives at the rate k1LT , with k1 as the progression
coefficient. Further, latent TB infectives also move into
the class of active TB infectives due to the occurrence
of exogenous reinfection at the rate φ1λT , which may
result from the recent exposure of latent TB infectives
with actively infected individuals. Individuals actively
infected with TB headway to the class of recovered
individuals after getting completely recovered fromTB
at the rate τ . Individuals from the recovered class again
move to the class of latent TB infectives at the rate θλT ,
where 0 � θ � 1 describes the modification param-
eter accounting for the effectiveness of anti-TB treat-
ment. Also, individuals suffering from latent TB and
active TB acquire HIV infection at the rate λH . HIV
infectives become co-infected with latent TB at the rate
δλT , with the modification parameter δ > 1, justifying
the fact that HIV-infected individuals are more prone
to acquire TB infection due to weak immune system.
Further, individuals co-infected with HIV and latent
TB progress to the class of HIV-TB co-infected indi-
viduals at the rate (k2 + φ2λT ). The progression rate
k2 is considered in such a way that k2 > k1, due to the
fact that the risk of progression from latent to active
TB class is estimated to be twenty times higher among
HIV-positive individuals thanHIVnegative individuals
[3] (Table 1).

Some co-infectives may not get detected with HIV
and TB simultaneously. Thus, individuals in ITH class
who do not get detected with HIV start taking TB treat-
ment only and enter in IH class after getting recov-
ered from TB at the rate r1τ . However, as advised by
the healthcare authorities, individuals detecting from
the co-infection burden of HIV and TB start taking
TB treatment first and then commence HIV treatment
either after the completion of TB treatment or after few
weeks of the commencement of TB treatment on the
basis of CD4+ cell count and move to RH class at the
rate r2γ , where r2 is the fraction of individuals detected
both HIV and TB simultaneously. From the IH class,
HIV infectivesmove to the RH class at the rateρ. Using
the schematic diagram given in Fig. 1, the differential
equations describing the dynamics of population in all
the classes can be expressed as

Table 1 The description of parameters

ParameterDescription

� constant recruitment rate

βT transmission rate for TB

βH transmission rate for HIV

μ natural death rate

μT disease induced death rate for TB infectives

μH disease induced death rate for HIV infectives

μTH disease induced death rate for HIV-TB co-infectives

τ treatment rate for TB infectives

ρ treatment rate for HIV infectives

γ treatment rate for HIV-TB co-infectives

r1 fraction of co-infectives detected with TB only

r2 fraction of co-infectives detected with both HIV and TB

k1 progression rate from latent TB to active TB

k2 progression rate from HIV and latent TB to HIV-TB

θ effectiveness of TB treatment

φ1, φ2 exogenous reinfection rates

δ, η modification parameters

dαS

dtα
= � − λT S − λH S − μS

dαLT

dtα
= λT S + θλT RT

− λH LT − (k1 + φ1λT )LT − μLT

dα IT
dtα

= (k1 + φ1λT )LT

− λH IT − (τ + μ + μT )IT
dαRT

dtα
= τ IT − θλT RT − λH RT − μRT

dα IH
dtα

= λH S + λH RT

− δλT IH + r1τ ITH − (ρ + μ + μH )IH
dαLTH

dtα
= λH LT + δλT IH

− (k2 + φ2λT )LTH − (ρ + μ + μH )LTH

dα ITH
dtα

= λH IT + (k2 + φ2λT )LTH

− r1τ ITH − (r2γ + μ + μTH )ITH
dαRH

dtα
= r2γ ITH + ρ(IH + LTH ) − μRH ,

(3.3)

with the initial conditions given as
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Fig. 1 Schematic diagram
describing the transmission
of HIV-TB Co-infection

S(0) = S0 � 0, LT (0) = LT0 � 0,

IT (0) = IT0 � 0, RT (0) = RT0 � 0,

IH (0) = IH0 � 0, LTH (0) = LTH0
� 0,

ITH (0) = ITH0 � 0 and RH (0) = RH0 � 0.

(3.4)

3.1 Basic properties of the model

All the variables S(t), LT (t), IT (t), RT (t), IH (t),
LTH (t), ITH (t) and RH (t) describe human population.
Thus, it is necessary to prove that all the variables are
positive for all time t � 0. To establish the positivity
of the model solutions in Caputo sense, we first discuss
some of the essentials that will be required for this
proposed study.

Lemma 3.1 [34] (Generalized mean value theorem)
Suppose that h(x) ∈ C[a, b] and Dα

t h(x) ∈ C[a, b],
for 0 < α � 1, then we have

h(x) = h(a) + 1

�(α)
(Dα

t h)(ζ )(x − a)α (3.5)

with a � ζ � x,∀x ∈ [a, b] and �(.) denoting the
gamma function.

Lemma 3.2 [34] Suppose that h(x) ∈ C[a, b] and
Dα
t h(x) ∈ C[a, b], for 0 < α � 1. Then, the following

conditions hold true:

(1) If Dα
t h(x) � 0, for all x ∈ [a, b], then h(x) is

non-decreasing for each x ∈ [a, b].
(2) If Dα

t h(x) � 0, for all x ∈ [a, b], then h(x) is
non-increasing for each x ∈ [a, b].

Lemma 3.3 [35] Assume that the vector function h :
R

+ × R
n → R

n satisfies the following conditions:

(1) Function h(t, X (t)) is Lebseque measurable with
respect to t on R

+.
(2) Function h(t, X (t)) is continuous with respect to

X (t) on R
n.

(3) ∂h(t,X)
∂X is continuous with respect to X (t) on R

n.
(4) ||h(t, X)|| � ν + κ||X ||, for t ∈ R

+ and X ∈ R
n,

where ν and κ are positive constants.

Then, the initial value problem

Dα
t X (t) = h(t, X (t))

X (t0) = X0, α ∈ (0, 1] (3.6)

has a unique solution.

Based on biological considerations, the following
bounded region will be considered for the rest of the
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analysis

� =
{
(S, LT , IT , RT , IH , LTH , ITH , RH ) ∈

R
8+ : N (t) � �

μ

}
.

(3.7)

Thus, with the region �, we have the following result:

Theorem 3.4 There exists a unique solution X (t) =
(S(t), LT (t), IT (t), RT (t), IH (t), LTH (t), ITH (t),
RH (t)) for the model system (3.3), with the initial con-
ditions given by (3.4) in the positively region �.

Proof The existence and uniqueness of the X (t) =
(S(t), LT (t), IT (t), RT (t), IH (t), LTH (t), ITH (t),

RH (t)) corresponding to themodel system (3.3) can
be easily verified by using Lemma 3.3 stated above and
Theorem 3.1 given by Huo et al. [36].

Now, in order to prove that the region � considered
in equation (3.7) is positively invariant,wehave to show
that every solution trajectory starting in � remains in
� for all t � 0. First of all, we observe that

Dα
t S|S=0 = � > 0

Dα
t LT |LT =0 = βT

N
(IT + ITH )S + θλT RT � 0

Dα
t IT |IT =0 = k1LT + φ1

βT

N
LT ITH � 0

Dα
t RT |RT =0 = τ IT � 0

Dα
t IH |IH=0 = βH

N
(LTH + ITH

+ ηRH )(S + RT ) + r1τ ITH � 0

Dα
t LTH |LTH =0 = βH

N
(IH + ITH + ηRH )LT

+ δ
βT

N
(IT + ITH )IH � 0

Dα
t ITH |ITH =0 = βH

N
(IH + LTH

+ ηRH )IT + φ2
βT

N
IT LTH + k2LTH � 0

Dα
t RH |RH=0 = r2γ ITH + ρ(IH + LTH ) � 0.

Thus, Lemma 3.2 establishes the positivity of all the
solution components. Further, for proving the bound-
edness of the solution components, it can be observed
that the rate of change of total population correspond-

ing to the model system (3.3) is

Dα
t N = � − μT IT (t) − μH (IH + LTH )

− μTH ITH − μN (t) � � − μN (t).

After solving for N (t), we obtain

N (t) � N (0)Eα(−μtα) + �

μ
(1 − Eα(−μtα)).

Thus, in particular, if N (0) � �
μ
, then 0 < N (t) � �

μ

for all t � 0. Therefore, the total population N (t) is
bounded between 0 and �

μ
. This in turn proves the

boundedness of all the solution components. There-
fore, the region � is positively invariant and the model
system (3.3) is mathematically as well as epidemiolog-
ically well-posed. ��

4 The HIV sub-model

In this section, we analyze the model system (3.3) by
considering that TB is not present in the population.
Thus, by substituting LT = IT = RT = LTH = ITH =
0, the HIV sub-model is obtained as

dαS

dtα
= � − βH

N
(IH + ηRH )S − μS

dα IH
dtα

= βH

N
(IH + ηRH )S − ρ IH − (μ + μH )IH

dαRH

dtα
= ρ IH − μRH ,

(4.1)

with the nonnegative initial conditions as S(0) = S0 �
0, IH (0) = IH0 � 0 and RH (0) = RH0 � 0.

The feasible region forHIV sub-model is considered
as

�H =
{
(S, IH , RH ) ∈ R

3+ : 0 < N (t) � �

μ

}
.

Analogous to Theorem 3.4, �H can be easily proved
to be positively invariant.
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4.1 Basic reproduction number

For the HIV sub-model, the disease-free equilibrium
point is computed as

EH
0 =

(
�

μ
, 0, 0

)
. (4.2)

The basic reproduction number is defined as the aver-
age number of secondary infection cases generated by
a single infected individual in a completely suscepti-
ble population [37]. It is used to measure the conta-
giousness of a disease. For models with more compart-
ments, the next-generationmatrix approach [38] is used
to calculate the basic reproduction number. Following
the next-generation matrix approach, the matrices F
corresponding to the new infection terms and V corre-
sponding to the transfer terms are computed as

F =
[
βH ηβH

0 0

]
and V =

[
ρ + μ + μH 0

−ρ μ

]
.

Therefore, the basic reproduction number for the HIV
sub-model, defined as the spectral radius of FV−1, is
determined as

RH = βH

μ(ρ + μ + μH )
(ρη + μ), (4.3)

which gives the number of secondary infection cases
introduced into the population by a single HIV-infected
individual.

4.2 Stability analysis of the disease-free equilibrium

Now, we determine the conditions under which small
disturbances away from the disease-free equilibrium
point dissipate in time, that is, when the disease-free
equilibrium point is asymptotically stable. The follow-
ing lemma will be used to prove the local asymptotic
stability of the disease-free equilibrium point EH

0 .

Lemma 4.1 [34] Let α
(
= p

q

)
where p, q ∈ Z+ and

gcd(p, q) = 1. Define M = q, then the disease-
free equilibrium point of the nonlinear system (4.1) is
asymptotically stable if |arg(λ)| > π

2M for all roots λ

of the following equation

det (diag[λp λp λp] − M3) = 0,

where M3 is the matrix of linearization of the model
system (4.1) around the disease-free equilibrium point.

Theorem 4.2 The disease-free equilibrium point EH
0

for the HIV sub-model given by (4.1) is locally asymp-
totically stable, ifRH < 1 and is unstable forRH > 1.

Proof The linearization matrix for the model system
(4.1) evaluated at EH

0 is given as

J H
0 =

⎡
⎣−μ −βH −ηβH

0 βH − (ρ + μ + μH ) ηβH

0 ρ −μ

⎤
⎦ .

The characteristic equation of the matrix (λp I3 − J H
0 )

is computed as

(λp + μ)(λ2p + (ρ + 2μ + μH − βH )λp

+ μ(ρ + μ + μH ) − βH (ρη + μ)) = 0.
(4.4)

The argument of each root of the first factor (λp + μ)

is given as

arg(λs) = π

p
+ s

2π

p
� π

p
>

π

M
>

π

2M
,

for s = 0, 1, 2, . . . , (p − 1).
For the remaining quadratic factor, the coefficient

of λp and the constant term both are positive only
if RH < 1. Thus, by Routh–Hurwitz stability cri-
terion for fractional derivatives [39], all the roots of
the quadratic factor have argument greater than π

2M , if
RH < 1. Hence, the disease-free equilibrium point is
locally asymptotically stable ifRH < 1. However, for
RH > 1, there exists at least one root of the quadratic
factor given in equation (4.4) having argument less than
π
2M , which justifies the unstability of EH

0 forRH > 1.

Now, consider a function h : � → R
n , � ⊂ R

n , and
an autonomous system of fractional order differential
equations given by

Dα
t x(t) = h(x)

x(0) = 0,
(4.5)

where α ∈ (0, 1]. For a continuously differentiable
function V : B → R, we define the α order derivative
of V(x(t)) along the solution of the system (4.5) in the
following form
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Dα
t V(x(t)) = I 1−αDV(x(t)) = I 1−α

(
dV
dx

dx

dt

)
.

(4.6)

To prove the global asymptotic stability of the disease-
free equilibriumpoint,Huoet al. [36] haveproposed the
following Lyapunov LaSalle’s Principle for fractional
order derivatives.

Lemma 4.3 [36] (Lyapunov LaSalle’s Principle) Let
� ⊂ B be a bounded closed set that is positively
invariant. Let V : B → R be a continuously differ-
entiable function and assume that Dα

t V(x(t)) � 0 for
all x(t) ∈ �. Let D be the set of all points in � where
Dα
t V(x(t)) = 0. Let M be the largest invariant set in D.

Then, every bounded solution starting in� approaches
M as t → ∞, that is, for every x(0) ∈ �, x(t) → M
as t → ∞. Particularly, when M = x∗, then x → x∗
as t → ∞.

Using this lemma, we will prove the global stability
of the disease-free equilibrium point in the following
theorem.

Theorem 4.4 The disease-free equilibrium point EH
0

for the model system (4.1) is globally asymptotically
stable, if RH < 1.

Proof Consider a positively invariant function

V = βH (ρη + μ)

μ(ρ + μ + μH )
IH + ηβH

μ
RH . (4.7)

After taking α order derivative of the function V along
the solution of the model system (4.1), we get,

Dα
t V = βH (ρη + μ)

μ(ρ + μ + μH )
Dα
t IH + ηβH

μ
Dα
t RH

= βH (ρη + μ)

μ(ρ + μ + μH )(
βH (IH + ηRH )

S

N
− (ρ + μ + μH )IH

)

+ ηβHρ

μ
IH − ηβH RH

�
β2
H (IH + ηRH )

μ(ρ + μ + μH )
− βH (IH + ηRH )

= βH (IH + ηRH )(RH − 1)

� 0, if RH � 1.

Therefore, Dα
t V � 0 if RH � 1 and Dα

t V = 0 if and

only if, EH
0 =

(
�
μ

, 0, 0
)
. Thus, the largest invariant

set on which Dα
t V = 0 is singleton {EH

0 }. Hence, by
the Lyapunov LaSalle’s Principle, it can be concluded
that the disease-free equilibrium point EH

0 is globally
asymptotically stable whenever RH < 1. However, it
can be observed Dα

t V > 0 in a neighborhood of the
disease-free equilibrium point if RH > 1. Thus, by
Lyapunov stability theory the disease-free equilibrium
point becomes unstable for RH > 1.

4.3 The endemic equilibrium point

In this section, we compute the non-trivial endemic
equilibrium point for the HIV sub-model, by consider-
ing the system of equations given as

� − βH

N
(IH + ηRH )S − μS = 0

βH

N
(IH + ηRH )S − ρ IH − (μ + μH )IH = 0

ρ IH − μRH = 0.

(4.8)

Using (4.8) the endemic equilibrium point is obtained
as

ÊH = (Ŝ, ÎH , R̂H ),

where the components of ÊH are computed as

Ŝ = N̂

RH

ÎH = μN̂

ρ + μ

(
1 − 1

RH

)

R̂H = ρ N̂

ρ + μ

(
1 − 1

RH

)
.

(4.9)

Here, N̂ is given by

N̂ = �(μ + ρ)R2
H

βH (RH − 1)(μ + ρη) + μ(μ + ρ)RH
.

(4.10)

It can be clearly observed that the HIV endemic equi-
librium point exists ifRH > 1.

Now to determine the conditions under which the
HIV endemic equilibrium point is locally asymptoti-
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cally stable, we compute the linearization matrix cor-
responding to the HIV sub-model and evaluate it at the
endemic equilibrium point to obtain

R =
⎡
⎣r11 r12 r13r21 r22 r23

0 r32 r33

⎤
⎦ ,

where the entries of the matrix R are given as

r11 = −βH ( ÎH + η R̂H )

N̂ 2
( ÎH + R̂H ) − μ,

r12 = βH

N̂

(
ÎH + η R̂H

N̂
− 1

)
Ŝ,

r13 = βH

N̂

(
ÎH + η R̂H

N̂
− η

)
Ŝ,

r21 = βH ( ÎH + η R̂H )

N̂ 2
( ÎH + R̂H ),

r22 = βH

N̂ 2
(Ŝ + (1 − η)R̂H )Ŝ − (ρ + μ + μT ),

r23 = −βH

N̂

(
ÎH + η R̂H

N̂
− η

)
Ŝ,

r32 = ρ and r33 = −μ.

The characteristic equation of the matrix R is given as

λ3 + R2λ
2 + R1λ + R0 = 0, (4.11)

where

R2 = −(r11 + r22 + r33)

R1 = r11(r22 + r33) − r12r21 − r23r32 + r22r33

R0 = r21(r12r33 − r13r32) + r11(r23r32 − r22r33).

Now, the discriminant of the polynomial χ(λ) given by

χ(λ) = λ3 + R2λ
2 + R1λ + R0, (4.12)

can be written as

D(χ) = 18R0R1R2+(R2R1)
2−4R0R

3
2−4R3

1−27R2
0 .

Thus, following Ahmed et al. [39], the next theorem
provides the conditions under which the TB endemic
equilibrium point ÊH is locally asymptotically stable.

Theorem 4.5 For the endemic equilibrium point ÊH

and α ∈ (0, 1], all the roots of equation (4.11) satisfy
arg(λ) > απ

2 if the following conditions hold true:

(1) R0 > 0, R2 > 0 and R1R2 > R0.
(2) D(χ) < 0, R2 � 0, R1 � 0, R0 > 0, R1R2 < R0

and α < 2
3 .

(3) D(χ) < 0, R2 > 0, R1 > 0 and R1R2 = R0.

Corollary 4.6 If any one of the condition given in The-
orem4.5 is satisfied, then the endemic equilibriumpoint
ÊH is locally asymptotically stable.

5 The TB sub-model

In this section, theTB sub-modelwill be analyzed sepa-
rately by considering that HIV is not present in the pop-
ulation. Thus, by setting IH = LTH = ITH = RH = 0,
in themodel system (3.3), theTBsub-model is obtained
as

dαS

dtα
= � − λT S − μS

dαLT

dtα
= λT S + θλT RT − (k1 + φ1λT )LT − μLT

dα IT
dtα

= (k1 + φ1λT )LT − τ IT − (μ + μT )IT

dαRT

dtα
= τ IT − θλT RT − μRT ,

(5.1)

along with the nonnegative initial conditions given as

S(0) = S0 � 0, LT (0) = LT0 � 0,

IT (0) = IT0 � 0 and RT (0) = RT0 � 0.
(5.2)

The transmission of TB occurs with the force of infec-

tion λT , given as λT = βT

N
IT . The following feasible

region will be considered for the TB sub-model

�T =
{
(S, LT , IT , RT ) ∈ R

4+ : 0 < N (t) � �

μ

}
.
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5.1 Stability analysis of the disease-free equilibrium

The disease-free equilibrium point for the TB sub-
model given by

ET
0 =

(
�

μ
, 0, 0, 0

)
. (5.3)

The basic reproduction number computed in accor-
dance with the next-generation matrix approach is
given as

RT = βT k1
(k1 + μ)(τ + μ + μT )

. (5.4)

Now to qualitatively analyze the solution correspond-
ing to the TB sub-model, the following lemma is stated:

Lemma 5.1 [34] Let α
(
= p

q

)
where p, q ∈ Z+ and

gcd(p, q) = 1. Define M = q, then the disease-free
equilibrium point for the TB sub-model given by (5.1)
is locally asymptotically stable if |arg(λ)| > π

2M for
all roots λ of the following equation

det (diag[λp λp λp λp] − M4) = 0,

where M4 is the linearization matrix of the model sys-
tem (5.1) in the neighborhood of the disease-free equi-
librium point.

Using the above lemma, we establish the local stability
of the disease-free equilibrium point.

Theorem 5.2 The disease-free equilibrium point ET
0

for the TB sub-model given by (5.1) is locally asymp-
totically stable, if RT < 1 and is a saddle point for
RT > 1.

Proof The linearization matrix for the TB sub-model
given in (5.1) evaluated at the disease-free equilibrium
point ET

0 is computed as

J T0 =

⎡
⎢⎢⎣

−μ 0 −βT 0
0 −(k1 + μ) βT 0
0 k1 −(τ + μ + μT ) 0
0 0 τ −μ

⎤
⎥⎥⎦ .

Expanding det (λp I4 − J T0 ), with I4 as a 4× 4 identity
matrix, we obtain

(
λp + μ)2(λ2p + λp (k1 + τ + 2μ + μT )

+ (k1 + μ) (τ + μ + μT ) − βT k1) = 0.

The argument of each root of the first two factors
(λp + μ)2 satisfies

arg(λs) = π

p
+ s

2π

p
� π

p
>

π

M
>

π

2M
,

for s = 0, 1, 2, . . . , (p − 1).
However, for the next quadratic factor the constant

term is positive only if RT < 1. Thus, by the Routh–
Hurwitz stability criterion for fractional order deriva-
tives [39], all the roots of the remaining quadratic factor
have a negative real part, ifRT < 1.Hence, the disease-
free equilibrium point is locally asymptotically stable
for RT < 1 and is unstable for RT > 1.

Following Lemma 4.3 discussed in sect. 4, we now
prove the global asymptotic stability of the disease-free
equilibrium point ET

0 .

Theorem 5.3 The disease-free equilibrium point ET
0

for the TB sub-model is globally asymptotically stable,
if RT < 1 and the population is free from exogenous
reinfection and recurrent TB.

Proof Consider a Lyapunov Function

V = βk1
(k1 + μ)(τ + μ + μT )

LT + β

(τ + μ + μT )
IT .

By computing α order derivative of the Lyapunov func-
tion V, we obtain

Dα
t V = βT k1

(k1 + μ)(τ + μ + μT )
Dα
t LT

+ βT

(τ + μ + μT )
Dα
t IT

= βT k1
(k1 + μ)(τ + μ + μT )(
βT

SIT
N

+ θλT RT − (k1 + φ1λT ) − μLT

)

+ βT

(τ + μ + μT )

((k1 + φ1λT )LT − τ IT − (μ + μT )IT )

�
β2
T k

(k1 + μ)(τ + μ + μT )
IT −

βφ1λT

(τ + μ + μT )

(
k1

k1 + μ
− 1

)
LT
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+ βT θk1λT

(k1 + μ)(τ + μ + μT )
RT − βT IT

= βT (RT − 1)IT + θλT RTRT − φ1βλT

τ + μ + μT(
k

k + μ
− 1

)

� 0, ifRT < 1, θ = 0 and φ1 = 0.

Further, Dα
t V(x(t)) = 0 for ET

0 =
(

�
μ

, 0, 0, 0
)
. Thus,

singleton {ET
0 } is the largest invariant set on which

Dα
t V(x(t)) = 0. Therefore, by Lyapunov LaSalle’s

Principle, the disease-free equilibrium point for the
TB sub-model is globally asymptotically stable in the
absence of exogenous reinfection and recurrent TB
when the corresponding reproduction number RT is
less than unity.

5.2 The endemic equilibrium point

The steady state in which TB is endemic in the popula-
tion gives rise to TB endemic equilibrium point which
can be computed by solving the following system of
equations:

� − λT S − μS = 0

λT S + θλT RT − (k1 + φ1λT )LT − μLT = 0

(k1 + φ1λT )LT − τ IT − (μ + μT )IT = 0

τ IT − θλT RT − μRT = 0.

(5.5)

Solving (5.5), the TB endemic equilibrium point in
terms of the force of infection λT is calculated as
ĚT = (Š, ĽT , ǏT , ŘT ), where

Š = �

λT + μ

ĽT = �λT (τ + μ + μT )(θλT + μ)

(λT + μ) ((k1 + φ1λT + μ)(θλT + μ)(τ + μ + μT ) − (τθλT )(k1 + φ1λT ))

ǏT = �λT (k1 + φ1λT )(θλT + μ)

(λT + μ) ((k1 + φ1λT + μ)(θλT + μ)(τ + μ + μT ) − (τθλT )(k1 + φ1λT ))

ŘT = �τλT (k1 + φ1λT )

(λT + μ) ((k1 + φ1λT + μ)(θλT + μ)(τ + μ + μT ) − (τθλT )(k1 + φ1λT ))
. (5.6)

The force of infection λT can be obtained by using
the expressions of the components of ĚT given by (5.6).
Thus, by the expression of λT given as

λT = βT ǏT
N

,

we obtain

λT

(
1 − βTμ(k1 + φ1λT )(θλT + μ)

(λT + μ) ((k1 + φ1λT + μ)(θλT + μ)(τ + μ + μT ) − (τθλT )(k1 + φ1λT ))

)
= 0.

After simplifying for λT , we get

λT = 0 or A3λ
3
T + A2λ

2
T + A1λT + A0 = 0,

(5.7)

where the coefficients A3, A2, A1 and A0 are computed
as

A3 = θφ1(μ + μT )

A2 = μθφ1(β2 − βT )

A1 = μ(θk1 + μφ1)(β1 − βT )

A0 = μk21(β0 − βT ).
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The terms β2, β1 and β0 are given by

β2 = μ(τ + μ + μT )(θ(1 + φ1) + φ1) + θk1(μ + μT ) − μθφ1τ

μθφ1
,

β1 = μ(1 + θ)(τ + μ + μT )(k1 + μ) + μ2φ1(τ + μ + μT ) − μθτk1
μ(θk1 + μφ1)

,

β0 = (μ + k1)(τ + μ + μT )

k1
.

(5.8)

In equation (5.7), the term λT = 0 corresponds to the
disease-free equilibrium point ET

0 and λT > 0 satisfy-
ing the cubic equation

A3λ
3
T + A2λ

2
T + A1λT + A0 = 0 (5.9)

give rise to one or more endemic equilibrium points
existing simultaneously. It can be observed that A3 is
always positive. Now, to identify and locate the TB
endemic equilibrium point we consider the following
scenario:

5.2.1 Without exogenous reinfection and recurrent
TB:

First, we examine the case when exogenous reinfec-
tion rate is zero and individuals recovered from TB got
permanent immunity fromTB infection, that is,φ1 = 0
and θ = 0. In this case equation (5.9) can be expressed
as

A1λT + A0 = 0, (5.10)

where

A1 = μ(k1 + μ)(τ + μ + μT ),

A0 = μk21(β0 − βT ).

It can be easily observed that A1 > 0 for all time t � 0.
From equation (5.10), we obtain λT = − A0

A1
, where

λT is positive only if, A0 < 0, that is, if βT > β0,

which is possible ifRT > 1. Therefore, for RT > 1 a
unique TB endemic equilibrium point exists. However,
forRT � 1 only disease-free equilibrium point exists,
corresponding to λT = 0. Thus, the following theorem
has been proved.

Theorem 5.4 For the TB sub-model, if φ1 = 0 and
θ = 0, that is, reinfection of TB does not occur and

the treatment from TB gives permanent immunity, then
there exists a unique TB endemic equilibrium point if
RT > 1.

5.2.2 In the absence of exogenous TB reinfection:

Next, we investigate the case when latent TB infectives
do not enter into the class of active TB infectives after
getting re-infected from TB, that is, φ1 = 0 and θ 
= 0.

For φ1 = 0 equation (5.9) takes the form of a
quadratic equation given as

A2λ
2
T + A1λT + A0 = 0, (5.11)

where

A2 = θk1(μ + μT ),

A1 = μτk1(1 − θ) + μ(μ + k1)(μ + μT ) + μ2τ

+μθ ((μ + k1)(τ + μ + μT ) − βT k1) ,

A0 = μk2(β0 − βT ). (5.12)

It can be easily observed that A2 > 0, whereas A0 and
A1 are positive, if RT < 1. Thus, for RT < 1, there
does not exist any positive root of equation (5.11) and
hence TB endemic equilibrium point does not exist for
RT < 1. For RT = 1, the parameter βT coincides
with β0 and gives A0 = 0. Thus, equation (5.11) takes
the form

λT (A2λT + A1) = 0, (5.13)

which gives λT = − A1
A2

which is negative as A1 > 0
forRT = 1. Therefore, TB endemic equilibrium point
does not exist in this case.

Further, for RT > 1, the transmission rate βT

exceeds β0 which gives A0 < 0. Hence, by Descartes’
rule of sign a unique positive root of equation (5.11)
exists, corresponding to which a unique TB endemic
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equilibrium point exists for RT > 1. We can summa-
rize the above analysis in form of the following theo-
rem.

Theorem 5.5 For the TB sub-model, if φ1 = 0, that is,
reinfection from TB does not occur, then there exists a
unique TB endemic equilibrium point forRT > 1.

5.2.3 In the absence of recurrent TB:

Now, we examine the case when recovery from TB
gives permanent immunity, that is, θ = 0 and φ1 
= 0.
As θ does not appear in the expression of the basic
reproduction number, the reproduction number RT

remains uninfected. Thus, for θ = 0 equation (5.9)
takes the form

A2λ
2
T + A1λT + A0 = 0, (5.14)

where

A2 = μφ1(τ + μ + μT ),

A1 = φ1μ
2(β̄1 − βT ),

A0 = μk21(β0 − βT ).

The parameter β̄1 is given as

β̄1 = (τ + μ + μT )(k1 + μ) + φ1μ(τ + μ + μT )

φ1μ
.

It can be seen that A2 > 0 for all time t � 0 and A0

also becomes positive, whenever RT < 1. Further, if
β̄1 > β, we get A1 > 0, corresponding to which no
positive root exist for equation (5.14). Hence, no TB
endemic equilibrium point exist in this case. However,
for β̄1 < β, A1 reduces below 0. Therefore, if A2

1 −
4A2A0 > 0, equation (5.14) has two positive roots,
corresponding to which two TB endemic points exist
for β̄ < βT . Thus, backward bifurcation may occur for
RT < 1, whenever θ = 0 and φ1 
= 0.

Also, for RT = 1, we observe that A0 = 0. Thus,
equation (5.14) gives rise to a unique endemic equi-
librium point corresponding to λT = − A1

A2
, whenever

A1 < 0 and no endemic equilibrium point, if A1 � 0.
Further, forRT > 1, A0 becomes negative. Hence, by
Descartes’ rule of sign, a unique TB endemic equilib-
rium point exists corresponding to the positive root of
equation (5.14). The above discussion can be summa-
rized in the form of the following theorem.

Theorem 5.6 In the absence of recurrent TB, the TB
sub-model given by (5.1) has

(1) a unique endemic equilibrium point, if RT > 1.
(2) a unique endemic equilibrium point, ifRT = 1 and

A1 < 0.
(3) two equilibrium points, ifRT < 1 and A1 < 0with

A2
1 − 4A2A0 > 0.

(3) no positive endemic equilibrium point, if RT � 1
and A1 � 0.

5.2.4 In the presence of exogenous reinfection and
recurrent TB:

Further, we examine the case when TB treatment does
not give permanent immunity and exogenous reinfec-
tion occurs in latent TB infectives, that is, θ 
= 0 and
φ1 
= 0.

ForRT = 1, the transmission rateβT coincideswith
β0, corresponding to which the constant term A0 in
equation (5.9) vanishes. Thus, equation (5.9) becomes

A3λ
3
T + A2λ

2
T + A1λT = 0.

Therefore, we get

λT = 0 or A3λ
2
T + A2λT + A1 = 0.

Here, λT > 0 satisfying the equation

A3λ
2
T + A2λT + A1 = 0, (5.15)

gives rise to the TB endemic equilibrium point. Also,
as A3 > 0, the following cases arise:

(1) If β2 < βT and β1 < βT , then A2 < 0 and
A1 < 0. By Descrate’s rule of sign, the equa-
tion (5.15) has one positive root λT correspond-
ing to which a unique endemic equilibrium point
exists. Also, if β1 < βT < β2, then A2 > 0
and A1 < 0 which also justifies the existence of a
unique endemic equilibrium point for the TB sub-
model.

(2) If β2 < βT < β1, we get A2 < 0 and A1 > 0.
In this case, equation (5.15) has two positive roots
say, λT1 and λT2 , if A

2
2 > 4A1A3, corresponding to

which two endemic equilibrium points exist.
(3) If βT < β2 and βT < β1, then both the expressions

A2 and A1 are positive. Thus, no positive root of
equation (5.15) exists in this case, which shows that
endemic equilibrium point cannot exist in this case.
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The above discussion can be summarized as

Theorem 5.7 At RT = 1, when βT = β0, along with
the disease-free equilibrium point the model has:

(1) one positive endemic equilibrium point, if β2 < β0

and β1 < β0 or β1 < β0 < β2, which indicates the
occurrence of backward bifurcation.

(2) two positive endemic equilibrium points, if β2 <

β0 < β1 and A2
2 > 4A1A3.

(3) no positive endemic equilibrium point, if β0 < β2

and β0 < β1.

6 Analysis of the full model

In this section, we analyze the full HIV-TB co-infection
model given in (3.3) by computing all the equilibrium
points. Further, to identify the behavior of solution tra-
jectories near the disease-free equilibrium point, sta-
bility analysis will be done.

6.1 Basic reproduction number

For calculating the basic reproduction number for the
full model using the next generation matrix approach,
the matrices F and V are computed as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 βT 0 0 0 βT 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 βH βH βH ηβH

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g1 0 0 0 0 0 0
k1 −g2 0 0 0 0 0
0 −τ μ 0 0 0 0
0 0 0 −g3 0 −g4 0
0 0 0 0 −g5 0 0
0 0 0 0 −k2 −g6 0
0 0 0 −ρ −ρ −r2γ μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

g1 = −(k1 + μ), g2 = −(τ + μ + μT ),

g3 = (α + μ + μH ), g4 = r1τ,

g5 = −(k2 + α + μ + μH ) and

g6 = −(r1τ + r2γ + μ + μTH ).

(6.1)

The basic reproduction number given by the spectral
radius of FV−1 is computed as

R0 = max{RH ,RT }, (6.2)

where RH and RT are the reproduction numbers cor-
responding to HIV and TB, given in equation (4.3) and
equation (5.4), respectively. In the expression of R0,
the term max{RH ,RT } represents the number of sec-
ondary cases introduced in the population by a single
individual infected suffering from the dominant dis-
ease.

6.2 Equilibrium points

Biologically, four types of equilibrium points exist for
the full co-infection model system (3.3), which are
given as follows:

(1) The disease-free equilibrium point:

E0 =
(

�

μ
, 0, 0, 0, 0, 0, 0, 0

)
. (6.3)

It describes the state in which neither HIV nor TB
is present in the population.

(2) The TB endemic equilibrium point:

ET = (Š, ĽT , ǏT , ŘT , 0, 0, 0, 0), (6.4)

where the nonzero components of ET can be
obtained from equation (5.6). It corresponds to
the steady state in which only TB is endemic in
the population.

(3) The HIV endemic equilibrium point:

EH = (Ŝ, 0, 0, 0, ÎH , 0, 0, R̂H ), (6.5)

where the nonzero components of EH , that is,
Ŝ, ÎH and R̂H are given by equation (4.9) that
exist, if RH > 1. It represents a steady state in
which only HIV is endemic in the population.

(4) The interior endemic equilibrium point:

ETH =(S̃, L̃T , ĨT , R̃T , ĨH , L̃TH , ĨTH , R̃H ). (6.6)
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The components of ETH are determined by using
the equations given in (3.3) and are computed as

S̃ = �

λT + λH + μ

L̃T = λT (θλT + μ + λH )S̃ + τλT IT
(λH + θλT + μ)(λH + k1 + μ + φ1λT )

ĨT = (k1 + φ1λT )(λH + θλT + μ)λT

(λH + τ + μ + μT )(λH + θλT + μ)(k1 + φ1λT + λH + μ) − τ(k1 + φ1λT )λT
S̃

R̃T = τ(k1 + φ1λT )λT

(λH + τ + μ + μT )(λH + θλT + μ)(k1 + φ1λT + λH + μ) − τ(k1 + φ1λT )λT
S̃

ĨH = λH (S̃ + R̃T ) + r1τ ĨTH
δλT + ρ + μ + μH

L̃TH = λH LT (δλT + ρ + μ + μH ) + δλT λH (S̃ + R̃H + δλT r1τ ĨTH )

(δλT + ρ + μ + μH )(k2 + φ2λT + ρ + μ + μH )

ĨTH = λH ĨT + (k2 + φ2λT )L̃TH

r1τ + r2γ + μ + μTH

R̃H = r2γ ĨTH + ρ( ĨH + L̃TH )

μ
,

where λT and λH satisfy equation (3.1) and equa-
tion (3.2), respectively. The HIV-TB co-endemic
equilibrium point exists, if all the components of
ETH are positive. It represents the steady state in
which both diseases are endemic in the population.

6.3 Stability analysis of the disease-free equilibrium
point

The following lemma establishes the conditions under
which the disease-free equilibrium point for the full
model given by (6.3) is locally asymptotically stable.

Lemma 6.1 [34] Let α
(
= p

q

)
where p, q ∈ Z+ and

gcd(p, q) = 1. Define M = q, then the disease-
free equilibrium point of the nonlinear system (3.3) is
asymptotically stable if |arg(λ)| > π

2M for all roots λ

of the equation

det (diag[λp λp λp . . . λp] − M8) = 0, (6.7)

where M8 is an 8× 8 linearization matrix of the model
system (3.3), evaluated at the disease-free equilibrium
point.

Theorem 6.2 The disease-free equilibrium point E0

for the full HIV-TBmodel system (3.3) is locally asymp-
totically stable, if R0 < 1 and unstable otherwise.

Proof The linearization matrix for the model system
(3.3) evaluated at E0 is given as

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ 0 −βT 0 −βH −βH −(βH + βT ) −ηβH

0 g1 βT 0 0 0 βT 0
0 k1 g2 0 0 0 0 0
0 0 τ −μ 0 0 0 0
0 0 0 0 βH + g3 βH ηβH + g4 ηβH

0 0 0 0 0 g5 0 0
0 0 0 0 0 k2 g6 0
0 0 0 0 ρ ρ r2γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each gi for i = 1, 2, 3, 4, 5, 6 is given by equa-
tion (6.1). After solving equation (6.7) with the lin-
earization matrix J0, we obtain

(λp + μ)2(λp + r1τ + r2γ + μ + μTH )

(λp + α + k2 + μ + μH )(
λ2p + λp (k1 + τ + 2μ + μT )

+ (k1 + μ) (τ + μ + μT ) − βT k1)(
λ2p + λp(ρ + 2μ + μH − βH )

+ (μ(ρ + μ + μH ) − βH (ρη + μ))) = 0.

(6.8)

123



4716 Tanvi et al.

Clearly, the argument of each root of the first four fac-
tors is greater than π

2M . However, in the fifth quadratic
factor given by

λ2p + λp (k1 + τ + 2μ + μT )

+ (k1 + μ) (τ + μ + μT ) − βT k1,

the constant term is positive only if RT < 1. Thus, by
the Routh–Hurwitz criterion for fractional derivatives,
argument of all the roots of the quadratic equation is
greater than π

2M . Similarly, for the remaining factor
given by

λ2p + λp(ρ + μ + μH − βH )

+μ(ρ + μ + μH ) − βH (ρη + μ),

the coefficient of λp and the constant term both are
positive ifRH < 1. Thus, argument of each root of the
above-mentioned factor is greater than π

2M , ifRH < 1.
Hence, if R0 = max{RH ,RT } < 1, then the disease-
free equilibrium point E0 is locally asymptotically sta-
ble and is unstable otherwise.

7 Sensitivity analysis

This section determines the significance of various
parameters on the proposed nonlinear mathematical
model. We highlight the impact of various parameters
on the threshold quantity, R0. The sensitivity analysis
of the reproduction number is required to determine the
relative importance of various parameters in reducing
the disease case fatality rate of the human population
and also the consequences of the various parameters
that cause transmission and prevalence. In view of this,
the ratio of the relative change in a variable to the rela-
tive change in a parameter provides the normalized for-
ward sensitivity index. The sensitivity index can also be
defined using partial derivatives, provided that a vari-
able is a differentiable function of a parameter. The
occurrence of errors in using presumed values and col-
lecting data may affect the significance of mathemati-
cal model. Thus, the sensitivity analysis also helps to
acknowledge the vitality of parameters value in model
prediction.

Definition 7.1 [42] The normalized forward sensitiv-
ity index of a variable, v, that depends differentiably
on a parameter p is defined as:

ϒv
p := ∂v

∂p

p

v
. (7.1)

The sensitivity index of R0 helps to determine the
parameters (which appears in the basic reproduction
number) imposing an immense impact on the reproduc-
tion number R0. We can obtain the sensitivity indices
by using the parameters value given in Table 2 as

ϒ
RT
β := ∂RT

∂βT

βT

RT
= +1.

The remaining values of the sensitivity index are
given in Table 3. The positive value of sensitivity index
implies that an increase in the parameter value will lead
to increase in the basic reproduction number, whereas
a negative value of sensitivity index shows that an
increase in the parameters value decreases the basic
reproduction number. From ϒ

RT
βT

= +1 and ϒ
RH
βH

=
+1 it can be observed that R0 = max{RH ,RT } is
directly proportional to the transmission rates corre-
sponding to TB and HIV. If the transmission rate cor-
responding to the dominant disease, that is, HIV or
TB, increases by 10%, the reproduction number R0

also increases by 10%, which may lead to an epidemic.
Therefore, the transmission rate must be significantly
decreased in order to reduce the reproduction num-
ber by following proper preventive measures and treat-
ment.

From Table 3, it can be concluded that sensitivity
indices play a vital role in analyzing the mathematical
model with the data taken into consideration.

8 Numerical simulations

The model is numerically simulated for the existence
and local asymptotic stability of the endemic equilib-
rium points as, due to an eight dimensional model, it is
difficult for the full model to determine all the results
analytically. Thus, the existence and local asymptotic
stability of the endemic equilibrium points for the full
model will be illustrated numerically. In this section,
the numerical simulations are performed by taking the
parameters value as described in Table 2. In Table 2,
certain parameter values have been chosen from previ-
ously published articles and for the remaining values
we have used the facts provided by other researches
and the World Health Organization. In our model, we
have assumed μTH = 0.3, by taking into consideration
the fact that the death rate due to HIV-TB co-infection
is more than the death rate induced due to HIV and
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Fig. 2 Graphs showing the
solution trajectories
converging toward the
disease-free equilibrium
point E0 =
(12500, 0, 0, 0, 0, 0, 0, 0)
when the reproduction
number R0 corresponding
to HIV and TB is less than
unity; a Susceptibles b TB
infectives c HIV infectives
d HIV-TB co-infectives

(a) (b)

(c) (d)

Table 2 Parameters value used in numerical simulations

Parameter Value Source

� 250yr−1 [40]

βT 0.07yr−1 [41]

βH 0.08yr−1 Variable

μ,μT , μH 0.02, 0.1, 0.2yr−1 [41]

μTH 0.3yr−1 Assumed

τ 0.16yr−1 [40]

ρ 0.12yr−1 [40]

γ 0.1yr−1 Assumed

r1 0.5 Assumed

r2 0.5 Assumed

k1 0.00113yr−1 Assumed

k2 0.0017yr−1 Assumed

φ1, φ2 0.71, 1.07yr−1 [11]

θ 0.9 [13]

δ 1.2 [41]

η 0.6 Assumed

TB only, which we have taken as 0.2 and 0.1, respec-
tively.Also,η < 1 is amodification parameter,which is

Table 3 Sensitivity indices of RT and RH to the parameters

Parameter Sensitivity
index
(RT )

Parameter Sensitivity
index
(RH )

βT +1 βH +1

k1 +0.946522 η +0.782609

τ −0.571429 ρ +0.429668

μ −1.01795 μ −0.841432

μT −0.357143 μH −0.588235

taken into account by considering the fact that the class
of individuals taking antiretroviral therapy have lesser
viral load due to a restored immune system and hence
chosen as η = 0.6. The initial conditions are chosen as
S(0) = 1400, LT (0) = 850, IT (0) = 170, RT (0) =
30, IH (0) = 40, LTH (0) = 60, ITH (0) = 30 and
RH (0) = 20. The numerical simulations are performed
using the predictor–correctormethod [43] inMATLAB
by considering four different values of the order of dif-
ferential equations, which are α = 1, 0.9, 0.8, 0.7.

From the sensitivity indices given in Table 3, it can
be observed that the transmission rates correspond-
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Fig. 3 Graphs justifying
the local asymptotic
stability of the TB endemic
equilibrium point ET =
(35.0784, 113.731, 2050.01,
51.1209, 0, 0, 0, 0); a
Susceptibles b Latent TB
infectives c TB infectives d
Individuals recovered from
TB e HIV infectives f
HIV-TB co-infectives

(a) (b)

(c) (d)

(e) (f)

ing to HIV and TB have an immense impact on the
reproduction numberR0 and hence on the equilibrium
points. Thus, with the chosen parameters, various equi-
librium points can be obtained by varying the value of
transmission rates corresponding to HIV and TB, that
is, βH and βT , respectively.

(1) By choosing βH = 0.07 and βT = 0.8, the associ-
ated reproduction numbers are obtained as RH =
0.947059 and RT = 0.152796, both of which are
less than unity and hence, R0 = max{RH ,RT } is
less than unity. Therefore, only a locally asymptot-
ically stable disease-free equilibrium point E0 =
(12500, 0, 0, 0, 0, 0, 0, 0) exists in this case. The

local asymptotic stability of the disease-free equi-
librium point can be seen in Fig. 2, where all the
solution trajectories are approaching toward the
respective components of the disease-free equilib-
rium point for different values of the order of differ-
ential equations (α). It can be observed from Fig.
2 that as the order of differential equations changes
from fractional to integer value, that is, when α

increases from0.7 to 1, susceptibles start approach-
ing the equilibriumvalue 12500more rapidly. It can
also be visualized from Fig. 2b,c and d that when
α takes fractional value, that is, 0.9, 0.8 and 0.7
instead of integer value, the number of infectives
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Fig. 4 Graphs showing the
local asymptotic stability of
the HIV endemic
equilibrium point EH =
(2430.56, 0, 0, 0, 592.32,
0, 0, 3553.92) when the
reproduction number RH is
greater than unity; a
Susceptibles b TB infectives
c HIV infectives d HIV-TB
co-infectives e Individuals
under treatment of HIV

(a) (b)

(c) (d)

(e)

approaches toward zero in slightly higher time,
which seems to be more realistic as far as a real
world problem is considered.

(2) If the transmission rate corresponding toTB increases
from βT = 0.8 to 7.8, with βH same as defined
in Table 2, the reproduction number correspond-
ing to TB exceeds unity and takes the value
RT = 1.48976. Thus, TB becomes endemic
in the population corresponding to which two
equilibrium points come into existence, namely,
an unstable disease-free equilibrium point E0 =
(12500, 0, 0, 0, 0, 0, 0, 0) and a locally asymptot-
ically stable TB endemic equilibrium point ET =

(35.0784, 113.731, 2050.01, 51.1209, 0, 0, 0, 0).The
local asymptotic stability of the TB endemic equi-
librium point ET can be visualized in Fig. 3
with four different values of α that are α =
1, 0.9, 0.8, 0.7. It can be seen from Fig. 3c that
the TB infectives are rising with a lower rate for
α = 0.7, whereas the rate of increment of infec-
tives increases as α increases. Further, from Fig.
3d, it can be observed that the individuals recov-
ered from TB are more for fractional values of α

rather than an integer value of α. This may happen
due to the fact that, asα reduces from1 to 0.7,mem-
ory effects come under consideration and individ-
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Fig. 5 Graphs illustrating
the local asymptotic
stability of the co-endemic
equilibrium point E2

TH
=

(45.1281, 121.822, 1481.14,
47.474, 2.59682, 3.53903,
178.078, 482.01) when the
reproduction number R0 is
greater than unity; a
Susceptibles b TB infectives
c Individuals recovered
from TB d HIV infectives e
HIV-TB co-infectives f
Individuals under treatment
of HIV

(a) (b)

(c) (d)

(e) (f)

uals having a previous history of the disease start
taking more precautionary measures which leads
to lower incremental rate of infectives and higher
rate of recovery. However, the rate of convergence
toward the equilibrium point is higher for a larger
value of α.

(3) By increasing the value of βH from 0.07 to 0.2
with the value of βT same as 0.8, the repro-
duction number corresponding to HIV exceeds
unity. Thus, along with an unstable disease-free
equilibrium point E0, a locally asymptotically
stable HIV endemic equilibrium point EH =

(2430.56, 0, 0, 0, 592.32, 0, 0, 3553.92) exists. Fig.
4 justifies the local asymptotic stability of the HIV
endemic equilibrium point EH forR0 = 2.70588.
From Fig. 4, it can be visualized that the solution
trajectories are approaching the respective compo-
nents of the equilibrium point EH with a faster
rate of convergence for higher value of α. It can
be observed from Fig. 4a that the number of sus-
ceptibles is less when α = 1 for initial few days;
however, they start increasing for α = 0.7, due to
the incorporation of memory effects. Also, since
the memory effect of the system increases as α
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Fig. 6 Graphs illustrating
the local stability of the TB
endemic equilibrium point
E1
T = (222.89, 673.56,

1884.25, 298.063, 0, 0, 0, 0),
when the reproduction
numbers corresponding to
both HIV and TB are less
than unity; a Susceptibles b
Latent TB infectives c TB
infectives d Individuals
recovered from TB e HIV
infectives f HIV-TB
co-infectives

(a) (b)

(c) (d)

(e) (f)

decreases, HIV infectives having previous knowl-
edge of the disease start taking the antiretroviral
therapy soon. Thus, HIV infectives increase with a
smaller rate for fractional values of α as compared
to the case when α assumes integer value (see Fig.
4c).

(4) If we choose βH = 0.2 and βT = 7.8, the repro-
duction numbers corresponding to HIV and TB are
obtained as RH = 2.70588 and RT = 1.48976,
respectively, both of which are greater than unity.
Thus, in this case, both diseases coexist in the pop-
ulation. Hence, along with the disease-free equilib-
rium point E0 and single disease equilibrium points

ET and EH , we obtain two interior endemic equi-
libriumpoints that are an unstable co-endemic equi-
librium point E1

TH
= (2170.11, 241.479, 6.6578,

9.34821, 508.647, 77.726, 3.82626, 3527.8) and a
locally asymptotically stable co-endemic equilib-
rium point E2

TH
= (45.1281, 121.822, 1481.14,

47.474, 2.59682, 3.53903, 178.078, 482.01). The
local asymptotic stability of the co-endemic equi-
librium point E2

TH
can be observed in Fig. 5.

Now, we further vary the transmission rates to verify
the existence of backward bifurcation when the repro-
duction number corresponding to TB is less than unity
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Fig. 7 Graphs showing the
solution trajectories
converging toward the
locally asymptotically
stable HIV endemic
equilibrium point EH =
(2430.56, 0, 0, 0, 592.32, 0,
0, 3553.92); a Susceptibles
b TB infectives c HIV
infectives d HIV-TB
co-infectives e Individuals
under treatment of HIV

(a) (b)

(c) (d)

(e)

but greater than the critical value. In this scenario, we
will illustrate the following two cases:

(1) When βH = 0.07, βT = 1.8 and the remain-
ing values same as given in Table 2, we obtain
RH = 0.947059 < 1 and RT = 0.34379 < 1. In
this case, along with the disease-free equilibrium
point E0, the existence of two more TB endemic
equilibrium points, namely a locally asymptoti-
cally stable TB endemic equilibrium point E1

T =
(222.89, 673.56, 1884.25, 298.063, 0, 0, 0, 0) and
an unstable TB endemic equilibrium point E2

T =

(10038.3, 2039.1, 33.6027, 220.217, 0, 0, 0, 0), is
verified numerically, which justifies the occurrence
of backward bifurcation. The local asymptotic sta-
bility of the TB endemic equilibrium point E1

T can
be visualized from Fig. 6. In this case also, the rate
of increment in TB-infected individuals is less for
a fractional value of α rather than an integer value,
with a faster rate of convergence for a higher value
of α.

(2) When the transmission rate of HIV increases to
0.2, the reproduction numbers corresponding to
HIV and TB are computed as RH = 2.70588 >
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1 and RT = 0.34379 < 1, respectively. In
this case, HIV and TB both exist in the popu-
lation, corresponding to which four equilibrium
points are obtained—an unstable disease-free equi-
librium point E0 = (12500, 0, 0, 0, 0, 0, 0, 0), an
unstable TB endemic equilibrium point E1

T =
(222.89, 673.56, 1884.25, 298.063, 0, 0, 0, 0), an
unstable TB endemic equilibrium point E2

T =
(10038.3, 2039.1, 33.6027, 220.217, 0, 0, 0, 0) and
a locally asymptotically stable HIV endemic equi-
libriumpoint EH = (2430.56, 0, 0, 0, 592.32, 0, 0,
3553.92).The local asymptotic stability of the HIV
endemic equilibrium point EH for different values
of α can be observed from Fig. 7.

In our model, we have shown the trajectories cor-
responding to HIV and TB for four different values
of the order of derivatives (α), to represent the role
that memory plays in the treatment and recovery from
HIV and TB infection and also in the stability of the
equilibrium points. The different behaviors of solution
trajectories, corresponding to the HIV-TB model for
different values of the order of derivatives, indicate the
novelty of this article over other papers on HIV-TB co-
infection[14,44].

The results obtained in other papers on HIV-TB co-
infection have been proved for integer order only rather
than fractional order. Tanvi et al. [14] and Kumar and
Jain [44] have considered HIV-TB co-infection mod-
els with integer order derivatives. They have shown the
trajectories corresponding to HIV and TB co-infection
for integer order. In the model by Kumar and Jain [44],
they have shown that the disease-free equilibrium point
is locally asymptotically stable when the correspond-
ing reproduction number is less than unity. Also, the
endemic equilibriumpoint has been shown to be locally
asymptotically stable if the corresponding reproduc-
tion number is greater than unity in both analytical and
numerical ways. In our model, however, along with the
stability of the disease-free and the endemic equilib-
rium point corresponding to the reproduction number,
the convergence rate of solution trajectories toward the
components of equilibrium points can also be visual-
ized by taking into consideration the different value
for fractional order derivatives. In our model, it has
been shown that the solution trajectories convergemore
rapidly to the components of equilibrium points if the
order of derivatives is higher; that is, the rate of conver-
gence toward the steady state is higher for higher value

of which cannot be observed in case of integer order
models.

Thus, it can be observed that the fractional order
model plays a significant role in reducing the number
of infectives and visualizing the convergence rate of the
solution trajectories toward the steady state.

9 Conclusion

In this paper,we have proposed a fractional order differ-
ential equationmodel to study the transmission dynam-
ics of HIV-TB co-infection by incorporating the rein-
fection from tuberculosis in both TB and HIV-TB co-
infected individuals alongwith the occurrence of recur-
rent TB. The reproduction number corresponding to
both HIV and TB has been computed. The analysis
of both HIV and TB sub-models has been performed
separately for α ∈ (0, 1]. The disease-free equilibrium
point for the full model is shown to be locally asymp-
totically stable for R0 < 1. It has been concluded that
if exogenous reinfection occurs and the effectiveness of
TB treatment is low, then the system exhibits backward
bifurcation. Thus, reducing the reproduction number,
R0, below unity is not enough to eradicate the dis-
ease from the population. However, the results show
that, by reducing the reproduction number below unity,
both HIV and TB can be eradicated from the popula-
tion, if reinfection from TB does not occur in latently
infected individuals and recovery from TB gives per-
manent immunity. Further, the existence ofHIV-TB co-
endemic equilibrium point has been illustrated numeri-
cally when the corresponding reproduction numberR0

is greater than unity.
The model is numerically simulated to investigate

the Caputo fractional order model for different values
of α. Numerical results justify the local asymptotic sta-
bility of the equilibrium points for α = 1, 0.9, 0.8, 0.7
and show that the rate of convergence toward the equi-
librium points is more for higher order of derivatives
in comparison to the smaller order derivatives. Thus, to
achieve faster convergence toward an equilibrium point
a higher order system should be considered. The graph-
ical results show a lower increment rate in the number
of HIV and TB infectives for a smaller fractional order
parameter. It is observed that α can play the role of
precautionary measures against infection prevalence,
as by reducing the value of α, a lower rate increment
in the number of infectives can be observed due to the

123



4724 Tanvi et al.

incorporation ofmemory effect. Thus, the present work
is a novel analysis to describe the transmission dynam-
ics of HIV-TB co-infection that can be useful for the
readers and healthcare authorities and policy makers.
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