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Abstract Recently, many image encryption schemes
havebeendevelopedusingLatin squares.Whenencrypt-
ing a color image, these algorithms treat the color
image as three greyscale images and encrypt these
greyscale images one by one using the Latin squares.
Obviously, these algorithms do not sufficiently con-
sider the inner connections between the color image
and Latin square and thus result in many redundant
operations and low efficiency. To address this issue,
in this paper, we propose a new color image encryp-
tion algorithm (CIEA) that sufficiently considers the
properties of the color image and Latin square. First,
we propose a two-dimensional chaotic system called
2D-LSM to address the weaknesses of existing chaotic
systems. Then, we design a new CIEA using orthog-
onal Latin squares and 2D-LSM. The proposed CIEA
can make full use of the inherent connections of the
orthogonal Latin squares and color image and executes
the encryption process in the pixel level. Simulation
and security analysis results show that the proposed
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1 Introduction

The fast development of digital technology makes
daily life more and more convenient. The informa-
tion security becomes important, since it is very easy
to spread digital information through different net-
works. Because digital image has data redundancy
and can carry much visual information, it is a most
widely used data format. The illegal accesses of the
secret image may cause serious information secu-
rity accidents. Thus, it is quite important to prevent
the contents of digital images from being unautho-
rizedly accessed. To keep the security of digital images,
researchers proposed many technologies including the
data hiding [40], watermarking [36] and image encryp-
tion [15,44]. Among all these technologies, the image
encryption is a straightforward and effective one by
transforming a meaningful image as an unrecognizable
image. Only using the correct key, the original image’s
information can be recovered [38,57].

One method of encrypting is encrypting a digital
image as a bit stream using some data encryption algo-
rithms [34]. However, different from the bit steam, an
image has many inner properties such as high data
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redundancy and adjacent pixel correlations. Encrypting
an image as a bit stream cannot make full use of these
properties and thus cause many shortcomings such as
low encryption efficiency [24,58]. Therefore, design-
ing image encryption algorithms considering the prop-
erties of images is necessary. Recently, many encryp-
tion algorithms for digital images have been proposed
using different techniques [51,54,55] including DNA
coding [41], frequency transformation [27], compres-
sive sensing [7,28] and chaos theory [17,20,23]. For
example, the authors in [48] proposed an image encryp-
tion algorithm using the quaternion technique. It has
many advantages and thus can achieve a high secu-
rity level. Besides, the authors in [7] simultaneously
performed the encryption and compression to the dig-
ital images, which provides a novel strategy for image
encryption technique.

A Latin square/cube is a special 2D/3D matrix that
each element exists once in each column/row. With
this significant property, the Latin squares/cubes are
widely used to design the algorithm structures of image
encryptions [43]. However, when encrypting a color
image, these algorithms either treat a color image as
three greyscale images and encrypt these greyscale
images one by one using Latin squares, or decompose
a greyscale image to be a bit cube and then encrypt
the bit cube using the Latin cubes [46]. Treating a
color image as three greyscale images or treating a
greyscale image as bit cube cannot sufficiently con-
sider the inner connections between the images and
Latin squares/cubes, and thus results inmany redundant
operations and low efficiency [49]. When designing an
image encryption algorithm, the chaos theory is widely
used to distribute the secret key and generate random
numbers for encryption processes [16]. This is because
a chaotic system owns many inner characteristics such
as the random-like behavior, unpredictability and initial
sensitivity [1,47]. These characteristics are similarwith
the basic concepts of image encryption [15,21]. How-
ever, existing chaotic systems used in image encryption
havemany disadvantages. First, their chaotic ranges are
narrow and discontinuous [14,33]. When simulating
a chaotic system in digital platforms, the discontinu-
ous chaotic ranges may result in the chaos degradation
because of the precision truncation [5]. Besides, the
structures of existing chaotic systems are very simple
that make their behaviors can be easily predicted [8].
When the behavior of a chaotic system is predicted, the

practical applications using the system become ineffec-
tive [4].

From the discussions above, we get that many
existing image encryption algorithms using chaos
and Latin squares/cubes have obvious weaknesses in
the algorithm structures and used chaotic systems.
To address these issues, this paper presents a new
color image encryption algorithm (CIEA) using three-
dimensional (3D) orthogonal Latin squares and a new
two-dimensional (2D) chaotic system. The proposed
CIEA mainly contains the point-to-point permutation,
cross-plane diffusion and finite field multiplication.
The point-to-point permutation can simultaneously
shuffle the pixel row positions and column positions
within all the three color planes using 3D orthogonal
Latin squares, the cross-plane diffusion processes pix-
els of all the three color planes in a random order, and
the finite field multiplication transforms image pixels
in finite field to further increase the security. The nov-
elty and contributions of this paper are summarized as
follows.

– We design a novel 2D chaotic system called 2D-
LSM. Performance analysis shows that it has con-
tinuous and wide chaotic range and better perfor-
mance than recently developed 2D chaotic maps.

– Using the designed 2D-LSM, we devise a new
CIEA called LSM-CIEA that can totally consider
the properties of Latin squares and color image.

– Simulation and security evaluation results demon-
strate that the LSM-CIEA can make full use of
the inner connections between the orthogonal Latin
squares and color image and thus has a high security
level and efficiency. The comparison results indi-
cate that it shows better performance than several
state-of-the-art encryption algorithms.

The remainder of this paper is organized as fol-
lows. Section 2 reviews some representative works
about image encryption algorithms using the Latin
squares/cubes and chaotic systems and introduces the
generation of 3D orthogonal Latin squares. Section 3
introduces the proposed 2D-LSM and analyzes its per-
formance. Section 4 presents the proposedLSM-CIEA,
and Sect. 5 simulates the LSM-CIEA and evaluates its
security level. Section6gives a conclusionof this paper.
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Fig. 1 Examples of Latin squares

Fig. 2 Example of a Latin cube with size 4 × 4 × 4

2 Related works

This section reviews some image encryption algorithms
using the Latin squares/cubes and chaotic systems and
analyzes their properties. In addition, we present the
generation of 3D orthogonal Latin squares.

2.1 Encryption algorithms using Latin squares/cubes

First, we give a detailed description about the Lain
square and Latin cube. Then, we discuss the existing
encryption algorithms using the Lain square/cube.

2.1.1 Latin square and Latin cube

A Latin square is an n × n square matrix, where
every element occurs only once in every row and
every column [10]. Figure 1 shows four different Latin
squares with different symbol sets, and they can visu-
ally demonstrate the properties of the Latin square. A
Latin cube is a 3D form of Latin square. Similar to the
Latin square, a Latin cube of size n × n × n has n dif-
ferent elements and every one occurs once in every
axis-aligned plane. Figure 2 shows a Latin cube of
size 4 × 4 × 4, which is composed of four elements
{a, b, c, d}. As can be seen, the Latin cube consists of
four Latin squares with size 4 × 4 and each element
of {a, b, c, d} appears only once in every row, column,
and vertical, respectively.

Fig. 3 The traditional encryption processes (methods 1 and 2)
and the desired encryption process (method 3) for encrypting a
color image

2.1.2 Encryption algorithms using Latin
squares/cubes

Because of the unique characteristics, the Latin
squares/cubes have been used in many image encryp-
tion algorithms. These algorithms contain two cate-
gories. The first category applies the Latin squares to
encrypt a greyscale image in 2D space [19]. For exam-
ple, in [29], the authors proposed an encryption algo-
rithm that uses a Latin square to perform the substitu-
tion process. In [26], the authors presented an image
encryption algorithm by combing the Latin square and
cellular neural network. This category of encryption
algorithms can be only directly applied to greyscale
images with square size. When encrypting a color
image, one should first divide it to be three color planes
and then separately encrypt each of the color planes as a
greyscale image and finally combine the three results to
obtain the cipher-image. This strategy for color images
is shown as method 1 in Fig. 3. However, the three
color planes of a color image have many inner prop-
erties. Treating them as three greyscale images cannot
consider the properties among color planes and thus
may result in low efficiency.

The second category of encryption algorithms first
decomposes an image into a bit cube and then encrypts
the bit cube using Latin cubes, as shown in method 2
of Fig. 3. However, these encryption algorithms cause
many shortcomings. First, The encryption efficiency is
low. An digital image is composed of pixels. Encrypt-
ing image pixels in bit level can cause excessive and
complicated operations and thus increases the com-
putational cost [25,52,59]. Secondly, these encryption
algorithms are only suitable for images with a specific
size, and this causes inconvenient in practical applica-
tions [49]. For example, the authors in [46] first decom-
pose a greyscale image with size 512 × 512 into a
3D bit matrix with size 128 × 128 × 128 and then
encrypt the 3D bit matrix using 3D Latin cubes. Obvi-
ously, this encryption strategy is only suitable for the
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Table 1 Some representative image encryption algorithms using the Latin squares/cubes and their properties

Encryption algorithms Encryption strategy Properties

Ref. [46] Latin cube; bit level Encrypt images only with specific size

Ref. [43] Latin square; bit level Encrypt images only with specific size

Ref. [29] Latin square; chaos theory Low quality; only greyscale images

Ref. [18] Latin square; pixel level Can’t resist chosen plaintext attack

Ref. [49] Latin cube; bit level Can’t resist chosen plaintext attack

Ref. [25] Latin cube; DNA encoding High complexity; low efficiency

Ref. [53] 3D orthogonal Latin squares Encrypt images only with specific size

Ref. [3] Latin square; chaos theory High complexity; only greyscale images

images whose image size can be decomposed to be
3D bit matrix of size n × n × n. In addition, when
encrypting a color image, these encryption algorithms
should also encrypt each of the three color planes indi-
vidually and then combine the three results to obtain
the final cipher-image. Table 1 shows some represen-
tative image encryption algorithms using the Latin
squares/cubes and their limitations. Thus, it is impor-
tant to design new encryption structures that fully con-
sider the inner properties of the color image and Latin
cube/square. A desired encryption structure is shown
as method 3 in Fig. 3. It shows that a color image with
any size can be directly encrypted. It can be seen that
the three color planes of an color image can be directly
encrypted without any preprocessing.

2.2 Chaotic systems

Chaos theory is a popular used technique for design-
ing image encryption algorithms, due to its properties
of initial sensitivity, unpredictability and random-like
behavior [6,37]. When being applied in image encryp-
tion, the chaotic systems are to generate random num-
bers or their structures are used to distribute image pix-
els [50]. Based on the dimension number of the phase
space, chaotic systems contain the one-dimensional
(1D) and multi-dimensional (MD) ones. The famous
1D chaotic systems have the Logistic, Sine and Tent
maps [9]. A 1D chaotic system usually owns a simple
structure, which makes its chaotic signal easily to pre-
dict [22].When used in image encryption, this property
can lead to the successful prediction of encryption pro-
cesses and further causes security issues [11]. Exam-
ples of MD chaotic systems include the 3D-PLM [32]
andNL4DLM [35]. AMDchaotic system usually has a

complex structure, which makes its chaotic signal hard
to be predicted. This can enhance the security level
when being used in image encryption. However, high
dimension also leads to high implementation cost and
low efficiency.

Since 2D chaotic systems can own complex chaotic
behaviors and relatively low implementation cost, they
can balance the efficiency and performance. Thus,
they are widely used to design image encryption algo-
rithms. Recently, some image encryption algorithms
were developed using different 2D chaotic systems,
including the 2D-LASM [15], 2D-SLMM [16], 2D-
LSCM [12] and 2D-LSMCL [58]. Figure 4 plots the
trajectories and the Lyapunov exponents (LEs) of these
2D chaotic systems. The trajectory of a chaotic system
shows its motion behavior, and the Lyapunov exponent
(LE) is an effective measurement for chaos. A non-
linear system with a positive LE is chaotic, and two
or more positive LEs indicate hyperchaotic behavior.
When plotting the trajectories, the control parameters
of these 2D chaotic maps are chosen as the typical set-
tings reported in the original literatures. Since the 2D-
SLMMand2D-LSMCLown twoparameters, their LEs
are calculated with the change of parameter a by set-
ting the other parameter b as a fixed value, namely set
b = 3 in 2D-SLMM and 2D-LSMCL. As can be seen,
these 2D chaotic systems have some notable properties.
First, their trajectories cannot be uniformly distributed
on the whole phase space, indicating their behaviors
are not random-like. In addition, their chaotic intervals
are not continuous and have periodic windows. These
properties greatly effect the security level when being
used in image encryption.
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Fig. 4 The top row plots the trajectories of a the 2D-LASM
under a = 0.9, b 2D-SLMM under (a, b) = (1, 3), c 2D-LSCM
under a = 0.98 and d 2D-LSMCL under (a, b) = (0.75, 3), and

the bottom rowplots their twoLEs by setting b = 3 in 2D-SLMM
and 2D-LSMCL

2.3 Generation of 3D orthogonal Latin square

Here, we present amethod of generating 3D orthogonal
Latin square [46],whichwill be used inour newencryp-
tion algorithms. For twoLatin squaresA1 = (a(1)

i, j )
N×N

andA2 = (a(2)
i, j )

N×N , they are orthogonal if all the ele-

ment pairs (a(1)
i, j , a

(2)
i, j ) are different fromeachother. The

orthogonal Latin squares have the same properties as
the Latin cube. A 3D orthogonal Latin square consists
of three orthogonal Latin squares. It can be any three
squares of a Latin cube. Thus, a 3D orthogonal Latin
square with size n × n × 3 possesses the property that
the same element only appears once in different rows,
columns and verticals, respectively. Therefore, we can
use the Latin cube generation method presented in [46]
to generated three 3D orthogonal Latin squares L1,L2

and L3, and the generation processes are described as
follows.

– Step 1: Produce a chaotic sequence X with length
N using a chaotic system.

– Step 2: Sort X in an ascending order and obtain the
index vector I.

– Step 3: Generate three 3D orthogonal Latin squares
L1,L2 and L3 by performing the arithmetics to the
index vector I in the finite field.

Algorithm 1 Generation of three 3D orthogonal Latin
squares.
Require: Initial state of a chaotic system.
1: Generate a chaotic sequence X = {x0, x1, ..., xN−1} by a

chaotic system using the given initial.
2: Sort X and get an index matrix I;
3: for i = 0 to N − 1 do
4: for j = 0 to N − 1 do
5: for k = 0 to 2 do
6: L1(i, j, k) = Ik + α × I j + α2 × Ii ;
7: L2(i, j, k) = Ik + β × I j + β2 × Ii ;
8: L3(i, j, k) = Ik + γ × I j + γ 2 × Ii ;
9: end for
10: end for
11: end for

where “+′′ and “×′′ indicate the addition and multiplication
in finite field FN , respectively, α, β and γ denote the distinct
nonzero elements in FN .

Ensure: Three 3D orthogonal Latin squares L1,L2 and L3.

Algorithm 1 gives the pseudo-code of generating
three 3D orthogonal Latin squares L1,L2 and L3.
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Every 3D orthogonal Latin square satisfies the prop-
erties of the Latin cube, and its three Latin squares are
orthogonal to each other. Therefore, the element pairs
in the three Latin squares will not be repeated and this
provides a theoretical basis for designing the permuta-
tion operation in color image encryption.

3 2D-LSM

This section designs a 2D chaotic system called 2D-
LSM, evaluates its chaotic behaviors using bifurcation
diagram, phase plane trajectory, LE and sample entropy
(SE) [31], and compares it with some newly developed
2D chaotic systems.

3.1 Definition of 2D-LSM

The classical 1D chaotic systems usually own simple
system structures and low implementation cost. How-
ever, they cannot exhibit very complicated behaviors.
Here, we derive a new 2D-LSM by first combining
the nonlinearity of two 1D chaotic systems, and then
expanding the phase space to 2D. The used two 1D
chaotic systems are the Logistic and Sine maps, whose
equations are defined as

xi+1 = 4axi (1 − xi ), (1)

and

xi+1 = b sin(πxi ), (2)

respectively, where a and b are their parameters a, b ∈
[0, 1]. Then, the 2D-LSM can be derived as

{
xi+1 = cos(4axi (1 − xi ) + b sin(πyi ) + 1);
yi+1 = cos(4ayi (1 − yi ) + b sin(πxi ) + 1).

(3)

Obviously, the 2D-LSM has two control parameters
a, b and they inherent from the Logistic and Sinemaps,
respectively. Because the cosine transform is a bounded
transform for arbitrary input value, the parameters a, b
can be any large values. As a result, the 2D-LSM can
enlarge the ranges of the two control parameters. In
this paper, we investigate the chaotic behaviors of the
2D-LSM for the two parameters a, b ∈ [1, 100].

Fig. 5 The 2D-LSM’s bifurcation diagrams of a output x and b
output y, and its c phase plane trajectory for parameters (a, b) =
(50, 50)

3.2 Performance of 2D-LSM

In this subsection, we evaluate the performance of the
2D-LSM and compare it with some newly developed
2D chaotic systems.

3.2.1 Bifurcation diagram and phase plane trajectory

The bifurcation diagram and trajectory can intuitively
reflect the behaviors of a nonlinear system. For a 2D
nonlinear system, its bifurcation diagram plots the vis-
ited states along the change of its control parameters,
while its phase plane trajectory plots the visited points
of two variables. Figure 5a, b plots the bifurcation dia-
grams of variables x and y of the 2D-LSM, where the
initials are set to (x, y) = (0.2, 0.3) and the control
parameters a, b ∈ [1, 100].

It can be seen that the two iterative outputs can
be randomly distributed on the entire phase space
within all the parameter settings, indicating random-
like behaviors of the 2D-LSM. Figure 5c indicates the
trajectory of the first 2000 outputs of the 2D-LSM by
setting the control parameters a = b = 50. The initial
states are set as the same values as them in plotting the
bifurcation diagrams. Obviously, the trajectory of the
2D-LSM can distribute throughout all the phase plane.
These indicate that it owns continuous chaotic range
and shows complex behaviors from the aspects of the
bifurcation diagram and trajectory. With these proper-
ties, the 2D-LSM is suitable formany applications such
as the encryption.

3.2.2 LE

Among all the criteria to test the chaos, the LE
is a widely used one. It describes the exponen-
tial divergence of two close trajectories beginning
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Fig. 6 The LEs for different 2D chaotic systems. a, b The two
LEs of the 2D-LSM; c the LLE comparisons among the 2D-
LSCM (a/100, b = 50), 2D-LASM, 2D-SLMM (b = 3), 2D-
LSCM, and 2D-LSMCL (b = 3)

from extremely close initials [2]. A high-dimensional
dynamical systems has several LEs and its number of
LEs equal to its dimension number. For a nonlinear sys-
tem with global bound, its largest LE (LLE) indicates
the existence of chaos. A positive LLE indicates the
chaotic behavior, and a larger LLE means faster diver-
gence of close trajectories. A nonlinear system with
two or more positive LEs has hyperchaotic behavior,
which is a kind of more complicated behavior than the
chaotic behavior.

Our experiments used the LE calculation toolbox
LET1 to obtain the LEs of different chaotic maps. First,
we calculate the two LEs of the proposed 2D-LSM in
thewhole parameter space and the calculated values are
plotted in Fig. 6a, b. It can be seen that the 2D-LSM
always has two positive LEs under all the setting of
parameter, indicating that it has hyperchaotic behavior.
Besides, we compare the LLEs of different 2D chaotic
systems in Fig. 6c. To obtain a visual effect, we lin-
early scale down the parameter a in the 2D-LSM from
interval (1, 100) to (0, 1), and set its another parame-
ter b = 50. For the 2D-SLMM and 2D-LSMCL, their
parameter b is set as b = 3. As shown that, the 2D-
LSM has larger LLEs than the other four 2D chaotic
systems, and its chaotic range is continuous. On the
contract, the other four 2D chaotic systems have dis-
continuous chaotic ranges.

3.2.3 SE

The SE is a kind of entropy to measure the complex-
ity level in a time series [31]. It can quantitatively
measure the complexity of the iterative outputs of a
chaotic system. A positive SEmeans that the generated

1 https://ww2.mathworks.cn/matlabcentral/fileexchange/
233-let?requestedDomain=zh.
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Fig. 7 The SEs for different 2D chaotic systems. a The SEs of
the 2D-LSM; b the SE comparison among the 2D-LSM (a/100),
2D-LASM, 2D-SLMM (b = 3), 2D-LSCM, and 2D-LSMCL
(b = 3)

sequences do not have typical regularity and thus show
chaotic behaviors. A larger SE shows lower regularity
of the sequence and further indicates more complicated
behavior of the chaotic system. Our experiments cal-
culate the SEs of different chaotic systems using the
method introduced in [31]. All the parameters in the 2D
chaotic systems are set as the same values as them in
the experiment of LE. Figure 7 plots the SEs of the 2D-
LSM and the SE comparisons of different 2D chaotic
systems. As can be seen, the 2D-LSM can achieve pos-
itive SEs under all the control parameters and it has
much larger SEs than other 2D chaotic systems. The
experiment results are consistent with the results in LE
experiment. As a result, the LE and SE experiments
prove that our proposed 2D-LSM has superior perfor-
mance than those representative 2D chaotic systems.

4 LSM-CIEA

In this section, we develop a new CIEA called
LSM-CIEA using the 2D-LSM and 3D orthogonal
Latin squares. Figure 8 depicts the algorithm structure
of the LSM-CIEA. The secret key generates the ini-
tials and control parameters of the 2D-LSM, and the
chaotic sequences produced by the 2D-LSM produce
3D orthogonal Latin squares for encryption processes.
First, randomnoises are added to the last twobits of pix-
els in the first column of the red color plane. Then, the
point-to-point permutation is performed to randomly
shuffle the pixel positions of three color planes, and
the cross-plane diffusion randomly changes the pixel
values. The finite filed multiplication is to enhance the
security level. Since the diffusion process in the encryp-
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Fig. 8 The structure of the
LSM-CIEA

tion algorithm can only affect the pixels behind the cur-
rent pixel when the current pixel has value change, at
least two rounds of encryption should be performed to
totally diffuse the image pixels. Besides, two rounds
of encryption can also achieve a much higher security
level than only one round. Because the point-to-point
permutation, cross-plane diffusion and finite filed mul-
tiplication are reversible, one can recover the original
information of the plain-image with the correct secret
key.

4.1 Secret key distribution

To defense the brute-force cracking using a computer
with powerful capability, the key space should be suf-
ficiently large. The secret key of the LSM-CIEA has
the length of 256 bits, and it includes 8 parts, namely
x1, y1, a1, b1, x2, y2, a2 and b2, and each part contains
32 bits. The xi and yi (i = 1, 2) are the initials of the
2D-LSM in the two rounds of encryption. The first bit is
the sign bit, in which the 0 indicates positive value and
the 1 indicates negative value. The remaining 31 bits are
transformed to be a floating-point number. This strat-
egy can ensure that the initial values are always within
the output range of the 2D-LSM. The ai and bi are
the corresponding control parameters. Their first 7 bits
are converted to be the integer part, and the remaining
25 bits are converted to be the floating-point part. To
avoid the ineffectiveness of the secret keywith all zeros,
the final parameters a and b are obtained by adding
1. Because the used 2D-LSM has continuous chaotic
range when its control parameters a, b ∈ [1,+∞), the
parameters generated from the secret key are always
within the continuous chaotic range, which can avoid

the noneffective keys. Suppose that c1c2 · · · cn is an n-
bit binary stream, its corresponding decimal floating-
point number can be calculated as

v =
n∑

i=1

ci2
−i . (4)

4.2 Pixels blurring

To enhance the security of the encrypted results, we
add some randomly generated noises to some pixels of
the plain-image. Specifically, the pixels blurring strat-
egy in the proposed LSM-CIEA adds some noises to
the last two bits of the first column in the red color
plane. Because the last two bits only contain a little
information of the pixel and the peripheral pixels only
contain a little information of the image, this opera-
tion only causes an extremely small change to the plain
image and do not affect its contents. After the encryp-
tion processes, these added noises can be spread to all
the pixels of the three color planes. Because the added
noises are random and different in every encryption,
each encrypted result is totally different, even with a
same secret key.With this property, the encrypted result
has high ability to defensemany security attacks includ-
ing the chosen-plaintext attack and thus achieves a high
security level.

4.3 Point-to-point permutation

High correlations exist in the adjacent pixels of a natural
image, and an encryption algorithm should decorrelate
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these correlations efficiently. The permutation opera-
tion can effectively achieve this goal by randomly per-
mutate the positions of pixels. In many previous works,
the permutation is performed within every row/column
or obeying some predefined rules. This results in that
every operation only shuffles pixels’ row positions or
column positions or cause low security level. In the
proposed LSM-CIEA, we develop a point-to-point per-
mutation that can totally permutate the image pixels
within the three color planes of a color image using the
3D orthogonal Latin squares. This method can build
a one-to-one mapping among the pixels of the plain-
image and the shuffled result. In one-time operation,
all the pixels’ row and column positions can be totally
changed, and this can achieve a high permutation effi-
ciency. The detailed operations of the point-to-point
permutation are described as follows.

– Step 1: Generate three orthogonal 3D Latin squares
L1,L2 and L3 using the generation method intro-
duced in Algorithm 1.

– Step 2: Combine the elements at the same position
ofL1,L2 andL3 to generate a 3Dcoordinatematrix
L′, namely L′(i, j, k) = (L1(i, j, k),L2(i, j, k),
L3(i, j, k)).

– Step 3: Reset the values in the third dimension ofL′
to get the shuffling matrix L. Specifically, find the
three coordinates in L′ whose first two dimensions
are the same, and set their third dimensions to 0, 1,
and 2, respectively, in ascending order.

– Step 4: Shuffle the pixels of the plain-image
using L to obtain the scrambled image T, namely
T(L(i, j, k)) = P(i, j, k).

Figure 9 shows a number example of point-to-point
permutation for a color image owning size 5 × 5 × 3.
Figure 9a demonstrates the generation of the shuf-
fling matrix L from three orthogonal 3D Latin squares
L1,L2 and L3. First, a coordinate matrix L′ is gen-
erated by combing the elements at the same position
of L1,L2 and L3. Then, the shuffling matrix L can
be generated by finding the three coordinates in L′
whose first two dimensions are the same, and setting
their third dimensions to 0, 1, and 2. For example, for
the three coordinates (0, 0, 2), (0, 0, 1) and (0, 0, 4)
with the first two same dimensions, sort their third
dimensions and set the values as 0, 1 and 2. Then,
the three coordinates become (0, 0, 1), (0, 0, 0) and
(0, 0, 2). After all the coordinates are processed, the
shuffling matrix L can be generated. Figure 9b demon-

strates the shuffling process using L. For example,
since L(0, 0, 0) = (3, 2, 2), L(0, 0, 1) = (0, 0, 0)
and L(0, 0, 2) = (4, 1, 1), then permutate the pix-
els with positions (0, 0, 0), (0, 0, 1) and (0, 0, 2) in P
to the positions (3, 2, 2), (0, 0, 0) and (4, 1, 1) in T,
respectively. This means that T(3, 2, 2) = L(0, 0, 0),
T(0, 0, 0) = L(0, 0, 1) and T(4, 1, 1) = L(0, 0, 2).

Because the used 3D Latin sequences are orthogo-
nal, each element in the coordinate matrix L is unique.
Besides, all the elements are uniformly and randomly
distributed within the sequences. These guarantee that
the permutation process is point to point, and the pixels
in the plain image can be distributed very randomly.
Using the same shuffling matrix L, one can totally
recover the plain-image.

4.4 Cross-plane diffusion

The diffusion property shows that slight difference in
the plaintext can be spread to the whole ciphertext
and an encryption algorithm should own this property.
To provide a more efficiency diffusion operation, we
design a cross-plane diffusion that can simultaneously
process all the image pixels in the three color planes.
The cross-plane diffusion can cause the change of a
pixel to the next pixel. Since the adjacent pixels in the
shuffled image are from different color planes and the
positions are randomly determined by chaotic outputs,
the process order is secret and random. The detailed
cross-plane diffusion can be presented as

C′
i, j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ti, j,k + R(1)
i, j,k + r1) mod F

if i = 0, k = 0,

(Ti, j,k + R(1)
i, j,k + C′

M−1, j,k−1 + TM−1, j,k−1) mod F

if i = 0, k �= 0,

(Ti, j,k + R(1)
i, j,k + C′

i−1, j,k + Ti−1, j,k) mod F

if i �= 0,

(5)

Ci, j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C′
i, j,k + R(2)

i, j,k + r2) mod F

if j = 0, k = 0,

(C′
i, j,k + R(2)

i, j,k + Ci,N−1,k−1 + C′
i,N−1,k−1) mod F

if j = 0, k �= 0,

(C′
i, j,k + R(2)

i, j,k + Ci, j−1,k + C′
i, j−1,k) mod F

if j �= 0,

(6)
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(a)

(b)

Fig. 9 A number example of the point-to-point permutation for a color image with size 5× 5× 3. a Generation of the shuffling matrix
L; b pixel shuffling using L

where T is the shuffled image, R(1) and R(2) are 3D
chaotic matrices, r1 and r2 are random numbers gen-
erated by the 2D-LSM, C′ is the temporary result after
changing the pixel value in column order, C is the
final diffusion result, and F is the greyscale levels and
F = 256 for 8-bit image. To obtain a higher secu-
rity level, the operations in Eqs. (5) and (6) can be
performed in reverse order. After the cross-plane dif-
fusion, the added random noises before encrypting can

be spread to all the pixels. In the decryption operation,
the shuffled image T can be obtained by the inverse
operations using the same parameters.

4.5 Finite field multiplication

To obtain better diffusion characteristics and encryp-
tion effect, we divide the confused image into 4 × 4
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image blocks and perform multiplication in the finite
field GF(28) to each image block. First, divide the
image into unduplicated 4 × 4 image blocks and then
the perform the finite filed multiplication as follows,

Qb = (Ld · Cb · Ld)28 , (7)

whereLd is a maximum distance separationmatrix and
it is defined as

Ld =

⎡
⎢⎢⎣
4 2 1 3
1 3 4 2
2 4 3 1
3 1 2 4

⎤
⎥⎥⎦ . (8)

In the decryption operation, the inverse process of finite
field multiplication can be expressed as

Cb = (L−1
d · Qb · L−1

d )28 , (9)

where L−1
d is the inverse matrix of Ld in the GF(28)

and it can be calculated as

Ld =

⎡
⎢⎢⎣
71 216 173 117
173 117 71 216
216 71 117 173
117 173 216 71

⎤
⎥⎥⎦ . (10)

5 Simulation results and security analysis

This section simulates the LSM-CIEA and evaluates its
security level. The tested images are chosen from the
USC-SIPI2 and CVG-UGR3 image sets. The experi-
mental environment is Intel(R)Core(TM) i7-8700CPU
running at 3.20 GHz, with a 8 GB RAM under Win-
dows 10 operation system.

5.1 Simulation results

An encryption algorithm should transform all kinds
of natural images to be unrecognizable cipher-images
with uniform-distribution pixels. Only owning the cor-
rect key, the decryption process can totally recover all
the original information of the original image. Without
correct key, one cannot recover any useful information.

2 http://sipi.usc.edu/database/.
3 http://decsai.ugr.es/cvg/dbimagenes/.

Figure 10 shows the simulation results of the pro-
posed LSM-CIEA to five color images. As shown from
Fig. 10a that, the five test images have quit different
pixel distributions and they can be encrypted to be
cipher-images with uniform distributions. One cannot
see any useful information from these cipher-images.
Using the correct key, theLSM-CIEAcan totally recon-
struct the plain-images, as shown in Fig. 10e. Thus, the
LSM-CIEA is able to process all kind of color images
with high security level.

5.2 Key analysis

The secret key is very important for an encryption algo-
rithm. The secret key’s length in our proposed LSM-
CIEA is 256 bits, whose key space is large to defense
the brute-force attack in common scenarios. In addi-
tion, random noises are added to the last two bits of
the first column of the red color plane. These noises
are true random numbers and totally different in each
encryption. This can also enlarge the key space.

The secret key is expected to be sensitive. To test
the key sensitivity, we randomly produce a secret key
K1, and randomly change one bit in K1 to get another
two secret keys K2 and K3. Figure 11 demonstrates the
key sensitivity experiment in the encryption process.
As can be seen, when the two secret keys only have
one bit difference, the two cipher-images encrypted
from a same plain-image are uniformly distributed (see
Fig. 11b, c), and totally different (see Fig. 11d). Fig-
ure 12 demonstrates the key sensitivity experiment in
the decryption process. As can be seen, only using the
correct key, a cipher-image can be completely recov-
ered (Fig. 12b). Using another keys with one bit differ-
ence, the decrypted images are noise-like (Fig. 12c, d),
and completely different (Fig. 12e). These experiments
denote that the secret keys of the LSM-CIEA have
extremely sensitive encryption and decryption secret
keys.

5.3 Ability to defense chosen-plaintext attack

The chosen-plaintext attack is a commonly efficient
attack mode. In this attack, attackers have the access
to the encryption process and can obtain the related
ciphertext for any plaintext. By choosing a certain
number of plaintexts to encrypt and analyzing their
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Fig. 10 Simulation results of the proposed LSM-CIEA for five color images. a Plain-images; b histograms of the plain-images; c
cipher-images; d histograms of the cipher-images; e decrypted images

related ciphertexts, one can build the inner connections
between the plaintext and ciphertext. Utilizing these
connections, the attackers aim to recover the informa-
tion of the plaintext from the ciphertext without secret
key.

The LSM-CIEA has the strong ability to defense
this attack due to the following reasons: (1) The devel-
oped 2D-LSMhas a continuous chaotic range and com-
plex chaotic behaviors and thus can generate chaotic
sequences with high randomness. (2) Random noises
are added to the images in each encryption and these
noises will be diffused over all pixels in the cipher-
image. Since the added noises are randomly gener-
ated, the cipher-images produced in each encryption
are different even being encrypted using a same secret

key. (3) The cross-plane diffusion can diffuse the small
change of pixels to all the pixels in a secret order, which
depends on a chaotic sequence.

To visually show the strong ability of our proposed
LSM-CIEA to defense this attack, we encrypt a plain-
image twice using a same secret key and Fig. 13
depicts the experimental results. Figure 13b, c is the
cipher-images C1 and C2, which are encrypted from
the twice encryptions, respectively, and Fig. 13d shows
the difference between the two cipher-images. One can
observe that the two cipher-images are completely dif-
ferent, and this experimentally verifies that the pro-
posed LSM-CIEA can obtain a different cipher-image
in each encryption. With this property, the LSM-CIEA
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Fig. 11 Encryption key sensitivity test. aPlain imageP;b cipher
image C1 = Enc(P, K1); c cipher image C2 = Enc(P, K2); d
the difference between C1 and C2, |C1 − C2|

Fig. 12 Decryption key sensitivity test. a Cipher-image C1; b
decrypted image D1 = Dec(C1, K1); c decrypted image D2 =
Dec(C1, K2); d decrypted image D3 = Dec(C1, K3); e the
difference between D2 and D3, |D2 − D3|

Fig. 13 Demonstration about the ability of defending chosen-
plaintext attack. a A plain-image P; b the first cipher-image C1;
c the second cipher-image C2; d the difference between C1 and
C2, |C1 − C2|; e the histogram of d

has strong ability to defense many commonly used
security attacks including the chosen-plaintext attack.

5.4 Correlation analysis

Because a plain-image usually exists high data redun-
dancy, its adjacent pixels have high correlations. This
indicates that a pixel usually has similar value to
its adjacent pixels. An encryption algorithm should
remove these high correlations along the horizontal
direction, vertical direction and diagonal direction.

Fig. 14 Correlation analysis of the LSM-CIEA. The first row
shows the plain-image, and the second row demonstrates the cor-
responding cipher-image. a Plain-image and its related cipher-
image; b red color plane; c green color plane; d blue color plane.
(Color figure online)

To directly show the effect of our proposed LSM-
CIEA to decorrelate the high correlations of plain-
image, Fig. 14 plots the adjacent pixel pairs along
the horizontal direction, vertical direction and diago-
nal direction for both the plain-image and its related
cipher-image. Obviously, the pixel pairs of the plain-
image are all distributed onor close to the diagonal lines
of the phase space,which indicates high correlation.On
the contrast, all the pixel pairs of the cipher-image are
randomly distributed on the whole phase space, which
means weak correlation. This shows the high security
level of our proposed LSM-CIEA.

To test the correlations of the adjacent pixels in the
cipher-images encrypted by the proposed LSM-CIEA,
we randomly chose 5000 adjacent pixel pairs along
the horizontal direction, vertical direction and diago-
nal direction in both the plain-image and its cipher-
image. Suppose X and Y are these two adjacent pixel
sequences, their correlation can be calculated using the
correlation coefficient, whose definition is shown as
follows,

C(x, y) =
1
N

∑N
i=1(xi − E(x))(yi − E(y))√

1
N

∑N
i=1(xi − E(x))2

√
1
N

∑N
i=1(yi − E(y))2

,

(11)

where E(X) and E(Y) indicate the mathematical
expectation of the sequences X and Y, respectively.
A large correlation coefficient indicates the high cor-
relation of the sequences X and Y, and a correlation
coefficient closing to 0 indicates weak correlation.
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Table 2 The correlation coefficients of adjacent pixel pairs in the plain-images and their cipher-images encrypted by the proposed
LSM-CIEA

Image size Name Plain-image Cipher-image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

128 × 128 × 3 carafe 0.9571 0.9373 0.9440 0.0016 0.0008 − 0.0047

paper 0.9069 0.8988 0.8883 − 0.0032 − 0.0101 0.0026

reno 0.9217 0.9025 0.8668 − 0.0033 0.0019 − 0.0046

256 × 256 × 3 4.1.01 0.9507 0.9701 0.9368 0.0020 − 0.0025 − 0.0101

4.1.02 0.9539 0.9414 0.9093 − 0.0045 − 0.0023 0.0007

4.1.03 0.9346 0.9781 0.9132 − 0.0017 − 0.0025 − 0.0008

512 × 512 × 3 4.2.05 0.9529 0.9734 0.9299 0.0013 − 0.0017 0.0005

4.2.06 0.9521 0.9532 0.9398 0.0021 0.0050 − 0.0034

4.2.07 0.9646 0.9615 0.9547 0.0031 0.0046 − 0.0021

Table 3 The correlation coefficients of adjacent pixel pairs in cipher-images by different image encryption algorithms. The bold fonts
mean the best results

Image encryption algorithms Correlation coefficients

Horizontal Vertical Diagonal

LSM-CIEA 0.0020 − 0.0009 − 0.0031

Ref. [12] − 0.0132 − 0.0085 0.0058

Ref. [39] 0.0143 0.0113 0.0237

Ref. [16] 0.0086 − 0.0058 0.0055

Ref. [56] 0.0079 − 0.0027 − 0.0041

Ref. [13] 0.0036 0.0033 − 0.0062

Ref. [30] 0.0085 − 0.0037 − 0.0097

Ref. [45] 0.0068 − 0.0037 − 0.0039

Table 4 The NPCR scores for different image encryption algorithms. The bold fonts mean the best results

Image size Name NPCR(%)

LSM-CIEA Ref. [12] Ref. [39] Ref. [16] Ref. [56] Ref. [13] Ref. [30] Ref. [45]

128 × 128 × 3 carafe 99.6644 99.6216 99.6643 99.6277 99.4202 99.6399 99.6226 99.6053

paper 99.6299 99.6031 99.6501 99.6216 99.3286 99.5239 99.6185 99.6195

reno 99.6436 99.5667 99.6033 99.6326 99.4568 99.5789 99.6145 99.6134

256 × 256 × 3 4.1.01 99.6561 99.6460 99.6338 99.6033 99.6124 99.5773 99.5962 99.6257

4.1.02 99.6601 99.5972 99.6338 99.4308 99.5422 99.2722 99.5937 99.6312

4.1.03 99.6357 99.5743 99.5941 99.6674 99.4080 99.6048 99.5962 99.5865

512 × 512 × 3 4.2.05 99.6393 99.5819 99.6178 99.6143 99.5068 99.6220 99.6170 99.6023

4.2.06 99.6204 99.6067 99.6124 99.6166 99.4507 99.6033 99.6102 99.6126

4.2.07 99.6413 99.6113 99.5918 99.6342 99.5659 99.5136 99.6116 99.6218
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Table 2 lists the correlation coefficients of dif-
ferent plain-images with their related cipher-images
encrypted by our proposed LSM-CIEA. All the results
are calculated from the red color plane. As can be seen,
the correlation coefficients of the adjacent pixels in
the plain-images are relatively high, because the plain-
images have high data redundancy. However, the cor-
relation coefficients in the cipher images are all close
to 0. These indicate that the LSM-CIEA can effectively
decorrelate the high correlations of adjacent pixels in
the plain-images.

To show the superiority of the LSM-CIEA, we com-
pare the correlation coefficients in the cipher-images by
different encryption algorithms. The used test image is
the Lena image with size 512 × 512 × 3, and the cor-
relation coefficients are calculated from the adjacent
pixels in the red color plane. Table 3 lists the corre-
lation coefficients of these cipher-images. The LSM-
CIEA can achieve the values that are closest to 0. This
further proves that the LSM-CIEA can remove the high
correlations of the images efficiently.

5.5 NPCR and UACI tests

The differential attack is another common security
attack model. By selecting two plaintexts with small
difference to encrypt and comparing their ciphertexts,
the attackers can also build useful connections between
the plaintexts and ciphertexts. An encryption algo-
rithm can well defense this attack if it owns diffusion
property. The diffusion property indicates that small
changes in the plaintexts can cause the total difference
in the ciphertexts.

The number of pixel change rate (NPCR) and uni-
fied averaged changed intensity (UACI) [42] are two
indicators to quantitativelymeasure the ability of image
encryption algorithms to defense the differential attack.
Assuming that the two cipher-images C1 and C2 are
generated by encrypting two plain-images owning only
one bit difference, their NPCR and UACI can be cal-
culated as

NPCR(C1,C2) =
M∑
i=1

N∑
j=1

W(i, j)

H
× 100%, (12)

and

UACI(C1,C2) =
M∑
i=1

N∑
j=1

|C1(i, j) − C2(i, j)|
H × Q

× 100%, (13)

respectively, where M × N is the size of one
color plane, H indicates the total number of pixels in
one color plane, Q represents the maximum allowed
pixel value, and W is the difference between C1 and
C2. W(i, j) = 0 if C1(i, j) = C2(i, j); otherwise,
W(i, j) = 1.

According to the introduction in [42], an image
encryption algorithm is considered to own strong abil-
ity to defense the differential attack if the obtained
NPCR is larger than a threshold 99.6094% and a larger
NPCR indicates better performance. For the UACI test,
an encryption algorithm is expected to have better per-
formance if the UACI is closer to a theoretical value
33.4635%. In our experiment, we selected different
sizes of images as test images and Tables 4 and 5 show
the test results. FromTable 4, the proposed LSM-CIEA
can achieve the largestNPCRscores inmost test images
than the other image encryption algorithms. Besides,
Table 4 shows that the LSM-CIEA can obtain UACI
scores that are closer to the theoretical value 33.4635%
in most images. These mean that the LSM-CIEA owns
a strong ability to defense the differential attack.

5.6 Information entropy

The information entropy is an indicator to describe the
uncertainty of an signal, and it can measure the distri-
bution of image pixel. For an image I with F kinds of
greyscale values xi (i = 0, 1, ..., F−1), its information
entropy is calculated as

H(I) = −
F∑

i=1

Pr(xi ) log2 Pr(xi ), (14)

where Pr(xi ) is the probability of the xi -th possible
value. When the probabilities of each possible value
are equal, the information entropy can achieve a maxi-
mumvalue.A large information entropy indicatesmore
uniform distribution. For an 8-bit image, it has 256
greyscale levels and its maximum information entropy
can be achieved when each probability is 1/256 and
the maximum information entropy is H(I)max = 8.
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Table 5 The UACI scores for different image encryption algorithms. The bold fonts mean the best results

Image size Name UACI(%)

LSM-CIEA Ref. [12] Ref. [39] Ref. [16] Ref. [56] Ref. [13] Ref. [30] Ref. [45]

128 × 128 × 3 carafe 33.4636 33.4060 33.5531 33.4682 33.6163 33.6268 33.4553 33.6138

paper 33.4591 33.2230 33.6508 33.5856 34.6291 33.4857 33.4858 33.5083

reno 33.4204 33.3425 33.4104 33.6054 33.8498 33.4332 33.5239 33.4997

256 × 256 × 3 4.1.01 33.4973 33.5283 33.4731 33.3283 33.8578 33.4265 33.2700 33.4270

4.1.02 33.4557 33.3415 33.4031 33.1908 33.6860 33.4252 33.5132 33.4552

4.1.03 33.4623 33.4113 33.4796 33.6099 33.2224 33.4561 33.4522 33.4688

512 × 512 × 3 4.2.05 33.4641 33.4643 33.4417 33.4891 32.7451 33.5089 33.4497 33.4732

4.2.06 33.4597 33.4318 33.3606 33.4568 33.9676 33.4686 33.4694 33.4355

4.2.07 33.4670 33.4519 33.4601 33.4125 32.9809 33.5075 33.4018 33.4938

Table 6 Information entropies of plain-images and their cipher-images by different image encryption algorithms. The bold fonts mean
the best results

Image size Name Plain image Encrypted image

LSM-CIEA Ref. [12] Ref. [39] Ref. [16] Ref. [56] Ref. [13] Ref. [30] Ref. [45]

128 × 128 × 3 carafe 3.8892 7.9911 7.9867 7.9891 7.9894 7.9889 7.9895 7.9884 7.9894

paper 2.8532 7.9910 7.9898 7.9883 7.9908 7.9884 7.9880 7.9883 7.9887

reno 4.3386 7.9898 7.9883 7.9890 7.9888 7.9881 7.9888 7.9893 7.9893

256 × 256 × 3 4.1.01 6.4200 7.9974 7.9972 7.9972 7.9975 7.9971 7.9968 7.9974 7.9974

4.1.02 6.2499 7.9977 7.9972 7.9976 7.9977 7.9968 7.9975 7.9970 7.9971

4.1.03 5.7150 7.9976 7.9974 7.9973 7.9973 7.9973 7.9976 7.9971 7.9970

512 × 512 × 3 4.2.05 6.7178 7.9993 7.9992 7.9993 7.9993 7.9992 7.9993 7.9993 7.9992

4.2.06 7.3124 7.9994 7.9993 7.9993 7.9994 7.9993 7.9993 7.9993 7.9992

4.2.07 7.3388 7.9994 7.9992 7.9991 7.9993 7.9993 7.9994 7.9993 7.9993

A larger information entropy indicates more uniform
distribution of the image pixels.

In our experiments, we selected 9 different images
with obvious patterns as the test images. Table 6
lists the information entropies of these plain-images
and their corresponding cipher-images by different
image encryption algorithms. As can be seen, all the
plain-images have relatively small entropies. How-
ever, the cipher-images have large entropies that are
close to the theoretical maximum value 8. In addition,
the proposed LSM-CIEA can generate cipher-images
with larger information entropies than other encryption
algorithms. This indicates that it can outperform these
other encryption algorithms and has a high security
level.

6 Conclusion

With unique properties, the Lain square is an effec-
tive tool for designing image encryption algorithms.
However, existing image encryption algorithms using
Latin square have performance limitations in redundant
operations and low efficiency, because they either treat
a color image as three greyscale images or decompose
a greyscale image of size 512×512 to a bit cube of size
128 × 128 × 128 when performing the encryption. To
solve these issues, in this paper, we first devised a new
chaotic system called 2D-LSM that can overcome the
weaknesses of existing chaotic systems. Using the 2D-
LSM and orthogonal Latin squares, we then proposed
a new CIEA called LSM-CIEA that can fully make use
of the orthogonal Latin square and color image. The
LSM-CIEA mainly contains the point-to-point permu-
tation and plane-cross-plane diffusion that can directly
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process the image pixels of three color planes of an
color image. Simulation results show that the devel-
oped LSM-CIEA can encrypt different color images
to be unrecognizable cipher-images. Security analysis
shows its high level of security and better performance
than some state-of-the-art encryption algorithms. Since
this algorithm can achieve a high performance in color
image, we will explore its future application in video
encryption or medical image encryption.
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