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Abstract In this paper, the motion planning problem
for planar snake-like robots with more than three links
that is subjected to nonholonomic constraints is solved
explicitly. In other words, for a given desired planar
trajectory and a set of initial conditions of the snake,
a unique feasible gait is generated to ensure that the
origin of the snake robot’s body frame traverses that
path. Additionally, the generated gait ensures that all
the nonholonomic constraints are satisfied for all time.

Keywords Nonholonomic motion planning ·
Over-constrained systems · Gait generation ·
Planar hyper-redundant robots · Snake robots

1 Introduction

Snakes have great advantages when it comes to flexi-
bility and maneuverability, especially in unstructured
environments. Researchers have been investigating
snakes locomotion to be able to extend and apply
their characteristics to bio-inspired snake-like robots.
This paper studies the locomotion of planar snake-like
robots. To mimic the local high frictional forces that
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prevent the snake’s body from sliding sideways and
the low resistance to forward motion, nonholonomic
constraints are employed along the body of the robotic
snake by placing passive wheel sets on the center of the
snake links. Similar to real snakes, such robotic systems
have full actuation solely over their shapes. In the con-
text of motion planning, the aim is to design allowable
gaits in the shape space that yield desired motion of the
snake.

For multi-link planar snake robots, the motion plan-
ning problem is rather challenging especially for sys-
tems with four or more links. This is due to the redun-
dancy in actuation a snake system possesses. More-
over, for such over-constrained systems, not all gaits
are feasible. In fact, an approach to coordinate the base
variables is required in order not to violate the non-
holonomic constraints (side-slip) besides satisfying the
main target of traversing desired trajectories.

The work presented in this paper builds on prior
work found in the literature, especially from the geo-
metricmechanics in the context of the control and loco-
motion of multi-bodied mechanical systems. The key
concept is the invariance of the Lagrangian and the non-
holonomic constraints with respect to translation for
general mechanical systems [16,17]. This concept of
symmetry for nonholonomic systems was investigated
further in [3,18] to develop the reconstruction equation,
i.e., a relation between the base and fiber velocities.

The reconstruction equation derived from the non-
holonomic set of equations is used in conjunction
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with Stokes’ Theorem to introduce a gait generation
approach for the three-link planar kinematic snake
robot in [19,20]. This method developed the concept of
height functions, i.e., a geometric tool to visualize the
effect of cyclic shape gaits on the resultant change in the
fiber variables. The height functions concept was then a
key idea for proposing different motion planning algo-
rithms that tackle different types of snake robots. For
example, Itani andShammas [13] built on the ideaof the
height functions and proposed a motion planning algo-
rithm for floating snake robots with four-link snakes.
Additionally, Ali et al. [1] build on the height functions
and proposed a motion planning tool for snake robots
swimming in viscous environments.

The method was later expanded to develop an
approach for exactmotion planning of principally kine-
matic three-link snake robots for traversing given tra-
jectories [21]. In thiswork, startingwith the reconstruc-
tion equation, the nonzero sub-matrix of the kinematic
connection is inverted to yield the base velocities as a
function of the body velocities, thus, generating gaits
that allows the three-link snake robot to traverse any
given planar paths.

On the other hand, the motion planning of the differ-
ential drive car and the three-link kinematic snake was
tackled using their connection vector fields in [11]. This
approach helped in visualizing the effect of the recon-
struction equation components which in turn facilitated
designing gaits that generate desired output motions.
Moreover, in [9] the difference in the fiber motion as
viewed from the inertial frame and the fiber motion as
represented in the body frame was minimized by alter-
ing the placement of the body frame. This difference
is due to the non-commutativity of the velocity vari-
ables. Afterward, a systematic optimization approach
for body frame placement that reduces the stated dif-
ference was presented in [10].

In [7], the three-link nonholonomic snake robot was
analyzed as a kino-dynamic system, where in contrary
to most of the literature work that avoids singularities,
the work investigated the effects of singularity-stuck
gaits on the external motion of the snake. This was
done by keeping one of the two shape variables pas-
sive. Additionally, the gravitational force field was not
neglected but rather utilized to drive the passive shape
variable to the singularity position, and thus locomoting
the system due to its momentum. Moreover, in [8] the
locomotion of over-constrained systems, in particular
the four-link snake robot, was addressed. In this work,

it was assumed that two out of the three shape variables
were fully controllable, while keeping the third shape
variable passive, thus evolving according to the dynam-
ics of the system. The evolution of the passive shape
variable was prescribed as a function of the two con-
trolled shape variables, which was in turn used to gen-
erate gaits for the system based on the height functions
introduced in [19]. The work in [8] was then further
investigated and analyzed in [6].

In [15], amotion planning approach for snake robots
in environments having rounded obstacles was devel-
oped. The approachwas based on dividing the gait gen-
eration into three sub-gates, each taking into consid-
eration a certain factor. The first sub-gate considered
moving on a straight line, where they took advantage
of Hirose [12] Serpenoid curve. The second sub-gate
took advantage of the obstacles rather than avoiding
them. This was achieved by letting the snake interact
with the obstacles in a way to maximize its forward
propulsion. Finally, the third sub-gate focused on ori-
enting the snake. Trajectories considered in [15] were
simple way-points connected by straight lines.

The work in [2] analyzed the motion of a two-link
nonholonomic swimmer, known as the Land-Shark.
Possessing only two links, i.e., possessing only two
nonholonomic constraints, allows for a direction on
which the nonholonomic constraints do not act. This
is true since the fiber space of the system is the three-
dimensional SE(2) space. Thus, one can derive the non-
holonomic momentum variable along this constraint-
free direction. Analysis of the nonholonomic momen-
tum variable showed that a Land-Shark starting from
rest is capable of both accelerating and decelerating
depending on the parameters of the system, i.e., mass
and length of the links, and on the gait applied. In other
words, theLand-Shark system, in contrary to theTrikke
[5] and the Roller Racer [14] can be stopped using only
the steering angle after being launched from rest.

The work in [22] dealt with relaxing the no-lateral-
slippage constraints of the three-link kinematic snake
when the friction forces on the ground contact of the
snake wheels pass an upper bound. This makes the
problem more realistic, as the forces required to main-
tain holding the nonholonomic constraints become
large, especially at singular configurations where the
constraint forces grow unbounded. According to the
presented work, adapting the hybrid model, i.e., slip-
no slip model, kept the constraint forces at bounded
values while passing through singular configurations.
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This paper presents a motion planning method that
generates feasible gaits, which ensure exact tracking of
desired continuous planar trajectories while satisfying
all the redundant nonholonomic constraints acting on
the system. The kinematic connection of the nonholo-
nomic constraints alongwith their compatibility condi-
tions was used to defile a first-order differential system
on the base variables, which in turn was used to solve
for desired gaits. The method was implemented and
verified on four-link and five-link snake robots attempt-
ing to traverse several desired planar trajectories.

This paper is organized as follows. Section 2
presents a brief background and modeling of the sys-
tem. Section 3 shows the derivation of the reconstruc-
tion equation and the compatibility relation associated
with the nonholonomic constraints. Section 4 states the
motion planning problem to be tackled in this paper. In
Sect. 5, the proposed gait generation method is pre-
sented, and in Sect. 6, different simulations are applied
on a four-link snake example. In Sect. 7, the robust-
ness of the proposed method is validated by applying
it on a five-link snake traversing a desired sinusoidal
trajectory. Finally, Sect. 8 presents a discussion on the
constraint singularity of the snake robot.

2 Background and motion model

In this section, background material is presented and
the motion model for kinematic snakes robots is devel-
oped.

2.1 Configuration space

For multi-bodied mechanical systems, the configura-
tion space, i.e., configuration manifold, has a triv-
ial principal fiber bundle structure denoted by Q =
(G, M) where G is a Lie group representing the posi-
tion and orientation of body frame of the robot and
M represents the base space of the system. For a
snake-like robot comprised of (m + 1)-links, similar
to the one shown in Fig. 1, G is SE(2), the Special
Euclidean space, and M = S

1 × · · · × S
1, is an m-

dimensional space representing the inter-link angles.
In this paper, g = (x, y, θ) ∈ SE(2) represents
the position and orientation of the first link (head)
of the snake and r = (σ1, . . . , σm) ∈ M , represents
the shape of the snake. Accordingly, one can define

Fig. 1 Four-link planar nonholonomic snake robot

the n = (l + m) generalized coordinates, such that
q = (x, y, θ, σ1, · · · , σm) ∈ Q.

2.2 Lagrangian

Given the serial architecture of the snake robot and that
(x, y) and θ represent the position andorientation of the
first link, one can compute the position of the centers
of mass and the absolute orientation of the snake other
links as

θi = θ +
i−1∑

j=1

σ j

xi = xi−1 + L cos(θi−1) + L cos(θi )

yi = yi−1 + L sin(θi−1) + L sin(θi )

(1)

for i = 2, . . . ,m + 1 and (x1, y1, θ1) = (x, y, θ).
In this paper, it is assumed that there is no potential

energy, thus the Lagrangian of the system, which is the
kinetic energy minus the potential energy, is given as

L(q, q̇) =
m+1∑

i=1

1

2
(miV

T
i Vi + ji θ̇

2
i ), (2)

where mi and ji are the mass and inertia of link i ,
respectively. Moreover, (xi , yi ) and θi represent the
position and orientation of the center of mass of link i
with respect to an inertial frame, whereas Vi = (ẋi , ẏi )
represents the velocity of the center of mass of link i
and θ̇i represents the absolute angular velocity of link
i . For simplicity, assume that the robots’ links are iden-
tical, i.e., the links have the same mass m, same inertia
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j , and same length 2L . Moreover, assume that the cen-
ter of mass of a link is its geometric center, that is, the
mass of a link is uniformly distributed.

2.3 Generalized forces

In this paper, it is assumed that the only external forces
acting on the system are the nonholonomic forces fi
preventing wheels from side-slipping. Nonholonomic
constraints acting on a mechanical system are a set
of non-integrable first-order constraints. Assuming that
the passive wheel sets for each link are placed at the
center of each link and that the axle of each wheel set is
perpendicular to its link as shown in Fig. 1, one could
compute the nonholonomic constraint of each wheel
set is computed as

(ẋi , ẏi )

(
cos(θi + π

2 )

sin(θi + π
2 )

)
= 0. (3)

The set of nonholonomic constraints computed in (3)
can be written in the Pfaffian form as

ω(q).q̇ = 0. (4)

Hence, for i = 1 · · · n and j = 1 · · ·m+1 the constraint
forces are given by

fi = −λ j .ω
j
i (q), (5)

where λ = (λ1, . . . , λm+1) is the vector of Lagrangian
multipliers that represent the magnitude of the non-
holonomic constraint forces. Moreover, it is assumed
that only the base variables are actuated, that is, the
generalized force vector is τ = (01×l , τ1, . . . , τm).

2.4 Equations of motion

The equations of motion of the system are the Euler-
Lagrange equations given as

d

dt

∂L(q, q̇)

∂q̇i
− ∂L(q, q̇)

∂qi
= τi − λ j .ω

j
i (q), (6)

for i = 1 · · · n and j = 1 · · ·m + 1. Note that, one can
simulate Eqs. (4) and (6) simultaneously, to compute
the time evolution of the generalized variables qi .

3 Over-constrained systems

The nonholonomic constraints are invariant under the
Lie group’s action and its lifted action [3]. Thus, a
reduced Pfaffian form can be computed in the system’s
body frame by representing the nonholonomic con-
straints on the Lie group identity element. The reduced
Pfaffian matrix can be expressed as

ω̃(r).

(
ξ

ṙ

)
= 0, (7)

where ξ = TgLg−1 ġ being the fiber body velocity and
TgLg−1 the lifted left action on the Lie group SE(2)
acting on ġ expressed as

ξ = TgLg−1 ġ =
⎛

⎝
cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1

⎞

⎠ .

⎛

⎝
ẋ
ẏ
θ̇

⎞

⎠ . (8)

Assumption 1 In this paper, we will consider systems
that have at least three links, i.e., m ≥ 3, with three
independent nonholonomic constraints.

For such systems, the motion is solely defined by the
set of velocity constraints presented in Eq. (7). Given
that there exist at least three linearly independent con-
straints, one can solve for the bodyvelocity ξ . As shown
in [4], the matrix ω̃(r) is divided into four sub-matrices
as(

w̃11(r) w̃12(r)
w̃21(r) w̃22(r)

)
.

(
ξ

ṙ

)
=

(
0
0

)
(9)

where w̃11 is a 3×3matrix, w̃12 is a 3×(n−3)matrix,
w̃21 is a (m−2)×3matrix, and w̃22 is a (m−2)×(n−3)
matrix.

As per Assumption 1, there should exist at least
three linearly independent nonholonomic constraints.
Accordingly, one can always reorder the constraints
to ensure that w̃11 is invertible. Note that, if there
exist more than three independent nonholonomic con-
straints, any three can be used to define w̃11. In fact,
as we shall see later in the paper, the choice of inde-
pendent nonholonomic constraints does not affect the
gait generationmethods proposed in this paper. In other
words, choosing any three independent nonholonomic
constraints will yield an identical gait. Thus, using the
three independent nonholonomic constraints, the body
velocity can be solved to get

ξ = −A(r)ṙ , (10)

where A(r) = w̃−1
11 .w̃12. For planar snake robots with

at least three independent nonholonomic constraints,
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Redundant multi-bodied planar kinematic snake robots 3849

Eq. (10) is the reconstruction equation where A(r) is
the principally kinematic connection [3]. The equation
in (10) relates the gait in the base space of the snake
into motion in its fiber space. Thus, one should coordi-
nate the evolution of the base variables to generate any
required fiber velocities according to this equation.

On the other hand, substituting the body velocity
into the rest of the nonholonomic constraints, one gets

G(r)ṙ = 0, (11)

whereG(r) = (w̃22 − w̃21.w̃
−1
11 .w̃12). This is the com-

patibility equation as defined in [4]. In this paper,G(r)
is an (m − 2) × m matrix that depends solely on the
base variables.

It is worth mentioning that any feasible gait, r(t),
must satisfy (11) to ensure that all the nonholonomic
constraints are not violated. In otherwords, the velocity
vector ṙ(t) must be perpendicular to the vector fields
Gi (r) for all time. Given that the base space of the
snake is m-dimensional, there exists infinitely many
vector fields that are perpendicular toGi (r) sinceG(r)
has only m − 2 rows.

4 Problem statement

Given a desired planar trajectory to be traversed defined
explicitly as c(t) = (xd(t), yd(t)) for t ∈ R and an n-
dimensional snake robot with a body frame attached
to it, solve for the base variables ri (t), that is, a gait,
which will ensure that the origin of the snake’s body
frame traverse the desired trajectory.
Note that the desired trajectory, c(t), is defined in the
inertial frame, however, one can compute the body
frame velocities required to traverse this trajectory.
This can be done by using the lifted left action in (8).
Nonetheless, to use the lifted action, one needs to spec-
ify the orientation, θd(t), of the body frame along the
desired trajectory. Assuming that the body frame it tan-
gent to the desired trajectory, one can set

θd(t) = tan−1(ẋd(t), ẏd(t)). (12)

Hence, using (8) the desired body velocities can be
solved for by ξd(t) = TgLg−1(ẋd(t), ẏd(t), θ̇d(t)).

Note that, one could alternatively define the desired
trajectory in the body frame by specifying the body
velocities, ξd(t). The presented simulations in this
paper use both approaches to specify the snake’s
desired motion.

5 Motion planning

In this section, the proposed motion planning method
for snake-like robots is presented. It is clear that a fea-
sible gait which traverses the desired trajectory while
also satisfying the nonholonomic constraints must sat-
isfy the equations in (10) and (11). Thus, the motion
planning problem of the kinematic snake can be trans-
posed to solving the following system of ordinary dif-
ferential equations⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = ξdx (t)

Fy(r).ṙ(t) = ξdy (t)

Fθ (r).ṙ(t) = ξdθ (t)

. (13)

The system of differential equations presented in
(13) is clearly an over-determined system. This is due
to having the three ordinary differential equations from
the reconstruction equation (10) in addition to them−2
ordinary differential equations from the compatibility
relations (11). Hence, there will be m + 1 equations
which govern the evolution of the m base variables.
Thus, the system in (13) is over-determined.

There are several methods to resolve the issue of the
system being over-determined. One simple approach is
to add degrees of freedom that do not impose additional
constraints.

For example, one could add one or more links that
do not have a set of wheels attached to them. This will
add degrees of freedom to the system without adding
any nonholonomic constraints, and thus transforms the
differential equations system in (13) from an over-
determined system to a sufficiently determined system.

Another approach is to exploit the body frame
assignment itself, that is, allowing the body frame loca-
tion and orientation with respect to the snake to vary
while the snake follows the desired trajectory. Under
this scenario, the location and orientation of the body
frame become free variables added to the system, and
thus transforming the over-determined system into a
solvable system. However, the body frame assignment
cannot be arbitrary, but rather should be determined
according to the kinematics of motion of the snake
robot.

To clarify this approach, consider that the body
frame is attached to the first link of the snake as shown
in Fig. 2 while the orientation of the body frame with
respect to first link is represented by an angle α. Note
that in this case, α is the additional degree of freedom
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Fig. 2 Four-link snake with a variable body frame orientation

which will render (13) sufficiently determined. This
direction of investigation is a possible future work for
the authors.

The first discussed method changes the mechani-
cal system by adding a link, and the second approach
complicates the body frame assignment. Accordingly,
a systematic approach to resolve this issue is needed
which is presented in the next subsection.

5.1 Gait generation method

In this subsection, a systematic and simple body frame
assumption that guarantees the solvability of the system
of equation in (13) is proposed.

Assumption 2 The origin of the body frame of the
snake-like robot is attached to one of the nonholonomic
constraints with its y-axis, ξy , aligned along the direc-
tion where no motion is allowed as shown in Fig. 1. If
a robot has a passive wheel, then the ξy is aligned with
the wheel axle.

For a desired trajectory, ensuring that the origin of
the body traverses the desired path and that its x-axis
remains tangent to the trajectory at all time, effec-
tively annihilates one of the nonholonomic constraints.
In other words, one of the nonholonomic constraints,
namely, the constraint where the body frame is attached
per the above assumption, becomes redundant with the
second row of the reconstruction equation.

For such a body frame assignment, it is clear that
ξ2 = ξy = 0. Thus, the reconstruction equation (10)
has only two non-trivial equations along the ξx , and ξθ

fiber variables. Hence, the motion in the fiber variables
x and θ can be specified by setting the left hand side of
(10) to a desired value.Note here that the nonholonomic
constraint to whom we attached the origin of the body

frame gets satisfied due to the desired motion along the
trajectory, and not due to coordinating the base vari-
ables. Thus, instead of having the m + 1 constraints of
(10) and (11), we only have m equations, which is the
same number of control variables the system possesses.

Given the devised frame assignment, the two non-
trivial rows of the reconstruction equation complement
the (m − 2) equations in (11) to define a system of m
first-order ordinary differential equations with m vari-
ables to be solved, which in turn when coupled with
a set of m boundary conditions gives a unique solu-
tion. This set of m boundary conditions can be defined
according to the user’s application. For example, one
can set the initial posture or the shape velocities that
the robot will be starting from as the boundary con-
ditions. On the other hand, if the application at hand
requires the robot to arrive at the target location in a
given posture/velocity, one can set the required posture
or the required shape velocities for the snake to acquire
when completing the gait as the boundary conditions.
The set of differential equations is given by
⎧
⎪⎨

⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = ξdx (t)

Fθ (r).ṙ(t) = ξdθ (t)

(14)

where ξdx (t) and ξdθ (t) are the desired fiber body veloc-
ities associated with the desired trajectory. Recall that
if the desired trajectory is expressed in a fixed iner-
tial frame, one could use the lifted left action to map
the inertial velocities to the set of desired fiber body
velocities ξdx (t) and ξdθ (t).

The frame assignment described in Assumption 2
dictates that the link on which the body frame is
attached shall remain tangent to the desired trajectory
as the robot traverses the trajectory. Thismight be unde-
sired for some users especially if there is a camera or
other sensors mounted on this link. If this is the case,
the first two methods proposed in the previously in this
section might be more adequate.

The flowchart in Fig. 3 summarizes the steps of the
proposed algorithm as well as its required inputs and
generated output.

5.2 Inertial versus body frame motion

It is usually desired to generate nonzero motion solely
along one of the fiber variableswhile keeping the others
unchanged. This can be achieved by ensuring that the
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Redundant multi-bodied planar kinematic snake robots 3851

Fig. 3 Flowchart of the proposed algorithm

base velocities ṙ(t) is additionally perpendicular to the
vector field Fi (r) associated with the fiber variable that
needs to remain unchanged. In other words, generating
motion in a particular fiber variable requires setting
ξdi (t) of the other fiber variable to zero.

Although this could be considered restrictive, it
could actually be utilized to ensure that only one of
the fiber variables is changing throughout the proposed
gait. In otherwords, thismethod ensures that themotion
represented in the body frame is indeed identical to that
computed in the inertial frame.

WhileHatton et al. [9,10]worked onminimizing the
difference in motion between the body frame and the
inertial frame by optimizing the base frame location.
In the proposed gait generation method the body frame
can be assigned on any link per Assumption 2, yet the
methods ensure that the motion of the body frame tra-
verses a desired inertial trajectory for all time.

6 Four-link kinematic snake robot example

In this section, the motion planning method is applied
to generate gaits for the four-link nonholonomic snake
robot similar to that shown in Fig. 1.

6.1 Configuration space

For the four-link snake, the configuration space is
six-dimensional, i.e., the fiber space, G is the three-
dimensional G = SE(2) with the fiber variables
g = (x, y, θ) and a three-dimensional base space,M =
S
1 × S

1 × S
1 with the base variables r = (σ1, σ2, σ3).

Variables (x, y) and θ , respectively, represent the posi-
tion and orientation of the first link, whereas σ1, σ2,
and σ3 represent the relative angles between the links
as shown in Fig. 1.

6.2 Reconstruction and compatibility expressions

Accordingly, the kinematic connection A(r) shown in
the reconstruction equation (10) is a 3× 3 matrix such
that

F(r) =
⎛

⎝
f11(σ1, σ2, σ3) f12(σ1, σ2, σ3) 0

0 0 0
f31(σ1, σ2, σ3) f32(σ1, σ2, σ3) 0

⎞

⎠ , (15)
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where

f11 = L

2
cos

(
σ1 − σ2

2

)
csc

(
σ1 − σ2

2

)
sec

σ1

2

f12 = L (1 + cos σ1)

sin σ1 + sin σ1 − σ2 − sin σ2

f31 = 1

2
csc

(
σ1 − σ2

2

)
sec

σ1

2
sin

(
σ1 − σ2

2

)

f32 = 1

2
csc

(
σ1 − σ2

2

)
sec

σ2

2
sin

σ1

2
.

As forG(r) in the compatibility relation (11), it is a
1 × 3 matrix such that

G(r) = (
g1(σ1, σ2, σ3) g2(σ1, σ2, σ3) g3(σ1, σ2, σ3)

)
,

where

g1 = −L cos
σ3

2
csc (

σ1 − σ2

2
) sec

σ1

2
sin

(
σ2 − σ3

2

)

g2 = L cos
σ3

2
csc (

σ1 − σ2

2
) sec

σ2

2
sin

(
σ1 − 2σ2 + σ3

2

)

g3 = L .

Next, the gait generation and their respective simu-
lations are divided into three categories: simulations
in which the snake moves solely in one fiber vari-
able, simulations in which the snake traverses simple
gaits such as circular trajectories and Dubins curve,
and general simulations in which the snake traverses
arbitrary desired paths defined explicitly on the two-
dimensional horizontal environment. In these simula-
tions, the parameters associated with the snake are set
as L = 1, m = 1, and J = 2.

6.3 Single fiber motion

Next, two gaits are generated. The first gait produces
motion solely along the x direction with no rotation of
the body frame throughout the entire gait. The second
gait produces in-place rotation of the body frame with
no translational motion of the origin of the body frame
throughout the entire gait.

6.3.1 Pure forward motion

To generate a gait that moves solely along the x direc-
tion, one must set ξdθ = 0 in (14). Hence, ṙ(t) must be
perpendicular to Fθ (r) and G(r) for all time. Accord-
ingly, one can define ṙ(t) as follows

ṙ(t) = Fθ (r) × G(r)

=
⎛

⎝
sin (σ1)

− sin (σ1) − sin (σ1 − σ2)

sin (σ1 − σ2) + sin (σ1 − σ2 + σ3)

⎞

⎠ . (16)

The above equations constitute a set of first-order
ordinary differential equations in the base space. Given
a set of initial conditions, the above equations can be
solved for a gait that moves the snake along the x direc-
tion. Additionally, to simplify the gait generation, one
could specify the speed along which the snake moves.
For instance, one could ensure that ξdx = 1 in (14). In
fact, letting ρx (r(t)) = Fx (r).(Fθ (r)×G(r)), the vec-
tor field ṙ(t) = (Fθ (r)×G(r))/ρx (r) is still a feasible
gait that moves the snake along the x direction. Hence,
setting

ṙ(t) = Fθ (r) × G(r)

ρx (r(t))
� rx (t) (17)

where

ρx (r) = 1

L2 (sin(α − β − γ ) + sin(α − γ )

+ sin(α + γ ) + sin(α) − sin(β + γ )) .

(18)

The solution of the above system, rx (t), will ensure
that ξdx = 1. In other words, the net motion along the
x direction is equal to the duration of the gait since
ζx = ∫ t f

ti
1dt = t f − t0.

Since the initial conditions for the system of ODE
in (16) are arbitrary, there exists an infinite number of
feasible gaits. For a specific set of initial conditions,
σ1(0) = 0.5 rad, σ2(0) = −2 rad, σ3(0) = 2 rad,
(x(0), y(0)) = (0, 0), and θ(0) = 0 rad, the generated
gait, rx (t), is depicted in Fig. 4. A simulation depicting
the motion of the snake robot is shown in Fig. 6. As
expected, the body frame moved along a straight hori-
zontal line a distance of 3π units since the duration of
the simulation was 3π seconds.

Figure 5 shows the magnitude of the forces hold-
ing the nonholonomic constraint. The constraint forces
show realistic results, as the forces are relatively low.

Moreover, to mathematically verify that the non-
holonomic constraints are satisfied, one can compute
the RMS error of the expressions in (3) where the max-
imum RMS value of the four constraints is negligible
as depicted in Table 1.

The net motion due to the generated gait rx (t) after
a duration of 3π sec along the fiber variables x and θ
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Fig. 4 The gait designed using (17) to move solely along the x
direction

Fig. 5 The four nonholonomic forces associated with gait rx (t)
as a function of time t

Fig. 6 The motion of the snake under the gait rx (t)

is shown in the first row of Table 1. It is clear that the
proposed gait generated a nonzero net motion in the
fiber variable x while resulting in a zero motion in the
fiber variable θ . It is also worth mentioning that since
θ remained identically zero throughout the entire gait,
the body velocity matches the velocity as expressed in
the inertial frame.

Table 1 Resulting phase shifts and maximum nonholonomic
constraint RMS for the gaits in (17) and (20)

Gait �x �θ Max RMS

Gait (17) 9.42 −2.85 × 10−7 2.64 × 10−7

Gait (20) 8.99 × 10−8 1.57 1.13 × 10−7

6.3.2 In-place rotation

To generate gaits that produce pure in-place rotational
motion, the desired fiber body velocity ξdx in (14)
should be set to zero. Thus, ṙ(t) should be perpendicu-
lar to the vector fields Fx (r) andG(r) for all time. The
shape velocities vector ṙ(t) can be defined as

ṙ(t) = Fx (r) × G(r)

=
⎛

⎝
1 + cos (σ1)

− cos (σ1) − cos (σ1 − σ2)

cos (σ1 − σ2) + cos (σ1 − σ2 + σ3)

⎞

⎠ (19)

Similar to that of the forward motion, the veloc-
ity vector can be designed to simplify the generated
motion. This is done by setting ξdθ = 1 in (14), to
allow the snake to rotate at a constant unit rate. Thus,
setting

ṙ(t) = Fx (r) × G(r)

ρθ (r(t))
� rθ (t) (20)

where ρθ (r(t)) = Fθ (r)(Fx (r) × G(r)) will ensure
ξdθ = 1. It is worth mentioning that ρθ (r(t)) =
−ρx (r(t)) given in (18). Hence, the change in the
fiber variable θ is equal to the duration of the gait
ζθ = ∫ t f

t0
dt = t f − t0.

One can propose infinite gaits satisfying the desired
perpendicularity depending on the initial conditions.
The initial location of the snake along with the final
shape of the snake will be set as the boundary con-
ditions, that is, x(0) = 0, y(0) = 0, θ(0) = 0 rad,
σ1(t f ) = 2 rad, σ2(t f ) = −1 rad, and σ3(t f ) = 2.5
rad, gait rθ (t) is generated, where its components evo-
lution as a function of time are shown in Fig. 7 and the
snake motion is depicted in Fig. 8.

Gait rθ (t) is feasible as it satisfies the nonholonomic
constraints. This is proven mathematically by showing
that the maximum RMS value of the four nonholo-
nomic constraints is negligible as presented in Table 1.
Moreover, the constraint forces are presented in Fig. 9.
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Fig. 7 Evolution of rθ (t) as a function of time t

Fig. 8 The motion of the snake under the gait rθ (t)

Fig. 9 The four nonholonomic forces associated with the gait
rθ (t) as a function of time t

The output motion resulting from gait rθ (t) is pre-
sented in Table 1, where it shows that the gait gener-
ated a nonzero net motion in the fiber variable θ , while
unchanging the fiber variable x .

6.4 Simple gaits

In this section, several gaits are generated for simple
paths, such as turn-and-move, circular path, andDubins
path.

6.4.1 Turn-and-move

In this simulation, it is desired to let the snake robot
arrive at a specified position with a given orientation.
Given initial and final states, using a composition of
the single fiber motions described in Sect. 6.3, one can
devise simple concatenations of the above gaits. The
path could be decomposed to three phases: phase 1 is
rotating in place until the first link is heading toward
the desired position, phase 2 is moving in a straight line
in the direction of the first link until the robot reaches
the desired position, and finally, phase 3 is to rotate in
place until the first link attains the desired orientation.

Consider a case where the first link of the robot
is positioned at (x(0), y(0)) = (1, 1) and oriented
at θ(0) = π rad with the following base variables
initial conditions: σ1(0) = 1 rad, σ2(0) = −2 rad,
and σ3(0) = 1.5 rad. The final desired position
is (x(t f ), y(t f )) = (−4.43,−4.43) and oriented at
θ(t f ) = π rad.

The generated gait rtm(t) depicted in Fig. 11a pro-
duced the desired motion. The duration of entire gait
is 9.24s divided on three phases as: 0s − 0.785s in-
place rotation, 0.785s − 8.455s forward motion , and
8.455s−9.24s in-place rotation. Figure 11d shows the
snake as it traverses the path between its initial and final
state.

6.4.2 Circular motion

It is desired for the body frame of the snake to traverse
a circular arc. This is done by reverting back to (14).
In the previous simulations, it was intended to have
motion only in one fiber variable; however, moving
on a circular arc requires coordinating motion in both
fiber variables simultaneously. For this, and instead of
setting either of the fiber velocities ξdx or ξdθ to zero,
it is now intended to have both of them nonzero. The
ratio ξdx

ξdθ
defines the curvature of the snakes motion.

For instance, consider a path with a radius of curvature
R = 2 where R = ξdx

ξdθ
= 2

1 = 2. To solve for the gait

that generates this path, one must solve the following
ODE system
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⎧
⎪⎨

⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = 2

Fθ (r).ṙ(t) = 1

� rc(t). (21)

The solution velocity vector field ṙc(t) satisfying
(21) has the following expression

ṙc(t) =

⎛

⎜⎜⎜⎜⎝

1 + cos (σ1) − 2 sin (σ1)

− cos (σ1) − cos (σ1 − σ2) + 2(sin (σ1)

+ sin (σ1 − σ2))

2 cos ( σ3
2 )(cos (σ1 − σ2 + σ3

2 )

−2 sin (σ1 − σ2 + σ3
2 ))

⎞

⎟⎟⎟⎟⎠

(22)

Given the initial conditions, x(0) = 0, y(0) = 0,
θ(0) = π rad, σ1(0) = −1.5 rad, σ2(0) = −2 rad,
σ3(0) = −2.5 rad, one can solve for the gait rc(t).
The evolution of rc(t) components with respect to time
is shown in Fig. 11b. The motion performed by the
snake’s body frame is shown in Fig. 11e. The snake is
shown at the two instants t = 1s and t = 3.1s. It is
also worth mentioning that the constraints were satis-
fied throughout the gait as the maximum RMS error is
4.14×10−8. The constraint forces are shown in Fig. 10
to be relatively small forces, and thus realistic.

6.4.3 Dubins curve

In this simulation, a gait will be generated so that the
snake’s body framewill traverse a time-optimal Dubins
curve. All planar Dubins paths are concatenations of
circular and straight motions. Thus, a Dubins curve can
be traversed using the above mentioned gaits, namely,
the moving forward and the circular arc presented in

Fig. 10 The four nonholonomic forces associatedwith gait rc(t)
as a function of time t

Sects. 6.3.1 and 6.3.2, respectively. A CSC Dubins
path, circular arc–straight line–circular arc, requires a
gait composed of three sections, where in each sec-
tion, the base variables flow on a specific vector field.
The velocity vector field ṙc+(t) is that associated with
moving in a circular motion in the clockwise direc-
tion, ṙc−(t) is associated with the circular motion in
the counter-clockwise direction, and ṙs(t) is associated
with a straight line motion. The velocity vector field
ṙc+(t) is that of (22), ṙs(t) is that of (17), whereas ṙc−(t)
is the solution of the system of equations
⎧
⎪⎨

⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = 2

Fθ (r).ṙ(t) = −1

� rc−(t) (23)

Solving (23) yields

ṙc−(t) =

⎛

⎜⎜⎜⎜⎝

−1 − cos (σ1) − 2 sin (σ1)

cos (σ1) + cos (σ1 − σ2) + 2(sin (σ1)

+ sin (σ1 − σ2))

−2 cos ( σ3
2 )(cos (σ1 − σ2 + σ3

2 )

+2 sin (σ1 − σ2 + σ3
2 ))

⎞

⎟⎟⎟⎟⎠
.

(24)

Assume initially that the head of the robot is posi-
tioned at (x(0), y(0)) = (0, 0) andoriented at θ(0) = 0
rad, whereas the base variables are set as α(0) = −1.5
rad, β(0) = −2 rad, and γ (0) = −2.5 rad. The
base gait rd(t) generating the Dubins motion is pre-
sented in Fig. 11c, where the overall gait spans a 14.2s
time period divided on three sections, 3.1s counter-
clockwise circular motion, 8s straight forward motion,
and a 3.1s clockwise circularmotion. Themotion of the
snake is shown in Fig. 11f. The posture of the snake is
shown at three different instants t = 1.55s, t = 9.1s,
and t = 14.2s.

6.5 General trajectory

In general, any trajectory can be tracked by applying
the proposed approach. For the sake of simulating the
general case, a sinusoidal trajectory will be used. The
trajectory to be followed by the snake as described in
the inertial frame is

xd(t) = t; yd(t) = 0.5 cos(t) (25)

where xd(t) and yd(t) are the desired x and y coor-
dinates of the snake’s head. The orientation of the
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(a)

(d) (e) (f)

(b) (c)

Fig. 11 a Evolution of rtm(t) components as a function of time.
The dashed lines separate the gait into its three phases. b Evo-
lution of rc(t) components as a function of time. c Evolution of
rd (t) components as a function of time. The dashed lines separate

the gait into its three phases. d Snake performing the turn-and-
move motion. e Snake performing the circular motion. f Snake
performing the Dubins motion

body frame as it traverses the above curve is given by

θd = tan−1
(
ẏ(t)
ẋ(t)

)
. The lifted action is used to trans-

form the trajectory velocities to the base velocities as

ξd (t) = TgLg−1

⎛

⎝
ẋ(t)
ẏ(t)
θ̇(t)

⎞

⎠ =
⎛

⎜⎝

√
1 + 0.25 sin(t)2

0
− 0.5 cos(t)

1+0.25 sin(t)2

⎞

⎟⎠ . (26)

ξyd is zero as expected since the y-axis of the frame is
placed along the nonholonomic constraint. The snake’s
initial posture is given by σ1(0) = 1 rad, σ2(0) = −2
rad, σ3(0) = 1.5 rad, whereas the initial fiber variables
are x(0) = 0, y(0) = 0, and θ(0) = 0 rad. Thus, solv-
ing the following ODE system generates the desired
gait.
⎧
⎪⎨

⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = √
1 + 0.25sin(t)2

Fθ (r).ṙ(t) = − 0.5cos(t)
1+0.25sin(t)2

� rsin(t). (27)

Figure 12a shows the generated gait associated with
the desired sinusoidal motion. Inspecting the steady
state of the generated gait, one could see that the base

variables evolve in a sinusoidal fashion with an equal
amplitude but with a time lag. This gait is similar to the
gaits proposed by Hirose [12] for sinusoidal motion.
Figure 12b shows the motion generated by the snake
where the gait has a 6π seconds duration. Figure 12b
shows the snake at three different instants: t = 0s,
t = 9s, and t = 6πs. The generated gait in Fig. 12a is
feasible as it satisfies the nonholonomic constraints,
i.e., the maximum RMS of the nonholonomic con-
straints is computed to be 1.51 × 10−8. The nonholo-
nomic forces associated with the gait in Fig. 12a are
shown in Fig. 12c.

6.6 Re-parameterizing trajectories

The proposed method generates gaits for a specified
trajectory. Thus, one can specify several time param-
eterizations of a desired path. In this example, the
same desired sinusoidal path used in Sect. 6.5 will
be re-parametrized to slow down and speed up along
the path. That is, the trajectory to be followed is
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(a) (b) (c)

(d) (e) (f)

Fig. 12 a Evolution of rsin(t) components as a function of time.
b Snake traversing the sinusoidal trajectory in (25). c The four
nonholonomic forces associated with gait rsin(t). d Evolution of

rsin−param(t) components as a function of time. e Snake travers-
ing the sinusoidal trajectory in (28). f The four nonholonomic
forces associated with gait rsin−param(t)

c(τ ) = (xd(τ ), yd(τ )) = (τ, 0.5 cos(τ )) where τ =
t + 1− cos(t). Accordingly, the resultant trajectory to
be followed by the snake as described in the inertial
frame is:

xd (t) = t + 1 − cos(t); yd (t) = 0.5 cos(t + 1 − cos(t))

(28)

where xd(t) and yd(t) are the desired x and y coordi-
nates of the snake’s head.

Using the lifted left action, the body velocities are
computed to be

ξd (t) = TgLg−1

⎛

⎝
ẋd (t)
ẏd (t)
θ̇d (t)

⎞

⎠

=
⎛

⎜⎝

1.125+cos(2+2t−2 cos(t))(−0.125−0.125 sin(t))+1.125 sin(t)√
1+0.25 sin(1+t−cos(t))2

0
cos(1+t−cos(t))(−2−2 sin(t))

4+sin(1+t−cos(t))2

⎞

⎟⎠ .

(29)

For comparisonpurposes, the same initial conditions
used in the simulation of Sect. 6.5 will be used in this
simulations. That is, the snake’s initial posture is given
by σ1(0) = 1 rad, σ2(0) = −2 rad, σ3(0) = 1.5 rad,

where as the initial fiber variables are x(0) = 0, y(0) =
0, and θ(0) = 0 rad. Solving the followingODEsystem
generates the desired gait.
⎧
⎪⎨

⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = ξdx (t)

Fθ (r).ṙ(t) = ξdθ (t)

� rsin−param(t). (30)

where ξdx (t) and ξdθ (t) are those shown in (29).
Solving this set of ordinary differential equations for

the given initial conditions yields the gate rsin−param(t)
shown in Fig. 12d. The motion of the snake is shown
in Fig. 12e, where the snake’s posture is shown at three
different instants t = 0s, t = 9s, and t = 6πs. The
generated gait in Fig. 12d is feasible as it satisfies the
nonholonomic constraints, i.e., the maximum RMS of
the nonholonomic constraints, 1.74 × 10−8, which is
negligible. Figure 12f shows the nonholonomic forces
associated with the gait in Fig. 12d.

7 Five-link snake simulation

Theproposedmethod is applicable to a kinematic snake
with m + 1 links where m ≥ 3. In this section, the
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method is validated on a snake with five links, i.e.,
m = 4. To show the robustness of the proposed method
under any set of links’ parameters, the parameters of
the five-link snake in this section are randomly capped
to l1 = 1.1, l2 = 1.2, l3 = 1.3, l4 = 1.4, l5 = 1.5,
m1 = 2.1, m2 = 2.2, m3 = 2.3, m4 = 2.4, m5 = 2.5,
j1 = 1.1, j2 = 2.1, j3 = 3.1, j4 = 4.1, and j5 = 5.1.

7.1 Configuration space

For the five-link snake, the configuration space is
seven-dimensional. The fiber space, G is the three-
dimensional G = SE(2) with the fiber variables
g = (x, y, θ) and the base space is a four-dimensional
space, M = S

1 × S
1 × S

1 × S
1 with the base variables

r = (σ1, σ2, σ3, σ4). Variables (x, y) and θ , respec-
tively, represent the position and orientation of the first
link, whereas σ1, σ2, σ3 and σ4 represent the relative
angles between the snake’s links.

7.2 Reconstruction and compatibility equations

The reconstruction and compatibility expressions for
the five-link snake are derived as in Sect. 3, however
won’t be shown here due to space limitations.

7.3 General trajectory

In this simulation, the snake body frame is required
to traverse a general trajectory having the following
expressions

xd(t) = t; yd(t) = − cos(t). (31)

The lifted action is used to transform the trajectory
velocities to the body velocities as

ξd(t) = TgLg−1

⎛

⎝
ẋ(t)
ẏ(t)
θ̇(t)

⎞

⎠ =
⎛

⎜⎝

√
1 + sin(t)2

0
cos(t)

1+sin(t)2

⎞

⎟⎠ . (32)

Thus, the body fiber velocities ξdx and ξdθ are set to√
1 + sin(t)2 and cos(t)

1+sin(t)2
, respectively.

The snakes initial posture is randomly set to be
σ1(0) = −0.1 rad, σ2(0) = 0.2 rad, σ3(0) = −0.3
rad, and σ4(0) = 0.2 rad, where as the initial fiber
variables are randomly set to x(0) = 0, y(0) = −1,

and θ(0) = 0 rad. Thus, solving the following ordinary
differential equations system yields the desired gait.
⎧
⎪⎨

⎪⎩

G(r).ṙ(t) = 0

Fx (r).ṙ(t) = √
1 + sin(t)2

Fθ (r).ṙ(t) = cos(t)
1+sin(t)2

� r5−link(t). (33)

It is worth mentioning that the dimension ofG(r) is
2×4, since the base space is a four-dimensional space.

Solving (33) for the given initial conditions yields
the gate r5−link(t) that is shown in Fig. 13. The motion
of the snake is shown in Fig. 14, where the snake’s pos-
ture is shown at three different instants t = 0, t = 1.5π ,
and t = 4π . The generated gait in Fig. 13 is feasi-
ble as is satisfies the nonholonomic constraints, i.e.,
the maximum RMS of the nonholonomic constraints,
2.39 × 10−8, is negligible. Figure 15 shows the non-
holonomic forces associated with the gait in Fig. 13.

8 Discussion on constraint singularities

Assumption 1, that is, having three independent non-
holonomic constraints is crucial for the proposed
motion planning algorithm. If this assumption is not
satisfied, then the proposed motion planning algorithm
is not valid anymore. Namely, if there are fewer than
three independent nonholonomic constraints, then w̃11

becomes singular and non-invertible.

Fig. 13 The evolution of r5−link(t) components along time t

Fig. 14 The trajectory due to gait r5−link(t)
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Fig. 15 The five nonholonomic forces associated with the gait
r5−link(t) as a function of time t

Note that, in the proposed algorithm, we invert w̃11

symbolically provided that the det(w̃11) �= 0. This
determinant condition can be used as an additional con-
straint when solving the ODE in (14). In fact, solving
the above ODE system along with the constraint that
det(w̃11) �= 0 could be expressed as an optimization
problem while using the boundary conditions of the
gait as minimization arguments. For instance, the cost
function to be minimized could be (det(w̃11))

−1 while
the ODE system of equations could be expresses as
constraints. This approach ensures the invertibility of
the w̃11 matrix. This is a future work direction for the
authors.

Another approach to avoid the singularity of w̃11

would be to re-parametrize the desired path similar
to what was done in Sect. 6.6. Re-parametrizing the
desired path ensures that the snake tracks the same path
however using a different gait and motion, thus pre-
venting the snake from passing through singular con-
figurations if it occurred in the original trajectory. This
approach could be another future work direction for the
authors.

9 Conclusion and future work

In this paper, a gait generationmethod for fully actuated
planar nonholonomic snake robots with m + 1−links
was proposed, where m ≥ 3. The gaits generated by
the proposed method are guaranteed to be feasible (sat-
isfying the non-redundant nonholonomic constraints).
Moreover, the generated gaits ensure the body frame
attached to the snake-like robot traverses the desired
trajectories described in the inertial frame. The gen-
erated gaits ensure the fiber variables’ motion to be

identical as viewed from the inertial frame or the body
frame.

Given that the proposed method solved a set of dif-
ferential equations for which the boundary conditions
are arbitrary, a future work direction would be analyz-
ing the effect of the choice of these boundary conditions
on the generated gaits. This can be done in the context
of minimizing energy expenditure along the gaits or
avoiding singular configurations by reformulating the
problem as an optimization problemwith the boundary
condition as optimization parameters. Moreover, only
specifying the target location for the snake to arrive,
i.e., allowing the snake to select the path to traverse
rather than pre-defining it, will add up freedom to the
optimization problem, thus will help in further min-
imizing the cost of applying the gait. Another future
work direction would include applying the proposed
approach for locomotion of snake robots in environ-
ments having obstacles.
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