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Abstract In this paper, the internal resonance phe-

nomena of a composite shaft-disk system with multi-

degrees-of-freedom are analyzed. The force caused by

the unbalanced mass of the disk is considered as an

external excitation force. The shaft is simply sup-

ported. Shear deformation and gyroscopic effects are

considered. The strain–displacement relationship of

the shaft element is expressed using the Timoshenko

beam theory. Each node has 5 degrees of freedom.

SHBT (simplified homogenized beam theory) is

applied to calculate the stiffness of the composite

shaft. WQEM (weak form quadrature element

method) is used to construct the element matrices,

and the system matrices are established using the

element matrix assembly rule of the FEM (finite

element method). The reduced-order model is applied

to reduce the calculation time. IHB (incremental

harmonic balance) method is utilized to solve the

nonlinear equations of motion of the composite shaft-

disk system. The nonlinear vibration characteristics of

the Jeffcott rotor are analyzed using the proposed

method and compared with the results of previous

researches, and the results are very similar. Based on

these considerations, the nonlinear vibration phenom-

ena of the composite shaft-disk system with multi-

degrees-of-freedom are considered at the several

resonance points.

Keywords Composite shaft � Nonlinear vibration �
Rotor dynamics � Reduced-order model � IHB

1 Introduction

Composite materials have the high ratio of strength to

density, high ratio of stiffness to density, high fatigue

strength. So, it is widely used in many industries such

as automobile, shipbuilding, and aerospace. In partic-

ular, the composite shaft has the characteristics of low
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noise, low energy consumption, high speed and

stable control, and is widely used in automobiles,

helicopters and other mechanical equipment. At

present, the rotating machines operate beyond the

critical speed, and when they pass through the critical

speed, vibration with large amplitude occurs [1].

Therefore, it is of practical significance to accurately

analyze the dynamic characteristics of the composite

shaft and ensure its stable operation.

Many researchers have proposed many different

models to analyze the dynamic characteristics of the

composite shaft. Singh et al. [2] used EMBT (equiv-

alent modulus beam theory) to calculate the equivalent

longitudinal and in-plane shear moduli of the com-

posite shaft and calculated its natural frequency by

using the calculation method for the isotropic mate-

rials shaft. Gubran et al. [3] overcame the shortcom-

ings of EMBT and proposed the modified EMBT,

which improved the calculation accuracy by consid-

ering various coupling effects in composite materials.

Sino et al. [4] used SHBT to calculate the stiffness of

the composite shaft and proposed a homogenized

finite element beam model considering the internal

damping. On this basis, they calculated its natural

frequency and instability thresholds. Ri et al. [5] added

the coupling effects of composite materials to SHBT

and improved the calculation accuracy. Singh et al. [6]

applied LBT theory, which provided a more real strain

field, to calculate the natural frequency of the com-

posite shaft. However, LBT provides a more accurate

deformation representation than other theories, and it

consumes a lot of computation time when the number

of the layer increases. As all the theories mentioned

above are considering the linear vibration model of the

composite shaft, it is only possible to calculate the

basic values such as natural frequency and instability

threshold.

Many different models have been proposed to

analyze the nonlinear vibration of rotating shaft

system. Ishida et al. [7] analyzed the nonlinear forced

vibration of vertical continuous rotor with distribution

mass. They studied the possibility of nonlinear forced

vibration at various subcritical speeds. Ishida et al. [8]

studied the internal resonance phenomena of Jeffcott

rotor having a nonlinear spring characteristics. They

concluded that if Jeffcott rotor was used in the analysis

of rotor system, the result was not correct. Ishida et al.

[9] considered the unstable vibration phenomena of

asymmetrical rotating shaft. They studied the internal

resonance phenomena of the shaft in the vicinity of the

major critical speed and the rotational speed vicinity

of twice and three times the major critical speed. Inoue

et al. [10] investigated the chaotic vibration caused by

1 to (-1) type internal resonance in the vicinity of the

major critical speed and the rotational speed, which is

twice the major critical speed. Khadem et al. [11]

analyzed the primary resonances of a simply sup-

ported in-extensional rotating shaft, where the multi-

ple scales method was applied to analyze the nonlinear

vibration. Hosseini et al. [12] analyzed the free

vibration of rotating shaft with stretching nonlinearity

using the multiple scales method. They also studied

the vibration characteristics of spinning beam with

geometrical nonlinearity [13]. Zhang et al. [14]

applied IHB method to analyze the nonlinear vibration

of the composite shaft-disk rotating system consider-

ing nonlinear deformation. In this paper, frequency–

response characteristics according to the change of

several parameters were studied. Nezhad et al. [15]

applied the harmonic balance method to analyze the

nonlinear vibration characteristics of the composite

shaft. Shaban et al. [16] analyzed flexural–flexural–

extensional–torsional vibration of the composite shaft

considering the geometrical nonlinearity by method of

multiple scales.

Due to imbalance caused by manufacturing errors,

shaft mismatches, and bearing wear mismatches,

nonlinear vibration occurs in the rotating shaft [17].

The nonlinear vibration characteristics of the com-

posite shaft-disk system caused by unbalanced mass

have been analyzed by many researchers. However,

little research has been done on the internal resonance

phenomena occurring in these systems.

To solve the nonlinear vibration equation, the

perturbation method and HBM (harmonic balance

method) are used. The perturbation method is used for

analyzing the weak nonlinear systems. Fourier series

is applied for the time solution in HBM and it has the

advantage of being used in both weak nonlinear

systems and strong nonlinear systems. The disadvan-

tage of HBM is to consume lots of computation time.

As the number of harmonic terms and degree of

freedom increases, the order of the matrix increases,

which consumes more computation time. Because

IHB method combines Newton–Raphson method and

HBM, it has a same shortcoming. To overcome this

shortcoming, the reduced-order model is used in this

article. Until now, the research on the analysis of
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nonlinear vibration of rotor system using reduced-

order model and IHB method has not been widely

conducted.

This paper provided the solution method for the

analysis of nonlinear vibration of the composite shaft-

disk system with multi-degree-of-freedom which

combines the reduced-order model with IHB method.

Employing the proposed method, the internal reso-

nance phenomena of the composite shaft-disk system

occurring at the several resonance points are analyzed.

SHBT is used to calculate the stiffness of the

composite shaft. Timoshenko beam theory is used

for the strain–displacement relationship, and the

kinetic and strain energies of element are expressed

using WQEM. The element equations of motion is

established by using Lagrange’s equation, and the

equations of the whole system are established by using

element matrix assembly method in FEM. The

reduced-order model of shaft-disk system is estab-

lished using modal matrix composing of modal

coordinates and eigenvectors of linear eigenvalue

equations. The number of modes used in the reduced-

order model is determined by analyzing the nonlinear

vibration characteristics using the reduced-order

model and non-reduced order models and comparing

the results. Though the IHB method is applied to solve

the nonlinear equation, using the IHB method alone, it

is impossible to obtain complex frequency–response

characteristics near the resonance point. The response

at frequencies far from the resonance point is calcu-

lated using only the IHB method. However, the

frequency response near the resonance point is calcu-

lated by the continuation technique. To prove the

validity of the proposed model, the nonlinear vibration

characteristics of the Jeffcott rotor are calculated by

the proposed method. The analysis results and the

results of the reference [23] are very close. Based on

these results, in this paper, the shaft-disk system is

expanded to a model with multi-degree of freedom,

and the internal resonance phenomena of the compos-

ite shaft-disk system are studied at several resonance

points.

2 Weak form quadrature element method

WQEM is similar with higher-order FEM and more

flexible than strong form quadrature element method,

therefore it is widely applied in the analysis of

engineering problems. Using WQEM, the element

matrices of shaft element are calculated. Gauss–

Lobatto–Legendre points are used as nodal points of

shaft element. Gauss–Lobatto–Legendre points are the

solution of Eq. (1).

1 � x2
� � dPn�1 xð Þ

dx
¼ 0 ð1Þ

Here, x is defined at [- 1, 1] and Pn-1(x) is

(n - 1)th Legendre polynomial.

The function f(x) defined at [- 1, 1] is integrated

using Gauss–Lobatto–Legendre quadrature rule as

follows [18].

Z1

�1

f xð Þdx ¼
Xn

j¼1

Cjf xj
� �

ð2Þ

Here, Cj is the weighting coefficient calculated by

Gauss–Lobatto–Legendre quadrature rule. n is the

number of nodal points. The weighting coefficient is

calculated as follows.

C1 ¼ Cn ¼
2

n n� 1ð Þ ;

Cj ¼
2

n n� 1ð Þ Pn�1 xj
� �� �2 j 6¼ 1; nð Þ

ð3Þ

The m-order derivative of function f is approxi-

mated as follows [18].

f
mð Þ

i ¼
Xn

j¼1

A
mð Þ
ij fj i ¼ 1; 2 � � � ;Nð Þ ð4Þ

Here, A
mð Þ
ij is m-order weighting coefficient.

Because Timoshenko beam theory is applied in this

research, only the first-order derivative is used in the

strain expression. Therefore, only the first-order

weighting coefficient matrix is considered. The ele-

ments on the diagonal and outside of diagonal of the

first-order weighting coefficient matrix are given in

Eqs. (5) and (6).

A
1ð Þ
ii ¼ �

Xn

j¼1;j6¼i

A
1ð Þ
ii ð5Þ

A
1ð Þ
ij ¼

Qn

k¼1;k 6¼i

xi � xkð Þ

xi � xj
� � Qn

k¼1;k 6¼j

xj � xk
� � ð6Þ
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The nodal points introduced in Eqs. (2) and (4) have

same distribution forms, that is, defined at [- 1, 1].

However, in practice, nodal points are not placed in the

interval [- 1, 1], so the formula above should be

changed as follows.

A 1ð Þ ¼ 2

le
A

1ð Þ
01 ; C 1ð Þ ¼ le

2
C

1ð Þ
01 ð7Þ

Here, A
1ð Þ

01 and C
1ð Þ

01 are the first-order weighting

coefficient matrices defined at [- 1, 1].

3 Motion equation

Using Timoshenko beam theory, the composite shaft

is modeled as a beam element and the disk as a rigid

element. Figure 1 shows the coordinate system and

geometrical dimension of the composite shaft-disk

system. The composite shaft is composed of laminate

structures with different fiber angles. The cross section

is circular and rotates around X-axis.

Figure 2 shows the displacement of shaft element

and layer allocation of the composite shaft considered

in this research.

The strains on the shaft element are defined as

follows using the von Karman’s theory [19].

exx ¼ e0
xx þ zk0

yy þ yk0
zz; cxy ¼ c0

xy; cxz ¼ c0
xz ð8Þ

e0
xx ¼

ou

ox
þ 1

2

ov

ox

� �2

þ 1

2

ow

ox

� �2

; k0
yy ¼

ob
ox

;

k0
zz ¼

oc
ox

; c0
xy ¼

ov

ox
� c; c0

xz ¼
ow

ox
þ b

ð9Þ

Here u, v and w mean the displacements of any

points on the middle surface of the shaft element in the

x, y, and z directions, respectively. b and c indicate the

rotations of any cross sections around the y and z axes,

respectively.

The composite shaft-disk system has kinetic energy

due to disk, shaft and unbalanced mass, and strain

energy on the shaft. The kinetic energy of the disk is as

follows [5].

Te
d ¼ 1

2

Xnd

i¼1

Mdi _u xið Þ2þ _v xið Þ2þ _w xið Þ2
� 	h

þIdi _b xið Þ2þ _c xið Þ2
� 	

þ IdpiX _b xið Þc xið Þ
i ð10Þ

Here, xi is the position of disk on the shaft, nd is the

number of disks, and X is the rotating angular speed of

X

Y

Z L
L1

1 th layer

N th layer

h

R1

R2

Ω

R0

Fig. 1 Coordinate system of the composite shaft-disk system
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the shaft. Mdi denotes the mass of the i-th disk, and Idi
and Idpi depict the lateral and polar area moments of

inertia of shaft cross section of the i-th disk.

The kinetic energy of the shaft is as follows [5].

Te
s ¼ 1

2

Zle

0

I0 _u2 þ _v2 þ _w2
� �

þ I1 _b2 þ _c2
� 	

þ 2I2X _bc
h i

dx

ð11Þ

Here, le indicates the length of elements. In this

formula, I0 = qsS, I1 = qsI and I2 = qsIp. qs is the

density of the shaft.

S indicates area of the shaft cross-section, and I and

Ip represent the lateral and polar area moments of

inertia of shaft cross section, respectively.

The kinetic energy due to the unbalanced mass of

disk is expressed as follows [11].

Te
u ¼

Xnd

i¼1

MdiX _v eni sinXt þ efi cosXt½ �f

þ _w �eni cosXt þ efi sinXt½ �g

þ 1

2

Xnd

i¼1

MdiX
2 e2

ni þ e2
fi

h i
ð12Þ

Here, en and ef are the eccentricity distribution

measured in the coordinate fixed on the disk.

The strain energy of the shaft is as follows [5].

Ue¼1

2

Zle

0

Eeqse
2
xxþEeq k2

yyþk2
zz

� 	
þGeq c2

xyþc2
xz

� 	h i
dx

ð13Þ

Eeqs ¼ p
XN

k¼1

Ek
eq R2

o kð Þ � R2
i kð Þ

� 	
ð14Þ

Eeq ¼
p
4

XN

k¼1

Ek
eq R4

o kð Þ � R4
i kð Þ

� 	
ð15Þ

Geq ¼ k0
XN

k¼1

Gk
eqS

k ð16Þ

Here k0 is the shear correction factor. Ro(k), Ri(k)

represent the inner and outer radii of the k-th layer.

In Eqs. (15) and (16), Ek
eq, Gk

eq are calculated as

follows [5].

Ek
eq¼

1

1
Ek

1

cos4hkþ 1
Gk

12

� 2mk
12

Ek
1

� 	
sin2hk cos2hkþ 1

Ek
2

sin4hk

ð17Þ

Gk
eq¼

1

4cos2 hkð Þsin2 hkð Þ 1
Ek

1

þ 1
Ek

2

þ2
mk

21

Ek
1

� 	
þ cos2 hkð Þ�sin2 hkð Þð Þ2

Gk
12

ð18Þ

Here, hk represents the lamination angle of the k-th

layer. Ek
1, Gk

12, and mk12 are engineering constants of the

k-th layer.

The strain energy of shaft is composed of linear

strain energy and nonlinear strain energy, and these

energies are as follows.

y,v
1 th layer

z,w

x,u
β

γ

ζ

N th layer
H

Fig. 2 The displacements

of shaft elements and layer

allocation of the composite

shaft
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Ue
L ¼

1

2

Zle

0

Eeqs
ou

ox

� �2

þEeq
ob
ox

� �2

þ oc
ox

� �2
" #(

þGeq
ov

ox
� c

� �2

þ ow

ox
þ b

� �2
" #)

dx

ð19Þ

Ue
NL¼

Eeqs

2

Zle

0

1

4

ov

ox

� �4

þ1

4

ow

ox

� �4

þou

ox

ov

ox

� �2

þou

ox

ow

ox

� �2
"

þ1

2

ov

ox

� �2
ow

ox

� �2
#

dx

ð20Þ

The displacements and rotations of cross section are

expressed as follows using the method of separation of

variables.

u x; tð Þ ¼ U xð Þ � qu tð Þ
v x; tð Þ ¼ V xð Þ � qv tð Þ

w x; tð Þ ¼ W xð Þ � qw tð Þ
b x; tð Þ ¼ B xð Þ � qb tð Þ
c x; tð Þ ¼ C xð Þ � qc tð Þ

ð21Þ

To simplify the calculation, the non-dimensional

variables as follows are introduced.

n ¼ x

le
;R ¼

ffiffiffi
I

S

r

;H ¼ qd1S1

~u ¼ U

R
; ~v ¼ V

R
; ~w ¼ W

R
; ~b ¼ le

R
B; ~c ¼ le

R
C

~t ¼ tx0; ~X ¼ X
x0

;w ¼ R

le
; ~I0 ¼ I0

H
; ~I1 ¼ I1

Hl2e
; ~I2 ¼ I2

Hl2e

~Mdi ¼
Mdi

Hle
; ~Idi ¼

Idi
Hl3e

; ~Idpi ¼
Idpi
Hl3e

; ~eni ¼
eni
R

; ~efi ¼
efi
R

Eeqs ¼
Eeqs

x2
0Hl

2
e

; ~Eeq ¼
Eeq

x2
0Hl

4
e

; ~Geq ¼
Geq

x2
0Hl

2
e

ð22Þ

Here, I ¼ p R4
2
�R4

1ð Þ
4

; S ¼ p R2
2 � R2

1

� �
. R1 and R2 are

the inner and outer radii of disk. qd1 and S1 are the

density and area of the first disk. x0 is the first natural

frequency of the composite shaft-disk system in the

non-rotating state. Mdi, Idi, and Idpi are defined as

follows [20].

Mdi ¼ p R2
2i � R2

1i

� �
hiqdi ð23Þ

Idi ¼
Mdi

12
3R2

1i þ 3R2
2i þ h2

i

� �
ð24Þ

Idpi ¼
Mdi

2
R2

1i þ R2
2i

� �
ð25Þ

Here qdi is the density of the i-th disk. R1i and R2i

are the inner and outer radii of the i-th disk. hi is the

thickness of the i-the disk.

The kinetic energy and strain energy are expressed

with the non-dimensional variables as follows.

2Q

1Q

mg

ωstq

Massless elastic shaft
G

Fig. 3 Jeffcott rotor system
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Te
d ¼x2

0HleR
2

2

Xnd

i¼1

~Mdi
_~u xið Þ2þ _~v xið Þ2þ _~w xið Þ2

� 	h

þ~Idi
_~b xið Þ2þ _~c xið Þ2

� 	
þ 2~Idpi ~X

_~b xið Þ~c xið Þ
i

ð26Þ

Te
s ¼ x2

0HleR
2

2

Z1

0

_~u2 þ _~v2 þ _~w2
� �

þ ~I1
_~b
2 þ _~c2

� 	
þ 2~I2 ~X

_~b~c
h i

dn

ð27Þ

Te
u ¼x2

0HleR
2
Xnd

i¼1

~Mdi
~X _~v ~eni sin ~X~t þ ~efi cos ~X~t
� ��

þ _~w �~eni cos ~X~t þ ~efi sin ~X~t
� ��

þ x2
0HleR

2

2

Xnd

i¼1

~Mdi
~X2 ~e2

ni þ ~e2
fi

h i

ð28Þ

Fig. 4 The comparison of the frequency–response curves of Jeffcott rotor calculated by the proposed method and multiple scales

perturbation method
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Ue
L¼

x2
0HleR

2

2

Z1

0

~Eeqs
o~u

on

� �2

þ ~Eeq
o~b
on

 !2

þ o~c
on

� �2
2

4

3

5

8
<

:

þ ~Geq
o~v

on
�~c

� �2

þ o ~w

on
þ ~b

� �2
" #)

dn

ð29Þ

Ue
NL ¼

x2
0HleR

2

2

Z1

0

~Eeqs
1

4
w2 o~v

on

� �4

þ1

4
w2 o ~w

on

� �4
"

þw
o~u

on
o~v

on

� �2

þw
o~u

on
o ~w

on

� �2

þ1

2
w2 o~v

on

� �2
o ~w

on

� �2
#

dn

ð30Þ

The character ‘ * ’indicates non-dimensional

variables. Because the item x2
0HleR

2 exists in all the

energy equations, this item is deleted when the motion

equation is established.

Using the WQEM and Lagrange’s equation, the

motion equation of element is expressed as follows.

Me €qe þGe _qe þ Ke þKe
3

� �
qe ¼ X2Fe ð31Þ

Here, Me is the mass matrix, Ge is the gyroscopic

matrix, Ke is the linear stiffness matrix, Ke
3 is the

nonlinear stiffness matrix and X2Fe is the force matrix

caused by unbalanced mass. The character ‘e’ indi-

cates the element matrix. The expression of element

matrix is given in appendix in detail. The total system

matrix can be obtained by assembling the element

matrixes according to the element matrix assembly

rule of FEM. Using the total system matrix, the motion

equation of the composite shaft-disk system is

expressed as follows.

M€qþG _qþ KþK3ð Þq ¼ X2F ð32Þ

The motion equation of the system includes the

nonlinear term. To solve the nonlinear vibration

equation, IHB method is applied in this research.

4 Reduced-order model

When the vibration characteristics of the structure is

analyzed using the FEM, many degree of freedom is

used. To overcome these disadvantages, the reduced-

order model is established.

First of all, using the mass matrix M and linear

stiffness matrix K in Eq. (32), the linear free vibration

equation is established as follows.

�x2
0MþK

� �
q ¼ 0 ð33Þ

The modal matrix U is obtained by solving this

linear eigenvalue equation. Using this modal matrix

and modal coordinate p, vector q can be expressed as

follows.

q ¼ Usp ð34Þ

Here, s is the number of modes used in the analysis.

Equation (34) is substituted into Eq. (32).

MUs €pþGUs _pþ KþK3ð ÞUsp ¼ X2F ð35Þ

Multiply UT
s with the left part of Eq. (35) to get the

following equation.

m€pþ g _pþ kþ k3ð Þp ¼ X2f ð36Þ

Here,

m ¼ UT
s MUs

g ¼ UT
s GUs

k ¼ UT
s KUs

k3 ¼ UT
s K3Us

f ¼ UT
s F

ð37Þ

5 IHB Method

IHB method is used to solve the nonlinear vibration

equation of the composite shaft-disk system. IHB

method has the advantage of solving both small

amplitude and large amplitude vibration problems. In

particular, it is possible to solve the nonlinear struc-

tural vibration problems with periodic solutions, such

as in the rotating shaft [21].

IHB method is a combination of harmonic balance

method and incremental method, which is executed in

two steps. The first is the incremental processing step

of Newton–Raphson method. The independent time

variable s is selected and assumed to be s = Xt, and

this equation is replaced with Eq. (36) to obtain

Eq. (38).

X2mp00 þ Xg Xð Þp0 þ kþ k3ð Þp ¼ X2f ð38Þ
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Suppose that the solution of Eq. (38) is a linear

vibration solution corresponding to normal nonlinear

vibration, and the next solution is obtained through the

incremental process.

X ¼ X0 þ DX ð39Þ

p ¼ p0 þ Dp ð40Þ

Substitute Eqs. (39) and (40) into Eq. (38) and

ignore the higher-order quantities. Then the incre-

mental variable equation can be obtained, as shown

below.

XmDp00 þ Xg Xð ÞDp0 þ kþ 3k3ð ÞDp
¼ R� 2Xmp000 þ g Xð Þp00

� �
DX ð41Þ

R ¼ X2f � X2mp000 þ Xg Xð Þp00 þ kp0 þ k3p0

� �

ð42Þ

The second step is Ritz–Galerkin treatment for

Eq. (41). The solution of Eq. (38) can be expressed as

follows.

pj ¼ aj0 þ
Xn

k¼1

ajk cos ksþ bjk sin ks
� �

¼ CsAj ð43Þ

Dpj ¼ Daj0 þ
Xn

k¼1

Dajk cos ksþ Dbjk sin ks
� �

¼ CsDAj ð44Þ

Here,

Cs ¼ 1 cos s � � � cos ns sin s � � � sin ns½ �T

ð45Þ

Aj ¼ aj0 aj1 � � � ajn bj1 � � � bjn½ �T ð46Þ

DAj ¼ Daj0 Daj1 � � � Dajn Dbj1 � � � Dbjn½ �T

ð47Þ

If p0 and 4p are expressed in vector format, it is as

follows.

p0 ¼ SA; Dp ¼ SDA ð48Þ

Here,

S ¼ diag Cs Cs � � � Cs½ �; A
¼ A1 A2 � � � AN½ �T ; DA
¼ DA1 DA2 � � � DAN½ �T ð49Þ

diag denotes a diagonal matrix and N denotes the

total number of degrees of freedom. The total length of

A is len = N 9 (2n ? 1). Replace Eq. (48) with

Eq. (41) and proceed with Galerkin procedure.

Z2p

0

d Dpð ÞT X2mDp00 þ Xg Xð ÞDp0 þ kþ 3k3ð ÞDp
� �

ds

¼
Z2p

0

d Dpð ÞT R� 2Xmp000 þ Xg Xð Þp00
� �

DX
� �

ds

ð50Þ

Equation (50) can be summarized as follows.

KmcDA ¼ R� RmcDX ð51Þ

Here,

Kmc ¼ X2Mþ XG Xð Þ þKþ 3K3 ð52Þ

R ¼ F� X2Mþ XG Xð Þ þKþK3

� �
A ð53Þ

Rmc ¼ � 2XMþ XG Xð Þ
� �

A ð54Þ

M ¼
Z2p

0

STm€Sds G Xð Þ ¼
Z2p

0

STg Xð Þ _Sds

K ¼
Z2p

0

STkSds K3 ¼
Z2p

0

STk3Sds

F ¼ X2

Z2p

0

ST fds

ð55Þ

A detailed method for solving the nonlinear vibra-

tion problem using the IHB method is introduced in

the reference [22].

6 Results and discussion

In order to prove the efficiency of the proposed

method, the analytical results of the previous

researches are compared with that calculated by the

proposed method. Then, the linear and nonlinear

vibration of shaft-disk system made of isotropic

material is studied. Through the study of this model,

the convergence process of the frequency–response

characteristic curve with the increasing number of

elements and integral points is investigated. Based on
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this, the number of elements and integral points to be

used in the analysis are determined. Besides, the

number of modes to be applied in the reduced-order

model is determined as well.

First, the proposed method is used to analyze the

nonlinear forced vibration of the Jeffcott rotor, and the

results are compared with the results of the previous

literature. Saeed analyzed the nonlinear forced vibra-

tion of symmetric and asymmetric Jeffcott rotor

system supported horizontally and vertically

[23–26]. In this paper, the symmetric rotor system is

analyzed, so it was compared with the analysis results

of the nonlinear vibration of symmetric horizontally

supported Jeffcott rotor published in [23]. Figure 3

shows the horizontally supported Jeffcott rotor system

used in the analysis.

The motion equation of Jeffcott rotor is expressed

with dimensionless parameters as follows.

€x1 þ l1 _x1 þ x2
1x1 þ 2dx1x2 þ c x2

1 þ x2
2

� �
x1

¼ fX2 cos Xt þ bð Þ
€x2 þ l2 _x2 þ x2

2x2 þ d x2
1 þ 3x2

2

� �
þ c x3

1 þ x2
2

� �
x2

¼ fX2 sin Xt þ bð Þ
ð56Þ

The calculative process of this formula is described

in detail in the reference [23]. The frequency–response

characteristic curves calculated by the method pro-

posed are compared with the analysis results of the

reference [23] as shown in Fig. 4. The displacement

expression used when solving Eq. (56) by the IHB

method is as follows

x1 ¼ a11 þ
X4

k¼1

a1k cos ksþ b1k sin ksð Þ

x2 ¼ a21 þ
X4

k¼1

a2k cos ksþ b2k sin ksð Þ
ð57Þ

The figure shows the frequency–response charac-

teristics when the dimensionless variable f is 0.01,

0.015, 0.02, and 0.025. In the reference [23], the

frequency–response curve was obtained from Eq. (56)

using the multiple scales perturbation method. As

shown in the figure, when f is small, it can be seen that

the results calculated applying the previous method

[23] and the proposed method are consistent. You can

see that as f increases, there is a slight difference

between the two results. In the figure, it can also be

seen that the results calculated using numerical

integration (NI). All the solutions calculated using

NI are stable [27]. Comparing the two results

mentioned above with the results calculated by NI, it

can be seen that the stable solutions are completely

consistent regardless of the size of f.

Next, the linear and nonlinear vibrations of the

shaft-disk system made of isotropic material are

analyzed. The materials and geometric parameters

used in the analysis are presented in Table 1.

The disk is mount at the 1/3 position of the total

length. The eccentricity distribution of unbalanced

mass en and ef distributed in the disk is all 0.001 m.

In the reference [28], the linear frequency–response

characteristic curve according to the number of

elements and integral points was studied. Therefore,

only the convergence characteristic of the nonlinear

frequency–response characteristic curve with the

increase in the number of elements and integral points

is presented here. Figure 5 shows the frequency

response curves of the shaft-disk system according

to the increase in the number of elements. Here, 5

integral points are fixed. As you can see in the figure,

when the number of elements is 3, 6, and 9, the

frequency–response characteristic curve is almost

identical.

Figure 6 shows the frequency–response character-

istic curves as the number of integral points increases.

Here, the number of elements is fixed at 3. As can be

seen in the figure, the number of integral points is 4, 5,

6. From Figs. 5 and 6, the number of elements is set to

3 and the number of integral points for each element is

set to 5.

The reduced-order model is used to reduce the

calculation time. When applying the reduced order

model in the analysis, the number of modes must be

reasonably determined to ensure the required compu-

tational precision without changing the properties of

the system. Figure 7 shows the unbalanced response

curves and Campbell diagrams as the number of

modes increases.

Due to the gyroscopic moment, the shaft makes a

whirling motion and the natural frequency is changed

according to the rotating speed. At this time, the

whirling motion in the same direction with the shaft

rotation is called forward whirl and that in the reverse

direction is called back whirl (BW). When the shaft is

rotating, the major critical speed is determined by the
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cross points between the lines F = N/60, FW and BW.

Here, N indicates the rotation speed (rpm).

As can be seen in the figures, the results are all very

similar in all cases. Among them, third and fourth

cases are more similar.

Figure 8 shows the nonlinear vibration character-

istic of rotor system calculated by adding the geomet-

ric nonlinearity of shaft into the linear analysis

calculated above. The analysis is conducted at around

the first frequency. Figures 7 and 8 show that, in the

linear and nonlinear vibration calculation, the

reduced-order method not only reduces the calculation

time greatly, but also the sufficient calculation preci-

sion can be obtained. The nonlinear vibration charac-

teristics are analyzed using four modes in total, that is,

from mode number 1 to 4. The total degree of freedom

in the non-reduced-order model is 65, while it is 8 in

the reduced-order model. Although the significance of

mode-reduction is not considerable in the linear

vibration calculation, it is very obvious in the nonlin-

ear vibration calculation in which the solution is

obtained through the repeated calculation, which

means the amount of time is much reduced if the

nonlinear vibration characteristics are calculated using

the reduced-order model.

The nonlinear vibration characteristics of the

composite shaft mounted with a disk are analyzed

using the proposed method. In reference [14], the

nonlinear vibration of the composite shaft mounted

with disk was analyzed and the frequency–response

curve according to the change of the various param-

eters was obtained. In this article, the nonlinear

vibration phenomenon of the composite shaft-disk

system occurred at different rotating speeds is studied.

The material and geometric properties of shaft used in

the analysis are given in Table 2.

The disks are mounted at the 1/3, 2/3 positions of

total length. The external radii of the first and second

steel disk are 0.15 m and 0.2 m, respectively, and their

thickness are all 0.005 m. The eccentricity distribution

of unbalanced mass en and ef distributed in the disk is

all 0.001 m. The composite shaft consists of 8 layers

and the stacking sequence is [902, 45, 0]s.

First, it is checked whether the internal resonance

could occur by conducting the analysis of linear

vibration analysis of the composite shaft-disk system.

Fig. 6 Frequency–response characteristic curve with the

increase of integral points

Table 1 Material and geometric parameters of shaft and disk

E (Mpa) q(kg/m3) l L(m) R1(m) R2(m) h(m)

2e11 7800 0.3 0.9 0.01 0.15 0.03

Fig. 5 Frequency–response characteristic curve with the

increase in the number of elements
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Figure 9 shows the unbalanced response and Camp-

bell diagram of the composite shaft-disk system with

the properties of Table 2. All the quantities marked on

the figure are non-dimensional. In this article, only the

relationship between the critical speeds in the forward

direction is considered. In the forward direction, the

first critical speed is 0.1614 and the second critical

speed is 0.5352, that is, 0.5352/0.1614&3.3; there-

fore, there are possibilities that the internal resonance

can occur between the first and second modes. Based

on these considerations, the characteristics of nonlin-

ear vibration occurred at several rotating speeds are

studied.

The nonlinear vibration phenomenon occurred near

the first natural frequency is considered. The fre-

quency–response curve shown in Figs. 5 and 6 is the

most general form. In reality, the shape of frequency–

response curve occurred at several resonance points is

not so simple if the internal resonance exists. Fig-

ure 10 shows the frequency–response of composite

shaft-disk system occurred when the external excita-

tion frequency is near the first critical speed.

The displacement expression applied in Fig. 10 is

as follows.

Fig. 7 Comparison of linear

vibration analysis using the

reduced and non-reduced

order model

Fig. 8 Comparison of nonlinear vibration analysis using the

reduced and non-reduced order model

Table 2 Material and geometric properties of shaft

E1(GPa) E2(GPa) G12 (GPa) l12 qs(Kg/m3) L(m) H(m) R1(m)

172 7.2 3.76 0.3 1446.2 1.2 0.008 0.048
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pj¼aj1 cossþaj3 cos3sþ���bj1 sinsþbj3 sin3sþ���Dpj¼
Daj1 cossþDaj3 cos3sþ���Dbj1 sinsþDbj3 sin3sþ���

ð58Þ

As can be seen in figure, there are three solution

branches in this section. The first branch starts at m1

and the transfer of energy takes place between the first

and second items of harmonic terms at m2, that is,

aj1


 

[ aj3



 

 from m1 to m2 while aj1


 

\ aj3



 

 from m2

to m3. There are several vibration modes on the elastic

object. In the linear vibration system, among these

modes, only the modes with same frequency as the

external excitation force are excited and rest of non-

excited modes are static, that is, modes are

Fig. 9 Unbalanced

response and Campbell

diagram of the composite

shaft-disk system

Fig. 10 Frequency–

response curve of the

composite shaft-disk system

near the first critical speed
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independent each other. However, in the nonlinear

vibration, different modes are combined each other to

response to the external excitation force. In other

word, if any mode related with the frequency of

external excitation force is excited, the energy is

transferred to other modes, exciting them. Therefore,

the third harmonic term (cos3s) is excited not because

of the external excitation force, but because of the

nonlinearity of system. This phenomenon is called

internal resonance.

Figure 11 shows the frequency–response curve at

about 1/3 of the first critical speed. Equation (58) is

Fig. 11 Frequency–response curve at about 1/3 of the first critical speed

Fig. 12 Frequency–

response curve of the

composite shaft-disk system

near the second critical

speed (fundamental

resonance)
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also used in the displacement expression. The fig-

ure shows that the coefficient of the third harmonic

term (cos3s) is the largest. The coefficients of other

harmonic terms are very small compared to this term

and hence are not shown. This means that resonance

occurs at the frequency three times the external

excitation frequency. This resonance is called super-

harmonic resonance.

Figures 12 and 13 show the frequency–response

curves when the external excitation frequency is three

times of the first critical speed, that is, near the second

critical speed. When the external excitation frequency

is near this frequency, the fundamental resonance and

sub-harmonic resonance take place. Figure 12 shows

the frequency–response curve of the fundamental

resonance occurred when the external excitation

frequency is near the second critical speed.

Equation (58) is used in the displacement expres-

sion for calculating the fundamental resonance. The

displacement expression used in the calculation of

sub-harmonic resonance is as follows.

pj ¼ aj1 cos s=3 þ aj3 cos sþ � � � bj1 sin s=3 þ bj3 sin sþ � � �
Dpj ¼ Daj1 cos s=3 þ Daj3
cos sþ � � �Dbj1 sin s=3 þ Dbj3 sin sþ � � �

ð59Þ

Figure 13 shows the frequency–response curve of

the sub-harmonic resonance occurred when the

external excitation frequency is near the second

critical speed. As can be seen in the figure, the

coefficients of harmonic term have very complex

forms in all the solution branches. This is because that

the internal resonance phenomenon is appeared

between two modes as the ratio of first critical speed

and second critical speed is about 1:3. This internal

resonance has more complex forms than that occurred

at other critical speeds.

7 Conclusion

In this paper, the nonlinear forced vibration of the

composite shaft-disk system caused by the unbalanced

mass is analyzed. The stiffness coefficients are

calculated using the SHBT; the element matrix is

established using the WQEM. Lagrange’s equation is

used to construct the motion equation while the FEM

is applied to calculate the system matrix. To reduce the

calculation time, the reduced-order model is used and

the nonlinear equation is solved by the IHB method.

The effectiveness of the proposed model is validated

through the analysis of the nonlinear forced vibration

of Jeffcott rotor and the model is extended into the

multi-degrees of freedom model, based on which the

method for solving the nonlinear vibration equation is

established. Using the proposed method, the

Fig. 13 Frequency–

response curves of the

composite shaft-disk system

near the second critical

speed (sub-harmonic

resonance)
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frequency–response curve appeared at several reso-

nance points is constructed. This paper has not

reported the analysis on the stability of the solution,

which will be proposed in the next paper.
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Appendix

The every element matrix in Eq. (31) is expressed as

follows.

The mass matrix is as follows.

Me ¼ Me
d þMe

s ð60Þ

Here, Me
d is the mass matrix of the disk and

expressed as follows.

Me
d ¼

~Mdi 0 0 0 0

0 ~Mdi 0 0 0

0 0 ~Mdi 0 0

0 0 0 ~Idi 0

0 0 0 0 ~Idi

2

66664

3

77775
ð61Þ

Me
s is the mass matrix of shaft element and

expressed as follows.

Me
s ¼

C 1ð Þ 0 0 0 0

0 C 1ð Þ 0 0 0

0 0 C 1ð Þ 0 0

0 0 0 ~I1C
1ð Þ 0

0 0 0 0 ~I1C
1ð Þ

2

66664

3

77775
ð62Þ

The gyroscopic matrix is as follows.

Ge ¼ Ge
d þGe

s ð63Þ

Here, Ge
d is the gyroscopic matrix of the disk and

expressed as follows.

Ge
d ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �~Idpi
0 0 0 ~Idpi 0

2

66664

3

77775
ð64Þ

Ge
s is the gyroscopic matrix of shaft element and

expressed as follows.

Ge
s ¼

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 �~I2C

1ð Þ

0 0 0 ~I2C
1ð Þ 0

2

66664

3

77775
ð65Þ

The stiffness matrix of shaft element is as follows.

The nonlinear stiffness matrix of shaft element is as

follows.

Ke
s ¼

~EeqsA
1ð ÞTC 1ð ÞA 1ð Þ 0 0 0 0

0 ~GeqA
1ð ÞTC 1ð ÞA 1ð Þ 0 0 � ~GeqA

1ð ÞTC 1ð ÞI

0 0 ~GeqA
1ð ÞTC 1ð ÞA 1ð Þ ~GeqA

1ð ÞTC 1ð ÞI 0

0 0 ~GeqI
TC 1ð ÞA 1ð Þ ~EeqA

1ð ÞTC 1ð ÞA 1ð Þ 0

0 � ~GeqI
TC 1ð ÞA 1ð Þ 0 0 ~EeqA

1ð ÞTC 1ð ÞA 1ð Þ

2

666664

3

777775
ð66Þ
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Here, 0 and I are zero matrix and identity matrix,

respectively.
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� 	2
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A 1ð Þ ~w
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A 1ð Þ 0 0
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