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Abstract Nonlinearity is ubiquitously encountered in
structural systems, and it may have a great and com-
plicated influence on the dynamic behaviours, includ-
ing bifurcation, internal resonance, load history depen-
dence, etc. Identifying the nonlinear system parameters
is essential for analysis and design of the structure. To
this end, a new approach is developed in this paper
for nonlinear system parameter identification from fre-
quency response sensitivity analysis. At first, the har-
monic balance equation is established to govern the fre-
quency response of the nonlinear system, upon which
the frequency response and sensitivity analysis can be
conducted. A remarkable feature is that the harmonic
balance equation is algebraic so that the sensitivity
analysis, pertaining to a linearized equation, is rather
simple and straightforward. Then, parameter identifica-
tion is modelled as a nonlinear least-squares problem,
and the sensitivity approach is adopted in conjunction
with the trust-region constraint for convergent solution.
Numerical examples are conducted to demonstrate the
feasibility and performance of the proposed approach.
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1 Introduction

Parameter identification of nonlinear structural systems
has attracted tremendous interests from various engi-
neering fields [1–4]. To mention a few, identification
of the nonlinear aeroelastic parameters is central to
design of the airfoil-store system [3]; breathing cracks
[4] and plastic damages [5] are typical nonlinear dam-
age patterns in structures and identifying these non-
linear damages constitutes one main part of structural
health monitoring; for bolt jointed structures, calibra-
tion of the nonlinear bolted jointmodels [6] is a premise
for analysis and design of the structures. The dynamic
behaviours of the nonlinear systems such as bifurca-
tion, internal resonance, and load history dependence
[7] depend critically on the system parameters [8,9],
and as a result, it is of great significance to identify the
parameters either directly by specialized measurement
instruments or inversely from response data. Generally,
direct calibration of some parameters by instruments
is difficult and even unavailable, and therefore, in this
paper, the focus is on inverse identification of nonlinear
system parameters from measured response data.

In general, parameter identification using measured
response data belongs to the class of inverse problem
and such problem can be formulated as a nonlinear
optimization problem of which the objective function
is just least squares of the residuals between the cal-
culated response data from system equations and the
measured response data. As a commonway to solve the
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optimization problem, meta-heuristic algorithms such
as genetic algorithm [10,11], particle swarm algorithm
[12], artificial bee colony algorithm [13,14] have been
widely used in system parameter identification. Meta-
heuristic algorithms have the strong ability to search the
globally optimal solution whereas admit a quite slow
convergence because of the inherent random attribute,
leading to prohibitive computation cost.

In contrast to themeta-heuristic algorithms, gradient-
based methods [15] only require a few iterations, and
therefore, take much less computation time. To solve
the optimization problem of parameter identification,
the Newton method is often applied. However, when
applying the Newton method, the Hessian matrix shall
be obtained by the second-order sensitivity analysis,
which is rather complex and computationally expen-
sive. In addition to the Newton method, the sensitiv-
ity approach [16] only involves the first-order sensitiv-
ity analysis, tending to be simpler and more applica-
ble. Recently, the sensitivity approach was enhanced
by additionally considering the trust-region constraint
so that guaranteed convergence is achieved [17]. The
enhanced sensitivity approach has been successfully
applied to a number of inverse problems [18–20] and
therefore, is further followed up in this paper.

Regarding the data used for inverse parameter iden-
tification, the frequency response data are preferred in
this paper. The reasons are mainly twofold. On the one
hand, it is not always easy to determine the complete
initial conditions of a dynamic structural system. Such
initial conditions have a crucial influence on the time
response data, while they are generally not involved
in the frequency response data because the frequency
response is obtained at the steady state of the struc-
ture. On the other hand, distinct to the ordinary dif-
ferential equation that governs the time response data,
the frequency response data pertain to the harmonic
balance equation which is an algebraic equation. As
a result, sensitivity analysis of the algebraic harmonic
balance equation, by solving a linearized equation, is
rather simple and straightforward. Though having the
above two advantages, the frequency response data are
mainly used for linear system parameter identification
[21,22], while the application to nonlinear system iden-
tification is rather limited. Peng et al. [23,24] extended
the frequency response function in linear systems to
nonlinear systems by resorting to the Volterra series
and then identified the systemparameters from the non-
linear output frequency response function. However,

the Volterra series description of frequency response
is hardly available for non-smooth systems, which
restricts the applications. In this paper, the harmonic
balance equation is called to govern the frequency
response of the nonlinear structural system due to its
sound applicability to large-scale, smooth/non-smooth
systems [25].

The rest of this paper is structured as follows. In
Sect. 2, the harmonic balance equation is established
to govern the frequency response of nonlinear struc-
tural systems. Then, in Sect. 3, the sensitivity approach
is developed for general nonlinear system parame-
ter identification. In doing so, the frequency response
sensitivity analysis is conducted to get the sensitivity
matrix, while the trust-region constraint is introduced
to enhance the convergence of the approach. In Sect. 4,
numerical examples are conducted to verify the perfor-
mance of the proposed approach and final conclusions
are drawn in Sect. 5.

2 Harmonic balance for nonlinear structural
vibration

Thegeneral formof thegoverning equation for dynamic
motion of am-DOFnonlinear structural system is given
as follows:

Mü + Cu̇ + Ku + f nl(u̇, u) = f (t) (1)

whereM,C,K are respective mass, damping and stiff-
ness matrices, u, u̇, ü are displacement, velocity and
acceleration vectors, f nl(u̇, u) and f (t) denote the
nonlinear restoring forces and the external forces. The
parameters to be identified of the nonlinear system are
denoted by p = (p1, p2, . . . , pn) ∈ A with A the
feasible parametric space and may contain those in
M,C,K and f nl(u̇, u).

The frequency response of a nonlinear system shall
be viewed as the steady-state solution under the har-
monic external forces. To compute the frequency
response, the external forces are set to be harmonic, e.g.
f (t) = f 0 cos(ωt) with f 0 denoting the force ampli-
tude vector so that the steady-state solution is generally
periodic. The harmonic balance method (HBM) [25] is
a celebrated method to get the periodic solution, and it
uses the truncated Fourier series to represent the dis-
placement:

u = a0 +
N∑

n=1

[an cos(nωt) + bn sin(nωt)] (2)
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where an and bn are, respectively, the nth coefficient
vector of the cosine and sine harmonic terms, and N
denotes the order of the truncated Fourier series, or
harmonic order.

According to Eq. (2), the Fourier series of the veloc-
ity and acceleration are

u̇ =
N∑

n=1

nω [bn cos(nωt) − an sin(nωt)] (3)

ü =
N∑

n=1

−(nω)2 [an cos(nωt) + bn sin(nωt)] (4)

Then, theHBM, as aGalerkin-typemethod, establishes
the following equations for the coefficients:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
T

∫ T
0 [Mü + Cu̇ + Ku + f nl (u̇, u) − f (t)]dt = 0

2
T

∫ T
0 cos(ωt)[Mü + Cu̇ + Ku + f nl (u̇, u) − f (t)]dt = 0

2
T

∫ T
0 sin(ωt)[Mü + Cu̇ + Ku + f nl (u̇, u) − f (t)]dt = 0

.

.

.
2
T

∫ T
0 cos(Nωt)[Mü + Cu̇ + Ku + f nl (u̇, u) − f (t)]dt = 0

2
T

∫ T
0 sin(Nωt)[Mü + Cu̇ + Ku + f nl (u̇, u) − f (t)]dt = 0

(5)

where T = 2π
ω
. The above equation can also be

regrouped in a more concise form [25]:

A(ω)z + Fnl(ω, z) = F (6)

where

– z = [a0; a1; b1; . . . ; aN , bN ] collect all coeffi-
cients in a column vector,–

A(ω)=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
K − ω2M ωC

−ωC K − ω2M

.
. .

K − (Nω)2M NωC
−NωC K − (Nω)2M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

–

Fnl(ω, z)

=
[
1

T

∫ T

0
f nl(u̇, u)dt;

2

T

∫ T

0
cos(ωt) f nl(u̇, u)dt;

2

T

∫ T

0
sin(ωt) f nl(u̇, u)dt;

. . . ; 2

T

∫ T

0
cos(Nωt) f nl(u̇, u)dt;

2

T

∫ T

0
sin(Nωt) f nl(u̇, u)dt

]

denote the Fourier coefficients of the nonlinear
restoring forces f nl(u̇, u) and can be quickly com-
puted by resorting to the alternating frequency-time
(AFT) scheme [25,26].

– F are the Fourier coefficients of the external forces
f (t), and herein, they are of the form: F =
[0; f 0; 0; . . . ; 0; 0].

z is also called the (generalized) frequency response of
the nonlinear system and Eq. (6), termed the harmonic
balance equation, turns out to govern the nonlinear fre-
quency response z. The Newton–Raphson method is
often used to get the solution of the nonlinear algebraic
equation. Note that the solution may be non-unique at
some frequency and it depends on the initial conditions
(or load history). In this paper, the frequency response
under a number of frequencies is considered for itera-
tive parameter identification and the following strategy
is adopted to solve Eq. (6):

• At the first iteration, numerical continuation is used
where the calculation can proceed firstly for a fre-
quency with simply unique solution and then con-
tinue numerically for other frequencies by selecting
the already obtained solution of a nearby frequency
as initial guess. This corresponds to the calculation
of the response under p(0) in Algorithm 1.

• In subsequent iterations, the frequency response at
a certain frequency is then computed by setting the
corresponding solution in the previous iteration as
initial guess. In Algorithm 1, these are used in the
calculation of the response under p(k), k ≥ 1 and
p(k) + � p, k ≥ 0 .

It is also noteworthy that z depends on the frequency
ω, the amplitude f 0 and the parameters p and there-
fore, it is set z = z(ω, f 0, p). As with the selection
of harmonic order N , it depends on the smoothness
of the systems: N is usually small (e.g. N = 3) for
smooth systems,while for non-smooth systems, greater
N is required. For parameter identification, part of the
response data are measured and one can directly deter-
mine N so that higher-order (greater than N ) harmonics
of the data are negligible.
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3 Parameter identification by nonlinear frequency
response sensitivity analysis

3.1 Inverse formulation of parameter identification

Assume that a number of harmonic loads with differ-
ent frequencies ωi or amplitudes f i , represented by
(ωi , f i ), i = 1, 2, . . . , l, are independently enforced
on the nonlinear structure. As a consequence, given
the parameters p, the frequency responses are respec-
tive z(ωi , f i , p), i = 1, 2, . . . , l. For the measured
frequency response quantity d, it is often incomplete
and linearly dependent on the total frequency response
z, i.e.

d = Lz (8)

where L is a selection matrix with full row rank.
For instance, if only the basic (first-order) frequency
responses a1, b1 are measured, there is

L =
[
0 I 0 0 · · · 0
0 0 I 0 · · · 0

]
(9)

where 0 and I are respectively zero and identity matri-
ces, both of order m. Under different harmonic loads
(ωi , f i ), the measured frequency response data are
denoted by d̂(ωi , f i ) and are collected in a column
vector:

R̂ =

⎡

⎢⎢⎢⎢⎣

d̂(ω1, f 1)
d̂(ω2, f 2)

...

d̂(ωl , f l)

⎤

⎥⎥⎥⎥⎦
. (10)

In correspondence to the measured data, the calcu-
lated data from the governing equation are denoted by
d(ωi , f i , p) = Lz(ωi , f i , p) and are also collected in
a column vector

R( p) =

⎡

⎢⎢⎢⎣

d(ω1, f 1, p)
d(ω2, f 2, p)

...

d(ωl , f l , p)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Lz(ω1, f 1, p)
Lz(ω2, f 2, p)

...

Lz(ωl , f l , p)

⎤

⎥⎥⎥⎦ .(11)

Then, following the general idea of inverse prob-
lem, parameter identification is formulated as: find the
parameters p such that the least squares of the mis-
fit between the measured and calculated data is mini-
mized, leading to the following nonlinear optimization
problem:

p∗ = arg min
p∈A

{
g( p) := ‖R̂ − R( p)‖2W

}
(12)

where g( p) is the goal function, ‖(·)‖W = √
(·)W(·),

and W denotes the user-defined positive define (and
often diagonal) weight matrix which is usually set
inverse proportional to the covariance of measurement
errors [27].

As is noteworthy, bifurcations may arise for a non-
linear system. Under this circumstance, to still iden-
tify with the goal function (12), some special treat-
ments should be invoked. Herein, two main cases are
addressed in the presence of bifurcations:

• On the one hand, the periodic solution may be
non-unique, depending on whether the excitation
frequency is sweeping decreasingly or increas-
ingly. For this case, to get reasonable identifica-
tion, numerical continuation of the solution should
be consistent with the sweeping frequency. For
instance, if the excitation frequency is sweeping
increasingly (resp. decreasingly), the continuation
shall also be performed along the lines of increasing
(resp. decreasing) frequency.

• On the other hand, the solution may be quasi-
periodic, chaotic, and even unbounded so that the
previous harmonic balance Eq. (6) does not work.
Note that the non-periodic solution only arises for
a portion of frequencies. In this case, the frequency
response data should be selected to skip this portion
of frequencies so that all selected response data are
periodic.

Clearly, parameter identification is realized by solv-
ing the optimization problem (12). The gradient-based
methods including the sensitivity approach can be
used to get the solution and in doing so, the sensitiv-
ity/gradient matrix

S( p) = ∇ p R( p) :=
[

∂R( p)
∂p1

∂R( p)
∂p2

· · · ∂R( p)
∂pn

]

=

⎡

⎢⎢⎢⎢⎢⎣

L ∂ z(ω1, f 1, p)
∂p1

L ∂ z(ω1, f 1, p)
∂p2

· · · L ∂ z(ω1, f 1, p)
∂pl

L ∂ z(ω2, f 2, p)
∂p1

L ∂ z(ω2, f 2, p)
∂p2

· · · L ∂ z(ω2, f 2, p)
∂pl

.

.

.
.
.
.

. . .
.
.
.

L ∂ z(ωl , f l , p)
∂p1

L ∂ z(ωl , f l , p)
∂p2

· · · L ∂ z(ωl , f l , p)
∂pl

⎤

⎥⎥⎥⎥⎥⎦
.

(13)

is essentially computed. To get this sensitivity matrix
S( p), the sensitivity analysis should be conducted to
compute ∂ z(ω, f 0, p)

∂pi
, i = 1, 2, . . . , n, as will be elabo-

rated in the next subsection.
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3.2 Sensitivity analysis

To compute the sensitivity ∂ z(ω, f 0, p)
∂pi

, differentiation
of Eq. (6) with respect to pi yields

A(ω)
∂ z
∂pi

+ ∂Fnl(ω, z)
∂ z

∂ z
∂pi

+ ∂Fnl(ω, z)
∂pi

+∂A(ω)

∂pi
z = 0 (14)

where the external forces F are assumed indepen-
dent of p, and ∂Fnl (ω,z)

∂ z ,
∂Fnl (ω,z)

∂pi
are of the following

forms:

∂Fnl(ω, z)
∂pi

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T

∫ T
0

∂ f nl (u̇,u)

∂pi
dt

2
T

∫ T
0 cos(ωt) ∂ f nl (u̇,u)

∂pi
dt

2
T

∫ T
0 sin(ωt) ∂ f nl (u̇,u)

∂pi
dt

...
2
T

∫ T
0 cos(Nωt) ∂ f nl (u̇,u)

∂pi
dt

2
T

∫ T
0 sin(Nωt) ∂ f nl (u̇,u)

∂pi
dt

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∂Fnl(ω, z)
∂ z

=
[
∂Fnl(ω, z)

∂a0
,
∂Fnl(ω, z)

∂a1
,
∂Fnl(ω, z)

∂b1
,

. . . ,
∂Fnl(ω, z)

∂aN
,
∂Fnl(ω, z)

∂bN

]
,

∂Fnl(ω, z)
∂an

= 2

T

∫ T

0
cos(nωt)

[
∂ f nl(u̇, u)

∂u
cos(nωt)

−∂ f nl(u̇, u)

∂ u̇
nω sin(nωt)

]
dt,

∂Fnl(ω, z)
∂bn

= 2

T

∫ T

0
sin(nωt)

[
∂ f nl(u̇, u)

∂u
sin(nωt)

+∂ f nl(u̇, u)

∂ u̇
nω cos(nωt)

]
dt

with ∂ f nl (u̇,u)

∂u = [ ∂ f nl (u̇,u)

∂u1
,

∂ f nl (u̇,u)

∂u2
, . . . ,

∂ f nl (u̇,u)

∂um
],

∂ f nl (u̇,u)

∂ u̇ = [ ∂ f nl (u̇,u)

∂ u̇1
,

∂ f nl (u̇,u)

∂ u̇2
, . . . ,

∂ f nl (u̇,u)

∂ u̇m
]. The

integration above can alsobequickly computed through
the AFT scheme [25,26].

By Eq. (14), the sensitivity analysis pertains obvi-
ously to a linear algebraic equation so that the sensitiv-
ity is directly and quickly obtained as:

∂ z(ω, f 0, p)
∂pi

= −
[
A(ω) + ∂Fnl(ω, z)

∂ z

]−1

(
∂Fnl(ω, z)

∂pi
+ ∂A(ω)

∂pi
z
)

. (15)

This constitutes one remarkable feature of the present
approach, because in comparison, the sensitivity analy-
sis on the time-domain Eq. (1) is still an ordinary equa-
tion and shall be solved by some numerical integration

method [19]. In what follows, how to solve the param-
eter identification problem (12) by using the sensitivity
matrix (13) is detailed.

3.3 Solution by sensitivity approach and trust-region
constraint

Problem (12) is a typical nonlinear least-squares prob-
lem and shall be solved in an iterative manner, that is,
given the initial parameters p(0), the solution is updated
successively as p(k+1) = p(k)+� p(k), k = 0, 1, 2, . . .
until convergence. The key lies in how to get a reason-
able update� p quickly from the prescribed parameters
p̄ such that g( p̄+� p) becomes as small as possible. A
common way to cope with this nonlinear least-squares
problem (12) is to linearize the residual R̂ − R( p) at
p̄ [28]

R̂ − R( p) ≈ �R( p̄) − S( p̄)� p;�R( p̄)

:= R̂ − R( p̄);� p = p − p̄ (16)

where S( p̄) is the sensitivity matrix, as is defined in
Eq. (13) and computed in Sect. 3.2.

Substitution of Eq. (16) in Eq. (12), a linear least-
squares approximation to the original nonlinear goal
function g( p) is obtained, that is,

g̃(� p, p) = ‖�R( p) − S( p)� p‖2W (17)

and then, the update � p can be directly solved. How-
ever, the least-squares problem (17) is often ill-posed
and therefore, the Tikhonov regularization [29] shall be
utilized, yielding the following update:

� pλ = argmin
� p

‖�R( p) − S( p)� p‖2W + λ||� p||2

=
(
ST( p̄)WS( p̄) + λI

)−1
ST( p̄)W�R( p̄)

(18)

where || · || is the usual �2-norm of a vector, I denotes
the identity matrix and λ ≥ 0 is just the regulariza-
tion parameter. The regularization parameter λ can be
obtained by the well-known L-curve method [30,31],
which has been widely and successfully applied in a
number of inverse problems, e.g. damage identification
[16], hysteretic parameter identification [19]. Notwith-
standing, the convergence of the L-curve method is not
guaranteed and may result in failure for strong nonlin-
ear problems.

Toenhance the convergenceof the sensitivity approach,
the trust-region constraint shall be introduced, which
tries to make the simplified goal function g̃(� p, p)
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agree better with the original nonlinear goal function
g(� p + p̄). To do so, an agreement indicator [17] is
defined to measure how well the simplified goal func-
tion agrees with the original one, whose expression is
given as follows:

ρ( p̄,� p) := g( p̄) − g( p̄ + � p)
g̃(0, p̄) − g̃(� p, p̄)

= ‖�R( p̄)‖2W − ‖�R( p̄ + � p)‖2W
‖�R( p̄)‖2W − ‖�R( p̄) − S( p̄)� p‖2W

.

(19)

Usually, good agreement requires the agreement indi-
cator to satisfy the following agreement condition [17]:

ρ( p̄,� p) ≥ ρcr ∈ [0.25, 075] (20)

Since � p is always chosen to verify g̃(0, p̄) −
g̃(� p, p̄) ≥ 0, the agreement condition (20) guaran-
tees that g( p̄) ≥ g( p̄ + � p), meaning that the update
� p is always in the descending direction of the goal
function g( p). In other words, the trust-region con-
straint is mathematically stated as: find a reasonably
small update � p so that the agreement criteria (20) is
met.

It seems that the Tikhonov regularization and the
trust-region constraint are quite different. Luckily, the
trust-region constraint can be easily tackled by the
Tikhonov regularization via properly selecting a regu-
larization parameter λ. This is attributed to the fact that
under the condition

∥∥∇ pg( p)
∥∥ = 2

∥∥ST( p)W�R( p)
∥∥

	= 0, there holds [17]

lim
λ→+∞

∥∥� pλ

∥∥ = 0, lim
λ→+∞ ρ

(
p,� pλ

) = 1 > ρcr (21)

where the � pλ is attained through the Tikhonov regu-
larization (refer to Eq. (18)). The equality in Eq. (21)
reveals that there always exits a regularization param-
eter λ (large enough) to satisfy the agreement con-
dition of the trust-region constraint (20). Inspired by
this, a simple yet reliable recursive strategy [17] can be
invoked to determine a proper regularization parameter
λ, i.e.

1. Set the initial regularization parameter as λ =
λL( p̄) via the L-curve method

2. Calculate the update � pλ by Eq. (18)
3. Compute the agreement indicator ρ( p̄,� pλ) as in

Eq. (19)
4. Terminate the recursion if the agreement criteria

(20) is met, otherwise, increase the regularization
parameter λ up to a factor γ > 1, i.e. λ = γ λ and
then, return to step 2

Finally, by the above procedure, a reasonable regu-
larization parameter λ as well as a proper update � pλ

can be obtained. Following this update procedure, the
eventual algorithmic details to solve problem (12) can
be established, as in Algorithm 1. Noticeably, it has
been proved that by considering the trust-region con-
straint, guaranteed weak convergence [17] is achieved,
that is

lim
k→+∞

∥∥∥∇ pg
(
p(k)

)∥∥∥ = 0. (22)

Algorithm 1 Algorithmic details on frequency
response sensitivity approach for nonlinear structural
parameter identification

1: Set the initial system parameters as p(0) and define the cor-
responding parametric space A

2: Define the error toleranceof convergence criterion tol(e.g.,=
10−6) and weight matrixW(e.g.=I)

3: Fix the maximum number of iterations Nmax (e.g.,= 100)
4: Load the measured response data R̂, determine the harmonic

order N and the selection matrix L
5: Fix the maximum number of steps for trust-region procedure

Ntr (e.g.,= 20)
6: Fix the trust region parameters: the critical agreement indi-

cator ρcr ∈ [0.25, 0.75] (e.g.,= 0.5) and the amplification
factor γ > 1 (e.g.,= 2)

7: for k = 0 : Nmax do
8: Solve Eq. (6) to get response R( p(k))

9: Compute the response residual �R := R̂ − R( p(k))

10: Do sensitivity analysis to get the sensitivitymatrixS( p(k))

11: Use the L-curve method to get the regularization param-
eter λL

(
p(k)

)

12: for i = 1 : Ntr do
13: λ = γ i−1λL

(
p(k)

)

14: Compute the update � p =(
ST( p(k))WS( p(k)) + λI

)−1
ST( p(k))W�R

15: if p(k) + � p /∈ A then
16: continue
17: end if
18: Solve Eq. (6) to get response R

(
p(k) + � p

)

19: Compute the new response residual �Rnew := R̂ −
R( p(k) + � p)

20: Calculate agreement indicator ρ =
‖�R( p(k))‖2W−‖�Rnew‖2W

‖�R( p(k))‖2W−‖�R( p(k))−S( p(k))� p‖2W
21: if ρ ≥ ρcr then
22: break
23: end if
24: end for
25: Update the parameters p(k+1) = p(k) + � p
26: if ‖� p‖/ ∥∥ p(k+1)

∥∥ ≤ tol then
27: break
28: end if
29: end for
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Fig. 1 Restoring force of Bouc–Wen system

4 Numerical examples

In this section, three numerical examples concerning
a non-smooth single-degree-of-freedom (SDOF) hys-
teretic system, a five-storey structure with cubic non-
linearity and a continuous beam with geometrical non-
linearity are studied to testify the effectiveness and effi-
ciency of the proposed approach. In practice, the trans-
ducers are often placed on the structure to get the time
response data, e.g. displacement, velocity or accelera-
tion responses. Under this circumstance, the frequency
response data, i.e. ân and b̂n , can be quickly obtained
by Fourier transformation of the acquired steady-state
time response data d̂(t), i.e.
⎧
⎪⎪⎨

⎪⎪⎩

â0 = F [d̂(t)](0),
ân = 2F [d̂(t)](nω), n = 1, 2, . . . , N

b̂n = −2�F [d̂(t)](nω), n = 1, 2, . . . , N

(23)

where F [ f (t)](kω) = 1
T

∫ T
0 f (t)e−ikωt and ,�

denote the real and imaginary parts of a complex vector.
Here in the numerical examples, the time displacement
response d̂ is obtained as the simulated data by solving
Eq. (1) through the Runge–Kutta method, along with
the addition of the root mean squares (RMS) noise in
the following form:

d̂(t) = ds(t) + enoise · RMS(ds) · rand (24)

where ds(t) is the simulated steady-state response by
numerical integration, enoise denotes the noise level.
RMS(ds(t)) is the RMS of the time history ds(t),
while rand is a random vector pertaining to standard
normal distribution. Then, by Eq. (23), the noised fre-
quency response data are acquired.

To see the robustness and accuracy of the approach
under measurement noise, Monte Carlo simulation is
called in some noise cases to get 100 sets of measured
data, and thereafter, 100 sets of identified results can be
obtained by the proposed approach. Then, the means
and standard deviations of the 100 sets of identified
results can be computed, fromwhich the standard devi-
ations indicates the robustness, while the means along
with the standard deviations reflect the accuracy.

4.1 An SDOF hysteretic system

Consider an SDOF Bouc–Wen hysteretic system,
whose governing equation is given as follows:
{
mü + cu̇ + ku + r = f (t),
ṙ = Au̇ − βr |r |n−1|u̇| − γ |r |nu̇.

(25)

Herein, the known system parameters are fixed at
m = 1, c = 0.2, k = 1, while the hysteretic model
parameters to be identified are p = [A, β, γ, n] =
[2.0, 1.0, 0.5, 2.0].Assume that the excitation is f (t) =
f0 cos(ωt), and the response data are obtained with the
force amplitude f0 sweeping from 1.0 to 1.9 by the
increment of 0.1 over different frequency ranges with
increasing frequency of resolution 0.1.

The steady-state hysteresis loop for ω = 1, f0 = 1
is displayed in Fig. 1, while the steady-state displace-
ment responses without and with noise are depicted in
Fig. 2. The frequency response data at this frequency
and amplitude are directly extracted from the Fourier
transformation of the data, and according to results in
Fig. 2, the harmonic order for HBM computation is
reasonably set to N = 7 because higher-order (> 7)
harmonics with amplitude less than 10−4 become neg-
ligible. To get an impression on the frequency response
data, the first-order Fourier coefficients a1, b1 (see Eq.
(2)) under the force amplitude f0 = 1 with the excita-
tion frequency sweeping increasingly from 0.6 to 3.6
are displayed in Fig. 3.

Eight cases concerning different initial parameters
p(0), different types, frequency ranges of the mea-
sured data and different force amplitudes, as detailed in
Table 1, are considered. Particularly, in case 6, the time
response data along with the time response sensitivity
approach [19] for parameter identification are addition-
ally invoked for comparison. The time response data
are acquired over the time interval of 0–8s at the sam-
pling rate of 100 Hz. To further investigate the effect of
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Fig. 2 Time and frequency response: a no noise and b 10% noise

Table 1 Eight identification cases for SDOF hysteretic system

Case Initial value Measured data Frequency range (rad/s) Noise level (%)

1 p(0)
1 a1, b1 [2, 2.9] 10

2 p(0)
2 a1, b1 [2, 2.9] 10

3 p(0)
1 b1 [2, 2.9] 10

4 p(0)
1 a1, b1 [1, 1.9] 10

5 p(0)
1 a1, b1 [1.5, 2.4] 10

6 p(0)
1 u(t) – 10

7 p(0)
1 a1, b1 [1.5, 3.5] 10

8 p(0)
1 a1, b1 [1.5, 3.5] 10

p(0)
1 = [1.5, 1.5, 1.5, 1.5]

p(0)
2 = [3.0, 2.0, 2.0, 3.0]
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Table 2 Identified results of the eight cases for SDOF hysteretic system

Case Identified results MRE (%) Iter#

1 2.0017, 1.0038, 0.4986, 2.0126 0.63 19

2 2.0032, 1.0017, 0.5037, 2.0120 0.74 21

3 2.0109, 0.9978, 0.5092, 1.9700 1.84 21

4 1.9932, 1.0058, 0.4839, 2.0368 3.22 30

5 2.0077, 0.9953, 0.5148, 1.9851 2.96 18

6 2.0106, 0.9911, 0.5273, 1.9951 5.46 18

7 1.9962, 1.0365, 0.4804, 2.0763 3.92 22

8 2.0036, 1.0008, 0.5034, 2.0113 0.67 18

Iter# represents the number of iterations

Fig. 3 Frequency response data (first orderwith noise level 10%)
for SDOF hysteretic system

external force amplitude on the identified results, the
force amplitudes are fixed to small f0 = 0.5 and large
f0 = 2 in case 7 and case 8, respectively. By proceed-
ing Algorithm 1, the identified results are obtained and
listed in Table 2, and the relative errors are counted
in Fig. 4. Here in Table 2, the maximum relative error
(MRE) is defined as:

MRE = max
k

{
|pk − pidk |

|pk | × 100%

}

where pk, pidk are the respective exact and identified
system parameters. All results of the eight cases show
that

• In case 1 and case 2, the effect of different initial
parameters is studied where the initial parameters
in case 2 stay more away from the exact param-
eters than in case 1. As displayed in Table 2 and
Fig. 4, nearly the same good identification results
are obtained for both cases, indicating that the pro-

posed approach is to some extent not sensitive to
the initial parameters.

• In case 3, less data are used than in case 1. As a
result, the MRE being 1.84% for case 3 is greater
than 0.63% for case 1. Nevertheless, using only
b1 as the frequency data still leads to satisfactory
parameter identification.

• Comparing case 4 and case 5 with case 1, the fre-
quency data from different frequency ranges (refer
to Fig. 3) are used for parameter identification. The
MREs are 3.22% for case 4 and 2.96% for case
5, meaning that the parameters are all well iden-
tification. However, the errors in case 4 and case
5 are greater than that in case 1. This is reason-
able because it has been shown in some publication
[32] that at the resonance frequency (about ω=1.4
for this example from Fig. 3), the identification is
more sensitive to noise. It is also noteworthy that if
the frequency is quite away from the resonance fre-
quency, the frequency response amplitude becomes
very small. Thus, the excitation frequencies shall be
selected to avoid resonance frequency, but mean-
while not far away from the resonance frequency.

• In case 6, the time response sensitivity approach
[19] is adopted for parameter identification. In
terms of the results in Table 2, the time response
sensitivity approach also gives satisfactory param-
eter identification with MRE being 5.46%, though
being worse than the results by the proposed
approach in case 1. To further see the robustness
to measurement noise of the two approaches, the
Monte Carlo simulation is called where the results
on the means and deviations are exhibited in Fig. 5.
Clearly, the standard deviations by the proposed
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Fig. 4 Identified results for SDOF hysteretic system

approach are much less than those by the time
response sensitivity approach, indicating that the
proposed approach is more accurate and robust.

• In case 7 and case 8, the MREs are both less
than 4%, indicating that satisfactory identification
is reached for both small and large force ampli-
tudes. More specifically, the results of the large
amplitude case 8 are evidently better than those of
the small amplitude case 7 and this is reasonable
because under a larger force amplitude, the nonlin-
earity is better activated and therefore, the response
is more sensitive to nonlinear parameters.

• It is noteworthy from Table 2 that the number of
iterations for the eight cases is no more than 30,
indicating a quick convergence is achieved by the
proposed approach. To visualize the convergence
procedure of the proposed approach, the identified
results evolving with the iterations for case 1 and
case 2 are depicted in Fig. 6.

4.2 A five-storey structure

A five-storey structure with cubic nonlinear stiffness
(see Fig. 7) under the sinusoidal excitation is consid-
ered in this example. The model errors are addition-
ally taken into account. The model information for the
motion equation in Eq. (1) is given as follows:

Fig. 5 Means and standard deviations of identified results by
Monte Carlo simulation for SDOF hysteretic system

• The mass and stiffness matrices are

M =

⎡

⎢⎢⎢⎢⎣

m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

⎤

⎥⎥⎥⎥⎦
,

K =

⎡

⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0
0 −k3 k3 + k4 −k4 0
0 0 −k4 k4 + k5 −k5
0 0 0 −k5 k5

⎤

⎥⎥⎥⎥⎦

• The Rayleigh damping assumption is adopted with
C = α0M + α1K.

• The nonlinear restoring forces are

fnl =

⎡

⎢⎢⎢⎢⎣

k13u13 − k23(u2 − u1)3

k23(u2 − u1)3

0
0
0

⎤

⎥⎥⎥⎥⎦
.

• For this structure, the parameters m1 = m2 =
m3 = m4 = m5 = 1, k3 = k4 = k5 =
1 are set to be known and fixed, while other
parameters including two Rayleigh damping fac-
tors α0, α1, linear stiffness of the first and sec-
ond storey k1, k2 and nonlinear stiffness parameters
k13, k23 are assumed unknown and to be identified,
i.e. p = [k1, k2, α0, α1, k13, k23]T.

• An excitation force F1(t) = f0 sin(ωt) is enforced
on the first storey so that the external force vector
is f (t) = [F1(t), 0, 0, 0, 0]T. Herein, to generate
the frequency response data, the force amplitude
f0 sweeps from 0.5 to 1.4 by the increment of 0.1
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Table 3 Identification cases of the five-storey structure

Case Initial value Measured data Noise level (%) Model error

1 p(0) a11 10 –

2 p(0) u1(t) 10 –

3 p(0) a11 10 k3, k4, k5(+3%)

4 p(0) u1(t) 10 k3, k4, k5(+3%)

p(0) = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Table 4 Identified results of the five-storey structure with weak nonlinearity

Case Identified results MRE (%) Iter#

1 0.9503, 0.7995, 0.1999, 0.2502, 0.2990, 0.1506 0.37 21

2 0.9482, 0.7969, 0.1976, 0.2531, 0.3059, 0.1543 2.86 24

3 0.9540, 0.7925, 0.1856, 0.2597, 0.3158, 0.1473 7.18 21

4 0.9608, 0.7692, 0.1672, 0.2796, 0.3191, 0.1707 16.42 22

Iter# represents the number of iteration

Table 5 Identified results of the five-storey structure with strong nonlinearity

Case Identified results MRE (%) Iter#

1 0.9506, 0.7997, 0.2003, 0.2499, 1.8964, 1.9982 1.87 23

2 0.9499, 0.7977, 0.1978, 0.2531, 1.9043, 1.9996 1.26 22

3 0.9479, 0.7992, 0.1889, 0.2569, 1.9667, 1.9483 5.57 23

4 0.9615, 0.7841, 0.1702, 0.2739, 1.9331, 1.9452 14.91 24

Iter# represents the number of iteration

and the frequency ω increases from 0.5 to 2.4 by
increment 0.1.

To investigate the effectiveness of theproposed approach,
two situations concerningweak and strong nonlinearity
of the structure are studied.

4.2.1 Weak nonlinearity

The parameters to be identified for the five-storey
structure with weak nonlinearity are set to p =
[k1, k2, α0, α1, k13, k23]T = [0.95, 0.8, 0.2, 0.25, 0.3,
0.15]T. The time and frequency responses of the first

floor under the external excitation with ω = 1, f0 = 1
are shown in Fig. 8, from which the harmonic order for
HBM computation is reasonably set to be N = 4 for
this smooth system. The frequency response data for
f0 = 1 and different frequencies ω are schematically
shown in Fig. 9.

Four cases as listed in Table 3 are considered to
investigate the effect of data types and model errors.
Herein, a11 represents the first element of the vec-
tor a1, and the model errors are invoked by increas-
ing the known parameters k3, k4, k5 to respective
1.03k3, 1.03k4, 1.03k5. In case 2 and case 4, the dis-

Table 6 Parameters of the beam

Length (m) Width (m) Height (m) Density (kg/m3)

Beam 0.7 0.014 0.014 7800

Lamina 0.04 0.014 0.0005 7800
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Fig. 6 Identification procedure for SDOF hysteretic system: a case 1 and b case 2

Table 7 Identification cases of the continuous beam with geometrical nonlinearity

Case Initial value Measured data Noise level (%) Grid error

1 p(0) aA1 10 –

2 p(0) uA(t) 10 –

3 p(0) aA1 10 Y

4 p(0) uA(t) 10 Y

p(0) = [0.5, 0.5, 0.5, 0.5]

Fig. 7 Five-storey structure

placement responses are obtained over the time interval
of 0–10s at the sampling rate of 1000Hz. The proposed
approach is then used for parameter identification in
case 1 and case 3, while the time response sensitivity
approach [19] is applied to case 2 and case 4. Iden-
tification results are summarized in Table 4, and it is
observed that

• In case 1 and case 2, the MREs are respective
0.37% and 3.86%, indicating that both approaches
have led to satisfactory parameter identification.
Notwithstanding, the proposed approach using fre-
quency response data ismore accurate than the time
response data.

• When model errors are introduced in case 3 and
case 4, the MRE becomes 7.18% for case 3, while
reaches 16.42% for case 4. Clearly, when model
errors exist, the proposed approach still gives rea-
sonably good identification, while parameter iden-
tification by the time response sensitivity approach
is not so satisfactory. In other words, the proposed
approach is found less sensitive to model errors.
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Fig. 8 Time and frequency response data under 10% noise

Fig. 9 Frequency response data for the five-storey structurewith
weak nonlinearity

• To further see the robustness in the case of model
errors, the Monte Carlo simulation is adopted for
case 3 and case 4 and as a result, the means and
standard deviations of the identified parameters are
shown in Fig. 10. Obviously, the means of the
proposed approach better approximate the exact
parameters and the standard deviations are also evi-
dently less than those by the time response sensitiv-
ity approach. To conclude, the proposed approach
is more robust even when model errors exist.

• As is shown in Table 4, the number of iterations in
each case is no more than 24, implying that rapid
convergence by the proposed approach is achieved.

Fig. 10 Bar graph with means and standard deviations of case
3, and case 4 under weak nonlinearity

4.2.2 Strong nonlinearity

As for the five-storey structure with strong nonlin-
earity, the system parameters to be estimated are
p = [k1, k2, α0, α1, k13, k23] = [0.95, 0.8, 0.2, 0.25,
1.9, 2.0]. The same four cases in Table 3 are taken into
account, and the identification results are listed in Table
6. Monte Carlo simulation is also utilized in case 3 and
case 4, and the eventual results on means and devia-
tions are depicted in Fig. 11. Obviously, in case 1 and
case 2 with nomodel error, both approaches have given
goodparameter identification,whilewhenmodel errors
are considered in case 3 and case 4, the identification
by the proposed approach is much better than by the
time response sensitivity approach because much less
MRE and standard deviations are acquired by the pro-
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Table 8 Identified results of the beam

Case Identified results MRE (%) Iter#

1 0.7010, 0.6001, 0.8075, 0.5860 2.34 20

2 0.6970, 0.6013, 0.8062, 0.5824 2.93 10

3 0.7047, 0.5992, 0.8095, 0.5805 3.25 21

4 0.7033, 0.5981, 0.7910, 0.6276 4.59 10

Iter# represents the number of iteration

Fig. 11 Bar graph with means and standard deviations of case
3 and case 4 under strong nonlinearity

posed approach.Again, the proposed approach is found
more accurate and robust for strong nonlinear parame-
ter identification in the presence of model errors.

4.3 A continuous beam with geometrical nonlinearity

Consider a continuous beam [33]with geometrical non-
linearity which is caused by the large deflection of
the lamina (see Fig. 12). The known/fixed parameters
regarding the material and geometric properties of the
beam are listed in Table 6. The governing equation is
in the form of Eq. (1) where the Rayleigh damping
C = α0M + α1K is adopted. The localized nonlinear-
ity caused by the lamina is equivalently set to

fnl = k3uA
3 (26)

where k3 is the cubic stiffness coefficient, and uA is
the displacement of position A (the end of the main
beam). For this structure, the parameters to be iden-
tified are set to pu = [E, k3, α0, α1] = [2.1 ×
1011 Pa, 5.4 × 109 N/m3, 80 s−1, 6 × 10−4 s], where
E is the Young modulus. Owing to the great differ-
ence among the magnitude orders of these parame-

ters, a simple normalization strategy puk = p0k pk
is used where p0 = [p01, p02, p03, p04] = [3 ×
1011 Pa, 9 × 109 N/m3, 100 s−1, 10−3 s] are pre-
scribed and the normalized or dimensionless parame-
ters p = [0.7, 0.6, 0.8, 0.6] are eventually to be identi-
fied. Assume that the excitation is applied at position A
with the form of f (t) = f0 cos(ωt). The response data
are obtained via sweeping the amplitude from 30 to 40
N by the increment of 1 N, and the frequency increases
from 100 to 110 rad/s with the resolution of 1 rad/s
(where the basic frequency of the beam is about 140
rad/s). The harmonic order of HBM is set to N = 10,
and the number of finite elements to model the beam
for parameter identification is fixed at NE = 7.

Four cases as detailed in Table 7 are considered to
investigate the influence of measurement noise, grid
error (finite element discretization error) where uA(t)
is the displacement response of position A and aA1 is
the corresponding Fourier coefficient. Note that, in case
3 and case 4, the grid/model error is introduced in the
way that more elements NE = 14 as twice of those for
parameter identification are used to get the measured
data. In case 2 and case 4, the time response sensitiv-
ity approach is again utilized for comparison, where
the displacement response data is obtained over the
time interval of 0–0.5s at the sampling rate of 1000Hz.
The identification results of the four cases are listed in
Table 8, and it is shown that

• in case 1 and case 3, the MREs are both less than
3.3%, indicating that the parameters are well iden-
tified by the proposed approach even when the grid
error is introduced.

• Comparing case 4 (resp. case 2) with case 3 (resp.
case 1), the MRE for case 4 (resp. case 2) is 4.59%
(resp. 2.93%), while the MRE for case 3 (resp.
case 1) is merely 3.25% (resp. 2.34%). Though all
being acceptable, the proposed approach is slightly
more accurate than the time response sensitivity
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Fig. 12 Continuous beam

Fig. 13 Bar graph with means and standard deviations: a case 1 and case 2, b case 3 and case 4

approach. Moreover, as is displayed in Fig. 13, the
standard deviation of the proposed approach is less
than that of the time response sensitivity approach,
implying that the proposed approach is less sensi-
tive to the measurement noise and the grid error.

5 Conclusions

A frequency response sensitivity approach has been
proposed for parameter identification of nonlinear
structural systems in this paper. The attractive features
are twofold. On the one hand, the frequency response
data as Fourier coefficients of steady-state responses
are (almost) independent from the initial conditions so
that the identification will not be polluted by the inac-
curacies in initial conditions. On the other hand, the
frequency response data pertain to the algebraic har-
monic balance equation so that the sensitivity analysis
is quickly conducted by solving a linear algebraic equa-
tion. Numerical examples have been studied and results
show that:

• The proposed approach is very robust to measure-
ment noise and even under 10% noise, satisfactory
parameter identification is reached. This shall be

benefit from the denoise effect in acquiring the fre-
quency response data from Fourier transformation
of steady-state time responses.

• All convergence is reached within 30 iterations,
indicating that rapid convergence is reached by the
proposed approach.

• The proposed approach is also insensitive to model
errors.

• In terms of accuracy, robustness and sensitivity to
model errors, the proposed approach is found supe-
rior to the time response sensitivity approach.

Thus, the proposed approach is believed to constitute an
effective and efficient tool for parameter identification
of nonlinear structural systems.
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