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Abstract This work considers a class of multibody

dynamic systems involving bilateral nonholonomic

constraints. An appropriate set of equations of motion

is employed first. This set is derived by application of

Newton’s second law and appears as a coupled system

of strongly nonlinear second-order ordinary differen-

tial equations in both the generalized coordinates and

the Lagrange multipliers associated with the motion

constraints. Next, these equations are manipulated

properly and converted to a weak form. Furthermore,

the position, velocity and momentum type quantities

are subsequently treated as independent. This yields a

three-field set of equations of motion, which is then

used as a basis for performing a suitable temporal

discretization, leading to a complete time integration

scheme. In order to test and validate its accuracy and

numerical efficiency, this scheme is applied next to

challenging mechanical examples, exhibiting rich

dynamics. In all cases, the emphasis is put on

highlighting the advantages of the new method by

direct comparison with existing analytical solutions as

well as with results of current state-of-the-art numer-

ical methods. Finally, a comparison is also performed

with results available for a benchmark problem.

Keywords Multibody dynamics � Analytical
dynamics � Nonholonomic constraints � Three-field
weak formulation � Rolling bodies � Bicycle stability

1 Introduction

This work is concerned with dynamics of multibody

mechanical systems subject to motion constraints.

Such constraints arise frequently in modeling the

dynamics of a plethora of engineering systems and

need a special treatment [1–3]. In particular, the class

of systems examined involves nonholonomic bilateral

constraints. That is, nonintegrable equality constraints

on their generalized velocities. In contrast to inte-

grable (or holonomic) constraints, which limit both the

velocities and the positions of a system, nonholonomic

constraints impose restrictions on the velocity level

only, without limiting the possible positions on their

configuration space. In classical applications, such

constraints arise in the presence of rolling or sliding

motions. They lead to quite interesting dynamics, not

exhibited by holonomic systems and represent a

central subject of Nonholonomic Mechanics [4, 5].

The main emphasis of this work is placed on

developing and presenting the essential steps of a new

systematic methodology, leading to a robust, accurate

and efficient numerical integration of the equations of

motion of mechanical systems involving
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nonholonomic constraints. Classical numerical

methodologies, treating the equations of motion as a

coupled system of differential–algebraic equations

(DAEs), lead to severe difficulties and inaccuracies,

related to response stability issues [6]. Specifically,

small errors in the initial values as well as errors

developed through numerical integration are amplified

and lead to an erroneous response as time goes on,

independently on the accuracy level imposed on the

calculations. Most of the times, increasing these

accuracy levels helps in just extending the accept-

able accuracy of the solution for a little longer time

duration but this is not sufficient to prevent an eventual

drift from the real solution. This prompted the

initiation of many research efforts, focusing toward

eliminating or reducing these undesirable conse-

quences. Besides consideration of dissipative time

integration schemes [1, 3], this included efforts to

properly scale the governing equations and constraints

or to perform appropriate velocity projections [7–9].

In this work, the effort to eliminate the stability

problems arising during integration of the equations of

motion of constrained systems starts from their

theoretical foundation and continues with the devel-

opment and application of suitable numerical method-

ologies. More specifically, the essential reason for

achieving an accurate and reliable numerical solution

is the utilization of an appropriate set of equations,

derived by a consistent application of Newton’s law of

motion [10]. Their derivation is based on classical

concepts and tools of Analytical Dynamics and leads

directly to a set of second-order ordinary differential

equations (ODEs) in both the generalized constraints

and the Lagrange multipliers, associated with the

motion constraints [11]. This eliminates the well-

known pathologies associated with the classical DAE

formulations. Moreover, the robustness of the new

numerical scheme is reinforced by first putting these

equations in a suitable weak form and then treating the

generalized coordinates, velocities and momenta as

independent quantities, leading to a convenient three-

field weak formulation [12]. This follows earlier

mixed multi-field methods in computational mechan-

ics, based on the de Veubeke–Washizu variational

principle [13, 14]. Finally, the process is completed by

developing and applying a suitable temporal dis-

cretization scheme.

A similar path was followed in a recent work of the

authors [15]. In that work, the emphasis was placed on

mechanical systems with holonomic constraints.

Instead, the present work focuses on systems involv-

ing nonholonomic constraints. This leads to some

important deviations in both the analytical formulation

and the numerical scheme developed, which are

noticed and explained in detail in Sects. 2–4. In

addition, the set of unknowns arising in each time step

of the present treatment includes both the generalized

velocities and the time derivatives of the Lagrange

multipliers. In contrast, the method applied in [15] was

based on an augmented Lagrangian approach and

treated the generalized velocities and the time deriva-

tives of the Lagrange multipliers at different solution

levels. Finally, all the numerical examples investi-

gated in that work involved holonomic constraints,

while the examples examined in this study involve

nonholonomic constraints.

An outline of the present work is as follows. First,

the set of equations of motion employed is presented

briefly in Sect. 2, giving emphasis on explaining and

modeling the effect of the nonholonomic constraints.

Then, the essential details needed for putting these

equations in a suitable three-field weak form are

included in Sect. 3. This provides a solid foundation

for developing an accurate and efficient methodology

for the temporal discretization of the equations of

motion, which is done in Sect. 4. Next, a selected set

of numerical results is included in Sect. 5 for three

typical mechanical examples. For the first two of them,

analytical solutions are available, while the third

example is a benchmark problem. In this way, direct

comparison of the numerical results provides strong

evidence and demonstrates the advantages of the new

method, over classical DAE formulations. Finally, a

synopsis of the study, together with possible future

extensions, is presented in Sect. 6.

2 Equations of motion

The equations of motion employed for the class of

systems examined in this work have been obtained and

presented in a previous publication of the authors [11].

In this section, a brief summary of the essential steps

performed and the main results derived in that work

are presented in order to set up the notation and

enhance the completeness of this study. Specifically,

by adopting the classical viewpoint of Analytical

Dynamics, the motion is described by a set of
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generalized coordinates q ¼ ðq1. . .qnÞ, representing

motion of a fictitious point p on a manifold M, as a

function of time t [16–18]. Moreover, the tangent

vector v to the motion curve at point p, known as

generalized velocity, belongs to an n-dimensional

vector space TpM [4]. Therefore, if Be ¼
f e 1 . . . e ng is a basis of TpM, vector v can be

put in the compact form v ¼ vie i by using the

summation convention on repeated indices [18]. Also,

the elements of the corresponding cotangent (or dual)

space T�
pM, known as covectors, represent generalized

momenta [17]. The relation between a vector u and the

corresponding covector u
s

� is established through the

duality pairing

u
s

�ðwÞ � hu;wi; 8w 2 TpM; ð1Þ

where h�; �i is the inner product on TpM [19]. Then, a

dual basisB�
e ¼ f e

s

1 . . . e
s

ng toBe can be created

for T�
pM, through the condition e

s

iðejÞ ¼ dij, where d
i
j is

a Kronecker’s delta. In dynamics, the inner product is

expressed in terms of the components gij of the metric

tensor at point p, which are determined through

consideration of the kinetic energy of the system.

When there are no motion constraints, a minimal

and independent set of generalized coordinates can be

selected. In general, the geometry of the correspond-

ing configuration manifold M is non-Euclidean. For

this reason, the exact solution path is determined by

application of Newton’s second law in the form

rvp
s

�
M
¼ f

s

�
M
; ð2Þ

The term in the right-hand side is a covariant

derivative along a path on M, with tangent vector v

[10]. It is expressed in the component form

rvp
s

�
M
ðtÞ ¼ ð _pi � Kk

jipkv
jÞ e

s

i; ð3Þ

with i; j; k ¼ 1; . . .; n, where the quantities Kk
ji are

known as affinities. They are components of the affine

connectionr and dictate the transition from a tangent

space to any neighboring tangent space of manifoldM

[19]. Moreover, covectors p
s

�
M
¼ pI e

s

I and f
s

�
M
¼ fI e

s

I

represent the generalized momenta and the applied

forces, respectively [10]. In fact, direct application of

Eq. (1) leads to

pi ¼ gijv
j: ð4Þ

Then, by introducing the classical matrix notation.

q ¼ ð q1 � � � qnÞT , M ¼ ½gij� and

f ¼ ð f1 � � � fnÞT , Equation (2) can be cast in the

convenient form

ðMðqÞ _q _Þ þ hðq; _qÞ ¼ f ðq; _q; tÞ; ð5Þ

where vector hðq; _qÞ includes the inertia terms related

to the affinities Kk
ij.

The picture changes drastically when the system is

subjected to motion constraints. In particular, the class

of mechanical systems examined is assumed to be

subject to a set of k scleronomic nonholonomic and

linearly independent constraints, with general form

_wR � aRi ðqÞvi ¼ 0 or _wðq; vÞ � AðqÞv ¼ 0; ð6Þ

where A ¼ ½aRi ðqÞ� is a known k � n matrix. The

manipulation of these constraints is quite critical for

the derivation of the equations of motion. Essentially,

they provide the tools to decompose the original

configuration manifold M locally into an (n� k)-

dimensional manifoldMA, described by an appropriate

set of n� k minimal coordinates, plus k one-dimen-

sional manifolds MR, one for each constraint. This is

achieved by using Eq. (6) for defining a suitable set of

linear operators, acting between the tangent and dual

spaces of these manifolds. First, these operators help

in selecting the geometric properties (i.e., metric and

connection) of manifolds MA and MR, so that New-

ton’s law of motion is transferred fromM toMA and to

MR (for R ¼ 1; . . .; k) in an invariant form, similar to

that expressed by Eq. (2) [10]. In addition, they help in

splitting each element of the cotangent space T�
pM in a

unique manner. More specifically, the elements of the

special class of Newton covectors on M, defined by

h
s

�
M
� rvp

s

�
M
� f

s

�
M
; ð7Þ

are expressed in the form

h
s

�
M
¼ h

s

�
S
þ h

s

�
T
; ð8Þ

with

h
s

�
S
¼ ETDh

s

�
A

and h
s

�
T
¼

Xk

R¼1
TRDh

s

�
R

ð9Þ
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The quantities ETD and TRD are specific linear

operators defined by the constraints completely (for

example, TRD � aRi es
i � e R). They transfer the corre-

sponding Newton covectors h
s

�
A
from MA and h

s

�
R
from

each of theMR, respectively, back toM. Covectors h
s

�
A

and h
s

�
R
are defined on MA and MR in accordance to

Eq. (7).

Due to the presence of the motion constraints, the

original set of coordinates q ¼ ðq1. . . qnÞ becomes

redundant. Consequently, condition (2) is no longer

true and is replaced by

h
s

�
A
¼ 0

s

; ð10Þ

instead. Then, by taking Eqs. (9) and (10) into account,

Eq. (8) becomes

h
s

�
M
¼

Xk

R¼1
TRDh

s

�
R
: ð11Þ

Next, substitution of Eqs. (3) and (4) in Eq. (7) yields

h
s

�
M
¼ hi e

s

i; ð12Þ

with components

hi ¼ ðgijv jÞ� � Km
‘igmjv

jv‘ � fi: ð13Þ

Likewise, each Newton covector h
s

�
R
on the constraint

manifolds MR (for R ¼ 1; . . .; k) takes the form

h
s

�
R
¼ hRe

s

R; ð14Þ

with components

hR ¼ ðmRR
_kRÞ� þ cRR _k

R � f R: ð15Þ

In the last two equations and in the sequel, the

convention on repeated indices does not apply to index

R. Moreover, during the solution process, the terms

mRR ¼ ciRgijc
j
R and f R ¼ ciRfiðq; v; tÞ ð16Þ

are determined through a projection along special

directions cR on TpM, for each of the constraints. In

particular, the components of the n-vector cR are

chosen so that

aRi c
i
R ¼ 1: ð17Þ

Finally, each coefficient cRR is selected so that the

corresponding term in Eq. (15) represents a corrective

force applied on the figurative point, when a velocity

violation tends to develop along direction cR. For

instance, if the applied forces depend on the general-

ized velocity v, a convenient choice is

cRR ¼ �ciR
ofi
ov j

c j
R: ð18Þ

Next, by combining Eqs. (11)-(15), it easily turns out

that

hi ¼
Xk

R¼1
aRi hR; ð19Þ

or

ðgijv jÞ� � Km
‘igmjv

jv‘ � fi ¼
Xk

R¼1
aRi ðmRR

_kRÞ� þ cRR _k
R � f R

h i
;

ð20Þ

for i ¼ 1; . . .; n. Therefore, after enhancing the nota-

tion introduced by Eq. (5) with

k ¼ ð k1 � � � kkÞT ; M ¼ diagðm11 � � � mkk Þ;
C ¼ diagð c11 � � � ckk Þ

ð21Þ

and the array f , as determined by Eqs. (16)-(18),

Eq. (20) can be cast in a convenient matrix form

ðMðqÞ _qÞ� þ hðq; _qÞ ¼ f ðq; _q; tÞ þ ATðqÞ½ðM _kÞ� þ C _k� f �:
ð22Þ

Equation (20), or equivalently Eq. (22), corre-

sponds to a set of n second-order ODEs, involving

the nþ k unknowns qi and kR. A complete mathemat-

ical formulation is obtained by including the k

equations of the constraints. Originally, these are

expressed by Eq. (6) but can eventually be put in the

second-order ODE form

ðmRR
_wRÞ� þ cRR _wR ¼ 0; ð23Þ

through appropriate mappings from M to MR, forcing
_wR to become zero, for R ¼ 1; . . .; k. In contrast to

cases involving holonomic constraints, there is neither

a wR term in Eq. (23) nor a k term in Eq. (22).

Complete details on the formulation presented in

this section as well as an extensive comparison with

previous formulations can be found in the original

publication [11]. In brief, the present theoretical

approach brings significant advantages when com-

pared to other approaches applied so far in the field of
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Multibody Dynamics. These advantages are related to

the physically consistent and correct elimination of the

singularities associated with the usual sets of high-

index DAEs of motion [1–3]. More specifically, by

treating the motion constraints as an integral part of

the overall process of deriving the equations of motion

led to a set of dynamic Lagrange multipliers,

expressed by Eq. (15). In this way, each constraint

introduces effective inertia terms in Eqs. (22) and (23).

Consequently, both of these equations appear now in a

pure second-order ODE form, from the onset and in a

natural way. In addition, the extra terms appearing in

these equations are evaluated in a systematic and

analytical manner through exact application of New-

ton’s second law on configuration manifolds possess-

ing general geometric properties. As a result, there is

no need for an ad hoc selection of their values for

numerical stabilization or for scaling the constraints

and the equations of motion. Some extra advantages

are also realized during the development of the

numerical integration process, which is started by first

putting the equations of motion in a suitable multi-

field weak form and is then integrated by performing

an appropriate temporal discretization, as explained in

Sects. 3 and 4, respectively. All these advantages are

further supported and illuminated by the numerical

results presented in Sect. 5.

3 Three-field weak form of the equations of motion

Starting from Eq. (11), it is straightforward to show

that

Z t2

t1

ðh
s

�
M
�
Xk

R¼1
TRDh

s

�
R
ÞðwÞdt ¼ 0; 8w 2 TpM;

ð24Þ

for arbitrary time instances t1 and t2. Then, by

performing lengthy manipulations, including a usual

operation involving integration by parts (see ref. [12]

for details), the above relation leads eventually to the

following weak form of the equations of motion

ðpi�
Xk

R¼1
aRi mRR

_kRÞwi
h i���

t2

t1

�
Z t2

t1

pif ½dviþðKi
jk� sijk�rijkÞvkwj�þ fiw

i

þ
Xk

R¼1
�½ mRR

_kRfDa
R
i

Dt
wiþaRi ½dvi

þðKi
jk� sijk�rijkÞvkwj�gþaRi ðcRR _k

R� f RÞwi
��
dt¼ 0:

ð25Þ

The quantities wi and dvi represent variations. They
are evaluated by taking into account that the variation

of any scalar function f ðqÞ on manifoldM is defined as

the derivative of f along an arbitrary vector w of TpM,

according to the rule

df � wðf Þ ¼ of

oqi
wi: ð26Þ

Therefore, for each holonomic coordinate this yields

wi ¼ dqi , while a little more involved relation is

obtained in case of anholonomic coordinates [12, 19].

In this way, the variation of the velocity components is

defined by dvi ¼ wðviÞ. Moreover, the total time

derivative DaRi
�
Dt, appearing in the second line of

Eq. (25), is determined by

DaRi
Dt

¼ ðaRi;j � K‘
jia

R
‘ Þv j; ð27Þ

with partial derivatives

aRi;j � oaRi
�
oq j:

Finally, the terms sijk represent components of the

torsion of the connection selected on manifold M ,

while the quantities rijk are arbitrary constants, with

rikj ¼ �rijk [12].

A similar treatment of each constraint equation,

expressed by Eq. (23), leads first to

Z t2

t1

½ðmRR
_wRÞ� þ cRR _wR� dkRdt ¼ 0; 8dkR;

R ¼ 1; . . .; k;

ð28Þ

which, after integration by parts, becomes

ðmRR
_wRdkRÞ

��t2
t1
�
Z t2

t1

ðmRR
_wRd _kR � cRR _wRdkRÞdt

¼ 0:

ð29Þ

123

Numerical integration of multibody dynamic systems 1195



Next, in order to exploit more advantages of the

weak formulation, the position, velocity and momen-

tum variables are considered as independent quantities

[13, 20, 21]. For this, a new velocity field t is

introduced on manifoldM, which is forced to become

identical to the true velocity field v ¼ dq
.
dt in an

average rather than in a pointwise sense through the

relations

Z t2

t1

dpiðti � viÞ dt ¼ 0; i ¼ 1; . . .; n; ð30Þ

where dpi are arbitrary constants. Likewise, a new

quantity lR is introduced for each constraint, which is

forced to become identical to _kR ¼ dkR
�
dt, by

imposing the conditions

Z t2

t1

drRðlR � _kRÞ dt ¼ 0; R ¼ 1; . . .; k; ð31Þ

where drR are arbitrary constants. In addition, these

last sets of equations are enhanced by an accompany-

ing set of conditions, consisting of

Z t2

t1

pi dt
i � dvi

� �
dt ¼ 0 ð32Þ

and
Z t2

t1

rRðdlR � d _kRÞ dt ¼ 0; ð33Þ

where pi and rR are appropriate Lagrange multipliers,

leading to independent variations dti, dvi and dlR,

d _kR, respectively. Therefore, by augmenting Eq. (25)

with Eq. (32) and performing another round of

manipulations, it can be shown (see [12] for details)

that this leads to the following variational equation

½ðpi �
Xk

R¼1
aRi mRRl

RÞwi�
��t2
t1

þ
Z t2

t1

½ðpi þ
Xk

R¼1
aRi mRRl

R � piÞdti � pidv
i�dt

�
Z t2

t1

ðK‘
ij � s‘ij � r‘ijÞ t jðp‘ �

Xk

R¼1
aR‘mRRl

RÞ
n

þ fi þ
Xk

R¼1
½� _aRi mRRl

R þ aRi ðcRRlR � f RÞ�gwidt ¼ 0

ð34Þ

A similar combination of Eqs. (29) and (33) yields

ðmRR
_wRdkRÞ

��t2
t1
þ
Z t2

t1

ðrR � mRR
_wRÞdlR þ cRR _wRdkR � rRd _k

R
h i

dt ¼ 0;

R ¼ 1; . . .; k;

ð35Þ

with

_aRi ¼ ðaRi;j � aR‘K
‘
jiÞ t j: ð36Þ

By construction, the variations wi (representing dqi or
d#i for a true coordinate qi or a pseudo-coordinate #i,

respectively), dkR, dti, dlR, dpi and drR are indepen-

dent for all i ¼ 1; . . .; n and R ¼ 1; . . .; k. Conse-

quently, Eqs. (20)-(25) can be employed to construct a

dynamically equivalent set of first-order ODEs. This

was done in an earlier work, leading to the classical

Hamilton’s canonical equations [12]. Here, the weak

form expressed by these equations is used, instead, as a

foundation for performing an appropriate temporal

discretization of the equations of motion, as explained

in the following section.

4 Temporal discretization of the equations

of motion

First, the presence of the motion constraints causes a

non-flatness of the configuration space of the class of

systems examined. This, in turn, makes advantageous

the utilization of a special type of curves in performing

the temporal discretization. In this work, these curves

are selected to be the autoparallels, corresponding to

the ‘‘straightest’’ curves on the configuration space

[19, 22]. Moreover, following earlier approaches

[15, 23], all the variations in Eqs. (30)-(35) are

assumed to remain constant within each time interval

[tm; tmþ1], while the corresponding variables vary

linearly in time. Then, it can be shown that these

conditions convert Eqs. (30) and (31) into relations

with the following general form

q
mþ1

¼ q
m
þ gðtmþ1; tmÞDt ð37Þ

and

kRmþ1 ¼ kRm þ 1

2
ðlRmþ1 þ lRmÞDt;R ¼ 1; . . .; k; ð38Þ

where Dt ¼ tmþ1 � tm is the time step. In particular,

the function gðtmþ1; tmÞ in Eq. (37) is determined in

terms of the components of the connection selected.
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For instance, in the special case of a Euclidean

configuration space [23], where Kk
ij ¼ 0, it turns out

that

gðtmþ1; tmÞ ¼
1

2
ðtmþ1 þ tmÞ:

Equations (37) and (38) represent update formulas

for the generalized coordinates and the Lagrange

multipliers, respectively. In addition, collecting the

terms in Eqs. (34) and (35) multiplied by dti and dlR

yields

Z t2

t1

ðpi � pi þ
Xk

R¼1
aRi mRRl

RÞdti dt ¼ 0 ð39Þ

and

Z t2

t1

ðrR � mRR
_wRÞdlRdt ¼ 0; ð40Þ

respectively. These equations can be used in order to

update the values of the generalized momenta pi and
rR, respectively, when necessary. Finally, collecting

the remaining terms of Eqs. (34) and (35), multiplied

by the variations wi and dkR, yields

ðpi �
Xk

R¼1
aRi mRRl

RÞwijt2t1

�
Z t2

t1

ðp‘ �
Xk

R¼1
aR‘mRRl

RÞðK‘
ij � s‘ij � r‘ijÞ t j þ fi

þ
Xk

R¼1
½aRi ðcRRlR � f RÞ � _aRi mRRl

R�widt ¼ 0

ð41Þ

and

ðmRR
_wRdkRÞ

��tmþ1

tm
þ
Z tmþ1

tm

cRR _wRdkRdt ¼ 0;

R ¼ 1; . . .; k;

ð42Þ

respectively.

In the sequel, a summary is provided for the

essential information needed in understanding the

basic features of the new numerical scheme. As a

result of the three-field formulation performed in this

work, the set of unknowns of the resulting mathemat-

ical problem is enhanced and includes the generalized

coordinates qi and kR (i.e., the Lagrange multipliers

are also considered as generalized coordinates from

hereon), together with the corresponding generalized

velocities ti and lR as well as with the generalized

momenta pi and rR. In total, these quantities give rise

to a set of 3ðnþ kÞ unknowns. Their determination is

accomplished by employing the system of Eqs. (30),

(31) and (39)-(42). Here, this is achieved by develop-

ing and applying an implicit numerical scheme in

order to carry out the required temporal discretization.

As usual, the outcome of this process is a system of

nonlinear algebraic equations, whose solution pro-

vides the values of the unknown quantities at the end

tmþ1 of the time step considered in terms of their

known values at earlier time steps. In fact, this set of

equations is solved by applying a block-type iterative

technique within each time step, as explained next.

First, it is assumed that the values of all the

unknowns, but the components of the weak velocity

vectors, defined by t ¼ ð t1 � � � tnÞT and

l ¼ ð l1 � � � lkÞT , are fixed. Then, an involved

set of nþ k nonlinear algebraic equations is obtained

through application of Eqs. (41) and (42), which can

be put in the general form

gðtmþ1; lmþ1
; tm; lm; qm; km; pm; rmÞ ¼ 0: ð43Þ

In the last expression, tmþ1, lmþ1
and tm, lm represent

the values of t, l at times tmþ1 and tm, respectively.

Moreover, a similar meaning is also given to the vector

quantities, q ¼ ð q1 � � � qnÞT ,
k ¼ ð k1 � � � kkÞT , p ¼ ð p1 � � � pnÞT and

r ¼ ð r1 � � � rkÞT . Following common practice,

Eq. (43) is then solved by applying a Newton–

Raphson approach, with respect to the unknown

x � ð tT lT ÞT : ð44Þ

To achieve this, given an estimate x‘mþ1, a corrected

value x‘þ1
mþ1 is obtained, according to

x‘þ1
mþ1 ¼ x‘mþ1 þ Dx‘; ð45Þ

where the correction Dx‘ is determined by solving the

linearized problem

J‘mþ1Dx
‘ ¼ �R‘

mþ1; ð46Þ

resulting by substituting Eq. (45) into Eq. (43), with

Jacobian matrix

J‘mþ1 ¼
og

ox
ðt‘mþ1; l

‘
mþ1

; tm; lm; qm; km; pm; rmÞ ð47Þ

and residual vector

123

Numerical integration of multibody dynamic systems 1197



R‘
mþ1 ¼ gðt‘mþ1; l

‘
mþ1

; tm; lm; qm; km; pm; rmÞ: ð48Þ

The resulting system of equations involves only nþ k

of the original unknowns. Each problem, as expressed

by Eq. (46), is solved by employing a direct linear

solver. The computations are stopped when the set of

weak velocities xmþ1 and the constraint equations are

satisfied up to a prespecified accuracy or the iterations

exceed a critical number. In the latter case, the time

step Dt is reduced and the process is restarted. Next,

the values of the generalized coordinates q
mþ1

and

kmþ1 are determined through a direct update, based on

Eqs. (37) and (38), respectively. The iteration process

is completed when the residual in the right-hand side

of Eq. (46) becomes also sufficiently small. Other-

wise, the process is repeated after decreasing the time

step. Finally, the new values of the momentum

variables pmþ1 and rmþ1 can also be obtained after

the iterations are finished by using the subsystem of

equations resulting from application of Eqs. (39) and

(40), respectively.

For better clarity, the numerical implementation of the

algorithm employed for solving the discretized set of

equations of motion, given by Eqs. (41) and (42), is

presented next. Here, the analysis is restricted to systems

possessing rigid bodies only. In this case, through the

choices r‘ij ¼ 0 and s‘ij ¼ K‘
ij, with the affinities as

determined in [10, 22], Eq. (41) is replaced by

ðpi �
Xk

R¼1
aRi mRRl

RÞwi
��t2
t1

�
Z t2

t1

ffi þ
Xk

R¼1
½aRi ðcRRlR � f RÞ � _aRi mRRl

R�gwidt ¼ 0:

ð49Þ

This equation can be written in a convenient matrix

form

½Aðp� ATMlÞ�
���
tmþ1

tm
�
Z tmþ1

tm

Af dt ¼ 0; ð50Þ

with

f � f þ ATðCl� f Þ � BTMl and B � _aRi
� �

; ð51Þ

where the terms _aRi are defined by Eq. (36). Moreover,

the action of operatorA is equivalent to the identity or

the corresponding rotation matrix of a rigid body when

it applies to its translational or rotational degrees of

freedom, respectively. In a similar manner, Eq. (42) is

also put in a matrix form

½M _w�
���
tmþ1

tm
þ
Z tmþ1

tm

h dt ¼ 0; ð52Þ

with

h � C _w: ð53Þ

Therefore, application of the classical trapezoidal rule

to Eqs. (50) and (52) leads eventually to

½Aðp� ATMlÞ�
���
tmþ1

tm
�1

2
Dt ðAmf

m
þAmþ1f

mþ1
Þ ¼ 0;

ð54Þ

and

½M _w�
���
tmþ1

tm
þ1

2
Dtðhmþ1 þ hmÞ ¼ 0; ð55Þ

respectively. Equations (54) and (55) comprise a set of

nonlinear algebraic equations, having the structure of

Eq. (43). Then, the residual covector of the last set of

equations, defined by Eq. (48), takes the form

R
s T

¼ ðR
s v

R
s lÞ; ð56Þ

whereR
s v

andR
s l is the numerical residual of Eq. (54)

and (55), respectively. Then, the square of the norm of

the total residual is evaluated in the form

jjR
s T

jj2 ¼ R
s

T
v

R
s

T
l

	 

M�1 0

0 �M
�1

� � R
s v

R
s l

0
@

1
A

¼ R
s

T
v
M�1R

s v
þR

s

T
l
�M�1R

s l ð57Þ

Likewise, the square of the norm of the residual of the

equation constraints, given by Eq. (6), is obtained by

jjRT
Cjj

2 ¼ _w
T
M _w: ð58Þ

For a given tolerance level, the calculations are

assumed to have converged when both jjR
s T

jj and

jjRCjj are smaller than the selected tolerance value.

5 Numerical results

In this section, a set of characteristic results is

presented for three challenging mechanical examples.
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Special emphasis is placed on highlighting the

advantages of the integration scheme developed. For

this, the attention is focused on comparing numerical

results with analytical results as well as with similar

results arising by employing standard DAE solvers for

two classical nonholonomic systems. Finally, com-

parison with results for a benchmark problem involv-

ing nonholonomic constraints is also performed.

Specifically, the numerical solutions captured by

the method presented in this work (indicated by the

label NM-ODE) are compared with existing analytical

solutions [5] and results of a well-known benchmark

problem [24, 25]. Moreover, the results are compared

with similar results, obtained by using two state-of-

the-art commercial codes [26, 27]. More specifically,

these codes set up the equations of motion as a system

of high-index DAEs and solve them numerically, by

employing classical integration schemes, based on

backward differentiation formulas. In particular, the

GSTIFF and DASPK method were selected in solving

the equations of motion by ADAMS and Motion

Solve. Finally, results obtained by applying the new

method after setting

hR ¼ kR with mRR ¼ 0; cRR ¼ 1 and f R ¼ 0;

ð59Þ

in Eq. (20), for R ¼ 1; . . .; k, are also included. In this

way, the set of equations employed is reduced to the

following system of equations of motion

ðMðqÞ _qÞ� þ hðq; _qÞ ¼ f ðq; _q; tÞ þ ATðqÞk; ð60Þ

which is identical to that employed by multibody

dynamics DAE formulations [28–30]. Moreover, the

value

mRR ¼ 1 ð61Þ

is also selected in Eq. (23). In the sequel, this modified

set of equations is referred to as MM-DAE.

5.1 Sphere rolling inside a cylinder

In the first example, motion of a sphere of unit mass

and radius a, rolling on the rough inside wall of a fixed

vertical cylinder with radius b, is investigated. The

sphere and the cylinder, together with a fixed coordi-

nate system Oxyz and a rotating coordinate system

Ox1y1z1, are shown in Fig. 1. Moreover, the action of

gravity is along the negative Oz axis. Then, if

f e x e y e z g and f e 1 e 2 e 3 g are appropriate

orthonormal bases for the coordinate frames Oxyz and

Ox1y1z1, respectively, it easily turns out that

e 1 ¼ e 2 � e 3 ¼
e z � r

jje z � rjj � e z )

e 1 ¼
1

jje z � rjj ðI3 � EÞr;
ð62Þ

where r ¼ rOG is the position vector of the center of

mass G of the sphere, I3 is the 3� 3 identity matrix

and

E ¼ e ze
T
z:

In addition, if C is the contact point of the sphere with

the cylinder, the condition of rolling without slipping

of the sphere on the cylinder is expressed by

vC ¼ 0 ) vG þ x� rGC ¼ 0; ð63Þ

where x is the angular velocity of the sphere and

rGC ¼ ae1. Therefore, after relating the components of

the angular velocity of the sphere in the Oxyz and a

body frame (fixed in the sphere), through the corre-

sponding rotation matrix R, i.e.,

x ¼ RX;

the rolling condition is put eventually in the form

vG þ ~x rGC ¼ vG � ~rGCðRXÞ ¼ 0:

As usual, ~x represents the 3� 3 antisymmetric matrix

Fig. 1 A sphere rolling on a fixed vertical cylinder
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corresponding to the 3-vector x [1]. Equivalently,

after performing some straightforward operations, this

leads to

I3 �
a

jjez � rjj fðI3 � EÞrgR
� �

vG
X

	 

¼ 0: ð64Þ

This condition belongs to the class of constraints

expressed by Eq. (3) with

A ¼ I3 �
a

jjez � rjj fðI3 � EÞrgR
� �

and

v ¼ vG
X

	 

:

An exact solution for this problem can be found in

pp. 95–98 of ref. [5].

Next, a selected set of numerical results is presented

in Fig. 2. These results were obtained for the param-

eter values a ¼ 0:4 m, b ¼ 1 m, z0 ¼ 1:224 m, xz0 ¼

Fig. 2 Rolling sphere on a fixed vertical cylinder: a vertical

displacement z of the sphere center for 0\t\10 sec, b
displacement z for 10 sec\t\20 sec, c displacement z for

95 sec\t\100 sec, d mechanical energy for 0\t\5 sec, e

norm jjRC jj of the residual of the constraint equations for

0\t\5 sec, f time step for 0\t\5 sec

f
f
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x30 ¼ �5 rad/s and a gravity acceleration

g ¼ 9:81 m
�
s2. Also, selecting the amplitude A ¼

1 m and the phase E ¼ 0 in the exact expression ofx2,

presented by Eq. (2.24) in [5], leads to the initial

angular velocity values x20 ¼ 0 and

x10 ¼ �20:265 rad/s.

First, in Fig. 2a are presented results for the time

history of the vertical displacement z of the sphere

center. According to the analytical predictions, the

sphere center executes a harmonic oscillation. This is

obvious from the continuous curve in Fig. 2a, repre-

senting the exact solution. Also, identical results were

obtained by the new numerical method (NM-ODE),

represented by the full dots. However, the picture

arising by employing the DAE solvers is quite

different. First, only Motion Solve run and provided

results for this example, while attempts to run it with

ADAMS were not successful. In any case, the results

obtained by Motion Solve, using the higher tolerance

value, start deviating from the very beginning. In

addition, decreasing the tolerance value causes a

temporary improvement, which is quickly lost as time

increases. This is verified by the results presented in

Fig. 2b. Similar behavior is exhibited by the MM-

DAE method, for two different tolerance values. In

fact, such behavior is typical of all DAE formulations.

Due to the missing terms in the equations of motion

and the constraint equations, as presented by Eqs. (59)

and (60), initial errors in the numerical values increase

with time and explode eventually, independently on

their initial magnitude and the tolerances imposed. On

the other hand, including the extra terms, as presented

in Sect. 2, the new method is capable of preserving

numerical stability in the calculations. For instance,

the results of Fig. 2c indicate this accurate and

stable performance of the new method for a much

later time interval. This provides a clear demonstration

of the advantages associated with the new set of

equations of motion employed and the numerical

scheme developed in this work.

The gradual worsening in the quality of the solution

obtained by the DAE solvers, as time goes on, can also

be realized by looking at the mechanical energy of the

system. Since there is no slipping event, the system

examined is conservative. This means that its mechan-

ical energy should be preserved. This is clearly the

case for the results obtained by the new method, as

illustrated in Fig. 2d. On the contrary, the results

obtained by the DAE solvers exhibit a gradual and

noticeable change in the mechanical energy. Similar

behavior has also been observed and reported in other

applications [8, 9, 15].

Finally, somemore light is shed on the performance

of the numerical methods employed by looking at the

time variation of the norm jjRCjj of the residual of the
constraint equations and the corresponding time steps.

In all cases, an initial value of 0.01 s was selected for

the time step. First, the results in Fig. 2e and f indicate

that the new method converges to the correct solution

by keeping the time step constant to the initial value of

0.01 s throughout the calculations, for a prespecified

value of the tolerance jjR
s T

jj. On the other hand, the

results in Fig. 2e demonstrate that in order for all the

DAE numerical schemes applied to converge to a

solution, independently of how good or bad their

ultimate accuracy is, the norm jjRCjj should be

reduced to extremely small levels eventually. As a

consequence, the corresponding time step must also be

reduced dramatically (i.e., more than two orders of

magnitude), as verified by the results included in

Fig. 2f. This demonstrates the numerical efficiency of

the new method.

5.2 The falling rolling disk on a horizontal plane

In the second example, dynamics of a circular rigid

disk, rolling without sliding on a horizontal plane, is

examined. The disk has a unit mass and its radius is a.

Moreover, the diametral and polar mass moments of

inertia of the disk with respect to its center of mass G

are known. The position of the disk is completely

specified by five generalized coordinates, defined in

Fig. 3. Namely, the coordinates x and y of the lowest

point A of the disk, which is in contact with the

horizontal plane, with respect to a frame Oxyz,

together with three orientation angles h, u and w.
The frame Oxyz is fixed on the ground, so that the

gravity force is along the negative Oz axis, with

gravity acceleration g.

If e x e y e z


 �
and e n e g e f


 �
are

orthonormal bases for the fixed coordinate frame

Oxyz and the moving frame Ongf, shown in Fig. 3,

respectively, it turns out that
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eg ¼ ef � en ¼ ef � ð
ez � ef

jjez � efjj
Þ )

eg ¼
ðI3 � RERTÞez

jjðI3 � RERTÞezjj
;

ð65Þ

where R is the rotation matrix between the fixed frame

Oxyz and a frame fixed on the disk, while

ef ¼ Re2 and E ¼ e2e
T
2 ¼

0

1

0

0
@

1
Að 0 1 0 Þ

¼
0 0 0

0 1 0

0 0 0

2

4

3

5:

Then, if the disk center of mass is located at point G

rGA ¼ �aeg

and the condition of rolling of the disk without

slipping on the ground is expressed by

vA ¼ 0 ) vG þ x� rGA ¼ 0; ð66Þ

where x is the angular velocity of the disk. Therefore,

after some manipulation, the rolling condition can

eventually be written in the form

I3 �
a

jjðI3 � RERTÞezjj
ðI3 � RERTÞez


 �
R

� �
vG
X

	 


¼ 0

ð67Þ

which belongs to the class of constraints expressed by

Eq. (3).

In all the subsequent numerical examples, the disk

radius was selected as a ¼ 1 m, the diametral and

polar mass moment of inertia of the disk with respect

to its center G was 0.25 and 0:5 kgm2, respectively,

while the gravity acceleration was chosen as

g ¼ 9:81 m
�
s2. Also, without a loss in generality,

the initial values of the coordinates x, y, u and w were

selected to be zero. Finally, for compatibility in the

notation with [5], the angular velocity x of the disk is

expressed in the moving frame Ongf as

x ¼ � _he n þ _uðcos he g þ sin he fÞ þ _we f

� pe n þ qe g þ re f; ð68Þ

so that the components of the angular velocity in the

moving frame are

p ¼ � _h; q ¼ _u cos h; ¼ _wþ _u sin h: ð69Þ

A quite complete analysis of the dynamics of the

disk under the action of gravity, together with an

investigation of certain stability issues, is presented in

pp. 55–60 of ref. [5]. In general, an arbitrary set of

initial conditions leads to complex motions, with a

variable angle h. However, certain combinations of the

system initial parameters lead to special motions. One

such category of motions are the cyclic motions,

which are characterized by constant h, q and r.

Namely, for some special cases with h ¼ h0 6¼ 0, the

point of the disk in contact with the ground undergoes

a circular orbit. Instead, when h0 ¼ 0, the disk can

follow a uniform rectilinear rolling or a uniform

spinning about a fixed vertical diameter [5].

First, in Fig. 4 are presented results obtained for

h0 ¼ 1
	
, p0 ¼ q0 ¼ 0 and three different initial values

r0. For this set of initial conditions, the results

presented indicate that complex motions arise, with

time varying h, p, q and r. In all cases examined, the

results of the new method are found to be virtually

indistinguishable from those obtained by the analyt-

ical solution, verifying the accuracy of the new

method. Moreover, in terms of dynamics, the results

demonstrate that as the absolute value of r0 increases,

the magnitude of the variations of h, p, q and r

decreases gradually. Eventually, trajectories and

dynamics with h, q and r approaching constant values

are reached, for sufficiently large absolute value of r0,

corresponding to cyclic motions.

The dynamics of the motions presented in Fig. 4 is

illuminated in a better way by Fig. 5a, depicting the

corresponding trajectories of the disk contact point on

the horizontal plane. The orbits obtained exhibit a

geometric complexity for a small absolute value of r0.

This complexity is diminished gradually as the

absolute value of r0 increases and the orbit tends to

Fig. 3 A falling rolling disk on a horizontal plane

g
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reach a clean circular shape. In addition, the results of

Fig. 5b, obtained for the largest absolute value of r0,

that is r0 ¼ �2:25 rad=s, with h0 ¼ 0:5o, indicate that

the radius of the circular trajectory increases as the

value of h0 decreases. In this way, the motions

examined reach another special type of motion, known

as uniform rectilinear rolling, in the limit value h0 ¼ 0

[5].

Cyclic motions, with h, q and r constant, can be

captured from the start, through an appropriate choice

of the initial conditions. For instance, the results

presented in Fig. 6 were obtained for h0 ¼ 20o, p0 ¼ 0

and q0 ¼ 1 rad=s, while the value of r0 was selected by

using Eq. (2.9) of [5]. Once again, the new method

(NM-ODE) gives identical results with the analytical

solution. In addition, the pathologies of the DAE

Fig. 4 Time histories for a rolling disk on a horizontal plane for h0 ¼ 1o and three different initial values r0: a inclination angle h, b p, c
q and d r

Fig. 5 Trajectories of the disk contact point on the horizontal plane: a h0 ¼ 1o and three different initial values r0, b h0 ¼ 0:5o or

h0 ¼ 1o and r0 ¼ �2:25 rad=s
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methods appear in this case as well. More specifically,

results obtained by the MM-DAE method for the time

histories of the inclination angle h and angular velocity
component r are first shown in Fig. 6a and b,

respectively. These results demonstrate a gradual

and monotonically increasing loss of accuracy in the

computations, as time goes on. Furthermore, decreas-

ing the tolerance value causes an improvement, which

is only temporary. Similar behavior was also noticed

for the other two angular velocity components p and q.

As a consequence of these computational errors, the

trajectory of the disk contact point on the horizontal

plane starts deviating from the circular orbit, as shown

in Fig. 6c, for the higher tolerance value. The result for

the lower tolerance value is not included since it leads

to similar behavior and just complicates the figure. In

any case, the results indicate a gradual decrease in the

radius of the orbit. This is justified by looking at the

corresponding time histories of the disk mechanical

energy, which are included in Fig. 6d. Obviously, the

new method predicts a constant energy state, which is

correct, while omission of the extra terms in the

governing equations and the constraint equations leads

to a gradual loss of energy.

Finally, the study focused on motions with h ¼ 0,

where the disk executes a uniform rectilinear rolling.

In the first set of results, presented in Fig. 7, the initial

values h0 ¼ 0, p0 ¼ 0 and q0 ¼ 0 were selected. At the

same time, the initial value r0 was chosen based on

results of a stability analysis. Specifically, a critical

value rcr was selected, based on Eq. (2.14) of [5]. For

the chosen combination of parameters, this numerical

value was rcr ¼ 1:808 rad=s. Results were also

obtained for a higher value (r0 ¼ 2rcr) and a lower

value (r0 ¼ 0:9 rcr), corresponding to a supercritical

and a subcritical case, respectively. For each of these

cases, the trajectory of the disk contact point on the

horizontal plane and the corresponding history of the

Fig. 6 Comparison of cyclic motions obtained by the analytical

method, the new numerical method and its DAE counterpart: a
history of the inclination angle h, b history of angular velocity

component r, c trajectory of the disk contact point on the

horizontal plane and d mechanical energy of the disk
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inclination angle h are shown in Fig. 7. In all cases, the
results of the new method were found to coincide with

those obtained by the analytical solution, once again.

Specifically, the trajectory of the disk contact point on

the horizontal plane was a straight path, while the

angle h remained zero for all times. In fact, this was

possible even after selecting an arbitrarily large time

step and tolerance value, since the specific motion

(translation along a line plus rotation about a fixed

axis) takes place along an autoparallel curve of the

configuration space. However, the picture was quite

different for the results obtained by using ADAMS.

Namely, significant deviations were observed to

occur, especially in the critical case and became even

more pronounced in the subcritical case. Moreover, it

is apparent that decreasing the tolerance level in the

calculations does not prevent initial errors from

increasing as time increases.

Some important and rapid changes were observed

to occur in the disk motion by imposing a small

perturbation in the value of p0. For instance, in Fig. 8

is presented a similar set of results, obtained for the

same set of parameters as in the previous example, but

with p0 ¼ �0:1 rad=s, instead. In this case, the

trajectory exhibits some noticeable deviations from a

straight line. At the same time, the inclination angle h

Fig. 7 Uniform rectilinear rolling motions of the disk (p0 ¼ 0). Trajectory of the disk contact point on the horizontal plane and history

of angle h for: a and b a supercritical case, with r0 ¼ 2rcr , c and d the critical case (r0 ¼ rcr), e and f a subcritical case, with r0 ¼ 0:9 rcr
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also takes nonzero values. These deviations are

relatively small in the supercritical range but are

amplified quickly with a reduction in the value of

parameter r0, especially for values smaller than rcr,

where the changes are quite rapid and the motion

deviates quickly and significantly from the rectilinear

motion. Once again, the results of the new method

coincide with those obtained by utilizing the analytical

solution, in all cases examined. In contrast, all the

predictions of the DAE method employed are quite

unreliable. Moreover, these predictions are subject to

qualitatively similar errors with the case p0 ¼ 0.

5.3 The uncontrolled bicycle

In the final example, results of the new method are

compared with results available for a benchmark

problem [31]. More specifically, response of an

uncontrolled bicycle problem presented first in [24]

is investigated. The corresponding mechanical model

Fig. 8 Perturbed rectilinear rolling motions of the disk

(p0 ¼ �0:1 rad=s). Trajectory of the disk contact point on the

horizontal plane and history of inclination angle h for: a and b a

supercritical case, with r0 ¼ 2 rcr , c and d the critical case

(r0 ¼ rcr) and e and f a subcritical case, with r0 ¼ 0:9 rcr

123

1206 P. Passas et al.



consists of four rigid members (i.e., the rear and front

frame assembly, together with the rear and front

wheel), as shown in Fig. 9. All the parameters of this

model are taken from [31].

Assuming that both wheels roll on the ground

without slipping, introduces nonholonomic constraints

in the formulation. Eventually, the model examined

possesses three degrees of freedom. Namely, the tilt or

roll angle, the steering angle and the forward dis-

placement of the bicycle. The bicycle is under gravity

forcing, acting along the z axis. Also, at the starting

position, the bicycle is in a vertical position and the

steering is straight. Then, it is given an initial forward

velocity, together with some roll velocity as a

perturbation. According to a stability analysis of the

reference position [24, 25], the subsequent motion of

the bicycle is stable only when the forward speed lies

within an interval of two critical values, say vc1 and

vc2.

In particular, when the forward speed of the bicycle

is smaller than vc1, the instability is static in nature

[24, 25]. In accordance to the benchmark problem,

selecting a forward speed of 4.0 m/s and a roll angle

speed of 0.05 rad/s leads to Figs. 10a–c for the time

histories of the forward velocity, the roll angle and the

steer angle, respectively, over the first 20 s of the

motion. Likewise, in Fig. 10d is shown the corre-

sponding mechanical energy Em of the system. In all

cases, the benchmark results are represented by

continuous curves, while the results of the new

method are indicated by broken lines with full dots.

The virtual coincidence of the results illustrates the

accuracy of the new method. Moreover, the

corresponding percentage of variation of the mechan-

ical energy Em [31], defined by

pE ¼ 100 ½maxðEmÞ �minðEmÞ�=Em0; ð70Þ

was calculated to be 5:5 � 10�4, which is much better

than the value of 17:0 � 10�4, obtained by the reported

benchmark results.

Similarly, the results presented in Fig. 11 were

obtained for an initial forward velocity value of the

bicycle lying between the two critical values vc1 and

vc2, leading to an asymptotically stable solution

[24, 25]. More specifically, these results were obtained

for a forward speed of 4.6 m/s and a roll angle speed of

0.50 rad/s. In addition, the corresponding percentage

of variation of the mechanical energy was calculated

to be 5:2 � 10�4, which is better than the value of 9:5 �
10�4 determined by the reported benchmark results.

Once again, the results illustrate the numerical accu-

racy and stability properties of the new method.

Finally, similar conclusions can be drawn by

considering the set of results presented in Fig. 12.

These results were obtained for an initial forward

velocity value of the bicycle greater than vc2, leading

to an oscillatory unstable solution [24, 25]. More

specifically, these results were obtained for a forward

speed of 8.0 m/s and a roll angle speed of 0.05 rad/s.

In this case, the corresponding percentage of variation

of the mechanical energy was calculated to be

0:105 � 10�4, which is about the same with the

benchmark value of 0:106 � 10�4.

In closing this section, it is mentioned that results

obtained by application of all the DAE methodologies

applied in the earlier examples were quite different

than the benchmark results, in all three cases examined

for the bicycle example. Also, qualitatively similar

results were obtained for other typical mechanical

systems subject to nonholonomic constraints, arising

from a sliding rather than a rolling action (e.g., knife-

edge, Chaplygin’s sleigh [4, 5]).

6 Synopsis and extensions

The basic ingredients of a new method developed for

the numerical integration of the equations of motion

governing the behavior of multibody mechanical

systems, involving nonholonomic motion constraints,

were presented in the first part of this work. This

Fig. 9 The uncontrolled bicycle (taken from [31])
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Fig. 10 Time histories for the: a forward velocity, b roll angle, c steer angle and d mechanical energy of the bicycle, for an initial

forward velocity lower than vc1 (subcritical range)

Fig. 11 Time histories for the: a forward velocity, b roll angle, c steer angle and d mechanical energy of the bicycle, for an initial

forward velocity between vc1 and vc2 (stable range)
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method was founded on several new developments.

Initially, an appropriate set of equations of motion was

employed, consisting of a coupled and strongly

nonlinear system of second-order ODEs for both the

generalized coordinates and the Lagrange multipliers.

These equations include suitable terms, causing an

automatic stabilization and scaling of the governing

equations and the equations of the constraints. These

terms were obtained by a systematic and consistent

application of Newton’s law of motion, avoiding ad

hoc and incorrect selections of parameters. Then, these

equations were put eventually in a three-field weak

form, by treating the generalized coordinates, veloc-

ities and momenta as independent quantities. Finally, a

suitable temporal discretization scheme was devel-

oped for the class of systems examined, based on this

solid theoretical foundation.

The robustness, accuracy and efficiency of the new

numerical method were demonstrated in the second

part of this study by applying it to typical mechanical

examples of nonholonomic mechanics. First, dynam-

ics of the classical example of a sphere rolling inside a

cylinder was examined. Then, dynamics of a falling

rolling disk on a horizontal plane was investigated in

detail. For both of these examples, analytical solutions

are available. In all cases examined, the results of the

newmethod were found to be virtually coincident with

those obtained by the analytical solution, validating

the excellent accuracy and stability properties as well

as the numerical efficiency of the new method in the

best possible way. Moreover, special emphasis was

placed on comparing the results of the new method

with those obtained by application of classical DAE

approaches. This brought up and illustrated the

classical instability problems arising when using such

methods. Similar conclusions were also drawn by

considering a well-known benchmark problem, refer-

ring to response and stability of an uncontrolled

bicycle model. Once again, comparison of the numer-

ical results verified the accuracy and stability proper-

ties of the new method.

The new method can easily be applied to more

complex and challenging mechanical systems, pos-

sessing a large number of degrees of freedom [32]. In

such cases, it is quite possible to run into cases

involving the presence of redundant constraints and/or

the appearance of singular configurations during the

motion of the system. Then, in order to be able to

accommodate such numerically difficult situations,

the new method should first be extended to an

Fig. 12 Time histories for the: a forward velocity, b roll angle, c steer angle and d mechanical energy of the bicycle, for an initial

forward velocity larger than vc2 (supercritical range)
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augmented Lagrangian formulation. Finally, the pre-

sent formulation can provide a solid basis to develop a

numerical scheme for systems with unilateral con-

straints. In fact, it will be quite helpful in efforts to

examine special situations arising in contact problems,

where conditions of contact are fulfilled temporarily or

change instantly [33–35]. In such cases, where the

unilateral constraints can be treated as bilateral up to

their violation, the constraints cannot be put in an

integrable form and should therefore be treated as

nonholonomic.
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