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Abstract The present paper develops an enhanced
response sensitivity approach for parameter identifi-
cation of nonlinear time-delay systems from the time-
domain data. Accurate and rapid identification of the
time-delay system’s parameters is the key to achieve
effective control and synchronization, especially for
the delay parameters. The work of this paper is mainly
threefold. Firstly, taking a general nonlinear time-delay
system as the investigated object, the characteristics of
the nonlinear time-delay system are introduced, and the
response sensitivity analysis with respect to the system
parameters is derived. Then, the problem of parameter
identification is modeled as a nonlinear least-squares
optimization function. To this end, a novel iteration-
based approach is developed to solve such problem,
and the ill-posed situation is tackled by Tikhonov regu-
larization. Besides, the trust-region constraint is imple-
mented to enhance the convergence of the algorithm.
Finally, the feasibility of the proposed approach is ver-
ified by two numerical examples and a real electronic
circuit experiment. The results proved that the proposed
approach can identify parameters of nonlinear time-
delay systems accurately, robustly and effectively.
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1 Introduction

Time-delay phenomenon often appears in engineering
systems, such as mechanics [1], circuits [2], optics [3],
biology [4], medicine [5], and so on [6-9]. In these sys-
tems, due to the existence of time-delay, the mechanical
behavior of the system is determined not only by the
current state, but also by the system’s state in the past
time. The introduction of time-delay usually leads to
destabilization and more complex dynamic behavior.
At the same time, the parameters related to time-delay
are unknown in most systems. In addition, in order to
realize the control and synchronization of nonlinear
time-delay systems, we usually need to know the exact
values of the system’s parameters (especially the delay
parameter) rather than the design values [10]. There-
fore, identifying the parameters of nonlinear time-delay
systems accurately and quickly is an essential prepara-
tory step for applying these systems. However, due to
some inherent characteristics of nonlinear time-delay
systems, it is still a demanding task to identify their
parameters.

Generally, the identification of nonlinear time-
delay system parameters from measured response data
belongs to an inverse problem. The inverse problem is
formulated as an optimization problem whose objective
function is commonly defined as the weighted least-
squares of the error between the measured response
data and calculated response data [11]. Methods for
such optimization problems can be broadly divided into
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two categories: meta-heuristic algorithms and gradient-
based methods. The meta-heuristic algorithms such as
genetic algorithm [12] , artificial bee colony algorithm
[13], particle swarm optimization algorithm [14] and
chaotic ant swarm algorithm [15] have been widely
used in parameter identification of time-delay systems.
Such meta-heuristic algorithms have the advantage that
strong capability in global searching and good robust-
ness, and they do not require the system to have strict
continuity and differentiability. However, due to its ran-
dom search characteristics, meta-heuristics algorithms
usually have redundant iterations, and the calculation
process is very time-consuming, and even different
results may be obtained by each calculation.

In contrast, the gradient-based methods such as
Newton’s method [16] and sensitivity method [17]
usually have faster convergence rate. Among these
gradient-based methods, the sensitivity-based method
in either frequency or time domain is the most com-
monly used. However, due to the complexity of sensi-
tivity analysis, it is challenging work to identify the
parameters of nonlinear time-delay systems by the
sensitivity-based methods. Recently, a response sen-
sitive framework based on time-domain data was pro-
posed by Lu et al. [18], and it has been extended to
parameter estimation of many systems by Lu and his
collaborators. Furthermore, Lu et al. [19] enhanced the
response sensitivity method by introducing the trust
region constraint, and used this method to detect the
damage of building structures. Moreover, this method
has already been proved to be weakly convergent. Sub-
sequently, the enhanced response sensitivity approach
(ERSA) has been successfully applied to the parameter
identification of chaotic systems [20], fractional-order
systems [21,22].

In addition to the time-domain method, the
frequency-domain method based on the frequency
response function can also identify the parameters of
time-delay systems [23,24]. Liu et al. [25] proposed a
fast parameter identification approach for time-delay
system from frequency-domain data. Although this
rapid frequency-domain approach is effective, itis only
applicable for linear time-delay systems. For nonlin-
ear time-delay system, Zhang and Xu [26] investigated
a harmonic balance-based method to identify param-
eters by using noise-free measurement data. To fur-
ther deal with the distortion in the output measurement
data, Zhang et al. [27] proposed an identification algo-
rithm based on the harmonic coefficient increment of
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periodic response, and the parameters were identified
and the distortion calculation was corrected. With that,
Zhang et al. [28] developed a complete architecture
of the adaptive-noise-correction integrated parameter
identification method from the periodic responses.

Moreover, compared with the frequency-domain
method, only a small amount of frequency-domain data
can be obtained even if a lot of sensors are arranged.
The time-domain data are usually easier to obtain in
practical engineering, and even only one sensor can
obtain enough time-domain data. In this paper, a unified
framework is proposed to identify the parameters of
nonlinear time-delay systems through sensitivity anal-
ysis. The measurement data type of this method can be
arbitrary single or combined time-domain data, which
not only has weak convergence, but also can be applied
to general linear or nonlinear time-delay systems.

The rest of the paper is organized as follows: In Sect.
2, a general model of the nonlinear time-delay system
is established, and the sensitivity analysis with respect
to the corresponding parameters is derived. In Sect. 3,
the ERSA and specific procedures are introduced. The
performance of the proposed approach is evaluated in
Sect. 4 by two numerical examples: a van der Pol-
Duffing system with multiple time-delay feedback, a
multi-degree-of-freedom energy harvesting (EH) time-
delay system, respectively. In Sect. 5, a Mackey-Glass
experimental test is investigated in to verify the perfor-
mance of the proposed approach, and the conclusions
are drawn in Sect. 6.

2 Problem statement

First of all, some characteristics of nonlinear time-delay
systems are listed as follows:

— Because the system contains both nonlinearity and
delay, even the delay systems with low degrees-
of-freedom (DOF) will exhibit complex dynamic
behaviors such as periodic, aperiodic or chaotic
responses.

— Nonlinear time-delay systems can be described
by a delay differential equation (DDE): x =
f(x(t), x(t — 1)), which has some properties that
ordinary differential equations do not have. Due to
the delay effect, the behavior of the system after
t > ty is related not only to the current state x (#()
but also to the state in [fg — T, fp].
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— The characteristic equation of the time-delay sys-
tem is a transcendental equation, which has infinite
eigenvalues, and the solution space is also infinite
dimension.

— The slight delay effect of the system can be some-
times ignored in actual project. With = = 0, the
nonlinear time-delay equation degenerates into an
ordinary differential equation. However, some spe-
cial phenomena can only be reasonably explained
when the delay effect is considered.

A general form of nonlinear time delay system with
n-DOF is considered:

LE xx,t, T)+ 4 (%, x,x,0,T)=Z(T'), t>0
x(t) = x9,%(t) =X9, t<0

(1

where &, .4 and .% are the linear, nonlinear and

external excitation part of the system, respectively.
The linear operator .’ and the nonlinear operator .4
may contain the displacement x, velocity x or accel-
eration ¥, and may also contain the delay term. x =
[x1,x2, ..., x,]7 is the displacement vector, ¥ and ¥
correspond to the velocity and acceleration vectors,
where the dots over the variable represents the differ-
ential with respect to the time ¢. And x( and x( are
the initial displacement and velocity conditions of the
system. T, T” and T” are defined as delay parameter
vectors of linear part, nonlinear part and external exci-
tation part, respectively, and they have the following
form:

T
T =[t1,72,..., 7l
T =[¢], %5 ..., 701" 2
T =[z],t),....t/1"

For delay differential systems, even linear systems
are difficult to obtain their analytical solutions. The
response of the time-delay system is usually obtained
by numerical methods, such as linear multistep method,
Runge—Kutta (RK) method, collocation method [29],
and so on. The numerical responses of this paper
are obtained by solving delay differential systems by
”dde23” function in MATLAB.

2.1 The sensitivity analysis in time-domain

The unknown parameter of nonlinear time-delay sys-
tem is marked as @ = [ay, a2, ..., ap], which can be

any system parameter in linear operator ., the non-
linear operator .#” and external excitation .7, or delay
parameter in T, T” and T”. The response sensitivity to
the unknown parameters of the nonlinear time-delay
system can be obtained as follows:
aiea...a—x,a—x,a—x, i=1,2,...,p 3)
8a,~ 8611 361,’

It should be noted that the response x (¢) is an implicit
function with respect to the unknown parameters, i.e.,
x(a, t). The similar situation is also applicable to the
time-delay term x(t — 7;) = x(a,t — 1), (1; €
{T, T, T"}.

For the response sensitivity analysis with respect
to the unknown parameters a; € a (except the delay
parameters 7), taking the differential on both sides of
the equation (1),

g(ax 9% ox t,'ﬂ‘)—i—g/i/(a"" 9% ox t’r]r/)

da;* da;° da;’ da;* da;’ da;’
07 (t,'ll'”) 7 (if,.x':,x,t,']l')
- da; - da; 4
D (T @)
- 8ai
dxg __ axXp __
da; ~— 7 0da; =0

The response sensitivity analysis of time-delay param-
eters 7; € {T, T', T} is in the another form, for exam-
ple, as for 7; € T, assuming the time-delay parameter
appears in displacement vector, i.e., x (t — 7;), there is
dx( — ;) _0x(t — 1))
dT. j N ad T;
. aT

D; = diag <E> o)
where D is a diagonal matrix with diagonal elements
given by g—?j. So the sensitivity equation with respect

—Dx(t —1));

to 7; € T can be obtained as follows:

g(al’ al dx(t — T'/),t) +J/<§’ E’ Bix’t,qr/>
at; 0t aT; dt; dt; 0t
0.7 (1, 1" . .
- % +. 2%, %, Djx@t —1)),1),
K 6)
. oT
D; = diag (—)
(3‘17]'
dxy o 0 _
3'L’j 01’]'

Of course, the time-delay parameters can also appear in
the nonlinear part .4 or external excitation .%, and the
system may also contain the velocity delay x(r — ;)
or acceleration delay X (f — 7). The relevant sensitivity
equations are also obtained in the above way. Moreover,
Egs. (6) and (4) belong to similar delay differential
equations, so Eq. (6) can also be solved by ‘dde23’
function.
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3 Identifying the unknown parameters from the
time-domain data

Next, we propose a unified framework to identify/
recover parameters of the time-delay system from the
measured time-domain data. In real engineering, the
time-domain data obtained by various sensors can be
the displacement, velocity or acceleration data of the
system, which are usually distributed on a series of time
nodesO0 =1 <t <th <--- <ty =T,as follows:

Y EHOEICRNEACYIE
R = | [ic(t). X (t2), - .. Xic(tm)]" (7
(X1 (1), X1 (82), - . . Xy (t)]T

where the hat over symbol indicates that the variable
is measurement data, X ; represents the measured dis-
placement of the j-th DOF, and X and % correspond
to the measured velocity data of the k-th DOF and the
acceleration data of the /-th DOF, respectively. Corre-
spondingly, the numerical response of Eq. (1) obtained
by numerical method can be expressed as:

[xj(t1, @), x;(t2, @), ..., X;(tn, a)]"
R(a) = [).Ck(tlva)axk(t%a)»-~-’).Ck(tm,a)]T (8)
[.56[([], a)a jél(IZa a)’ L} xl(tma a)]T

Obviously, the calculated response R(a) is an
implicit function of time # and unknown parameters a.
Up to now, identifying/recovering the unknown param-
eters @ = [ay, ay, ..., ap] of the time-delay system
from the measured data can be expressed as: for sys-
tem (1), find a set of parameters a so that the residual
error between the calculated numerical response R(a)
and the measured time-domain data R is the minimum.
Such a parameter identification/estimation problem can
be formulated as a nonlinear minimum least-squares
optimization problem,

a* = argmin{#(a) = R — R(@)y} ©)

where ¢ (a) is the nonlinear minimum least-squares
objective function, and all parameters a are optimized
in the feasible region A. |()lw = +/ ()TW() rep-
resents the £2-norm of a positive defined weighting
matrix W. The weight matrix W plays an important
role in problem (9). A good weight matrix can improve
the accuracy of identification, and may accelerate the
convergence process. Lu et al. [30] have proved that
the reciprocal of the covariance of measurement data
error is the optimal weight matrix. This paper will also
discuss the influence of the weight matrix on the param-
eter identification of the time-delay system. When the
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weight matrix is selected as the identity matrix (1), it
means that the weight matrix is not considered.

For the nonlinear optimization problem like Eq. (9),
it can be solved by iterative method, that is, given an
initial value a©, it can be iterated in the following
form:

a® =a®b L 5a® k=123 .. (10)

until the nonlinear objective function ¢ (a) converges.
da is the iterative updating quantity. Therefore, the key
to the problem (9) is how to quickly determine a rea-
sonable iteration update da according to the current
parameter a in each iteration. A feasible way is to lin-
earize the nonlinear objective function ¢ (a + §a) near
the current parameter a to obtain the approximate linear
objective function G (8a, a), so that the original non-
linear optimization problem is approximated as a linear
problem as follows:

%A((Sa, a) =||6R(a) — S(&)SaH%V (11)

where SR (a) := R—R (a), S is the first-order response
sensitivity matrix of the response R(a), and it is in the
form of

xj(t)

xj(tm)
X (t1)
S@) =V,R@ =V, |
)'Ck(tm)
Xi(t1)

jél (tm)

ax;(ty) 9x;(ty) dx;(t1)
da; > day °° aap

8Xj (tm) 3)(_/' (tm) 3)(_/' (tm)

ba  dam  day
0xXg (1) 9xk(f1) 90Xk (1)
daj > dax " dap
= : (12)
axk (tm) axk (tm) 3Xk (tm)
daj > dap " dap
Xy (1) 9% (t1) 39X (11)
da; > dap "7 dap
85{1 (tm) 3)’(’] (tm) E”él (tm)
da; > dap "7 dap
0x;(tg) 0%k (tg) 0X(tq) o Vs
where a9 n.d o qg=1, 2, LM lo=
1,2,..., p) are the displacement sensitivity, veloc-

ity sensitivity and acceleration sensitivity, respectively,
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and can be obtained according to Egs. (4), (5). How-
ever, there is still a problem with the above approxi-
mate objective function {é(éa, a), such as ill-posed in
the iterative process. In this case, the Tikhonov regu-
larization can be further introduced to deal with such
ill-posed situation, and Eq. (12) is further transformed
into
da) = argmin||§R(a) — S([l)(SaII%V + )»||8a||2
da ( 1 3)
= [sT@Ws@) + /\I]*‘ST(a)WaR(a)
where A > 0 is named as the regularization parameter,
I is the identity matrix. Different regularization param-
eter will lead to different update da, and there is a com-
mon way to determine the appropriate regularization
parameter is the L-curve method [31,32]. The essence
of Tikhonov regularization is to balance the proportion
between the fitting residual ||§R (a) — S (a) Sa||® and
the update ||8a |?. The regularization parameter A deter-
mined by the L-curve method is registered as Ay (a).
Even so, the L-curve method only aims at approxi-
mate linear objective function G (8a, a) instead of orig-
inal nonlinear objective function ¢ (a), which makes
this method only suitable for weak nonlinear problems.
In order to determine more reasonable A and §a for
the strongly nonlinear time-delay systems, the trust-
region constraint is introduced. The iterative updating
quantity §a should be small enough to ensure g (ba, a)
agrees well with 4 (a +3Ja). The approximate degree of
7 (8a, a) and ¥ (a) can be measured by the following
agreement indicator

9@ -9 a+sa)

4(0,a) — 9 (5a, a)
_ IBR@)|3,—I5R@ + 8a) 3,
" IBR@ |3y —lIsR @) — S@3al

When the agreement indicator satisfies the following
conditions in each iteration,

¥ (8a, a) > V. €[0.25,0.75] (15)

The trust-region constraint enhances that the lin-
earized objective function is close enough to the orig-
inal nonlinear objective function. Furthermore, with
IST(@)WSR(a)||> # 0, there are
lim 9@a,a)=1> 9.
Iim |éa,| =0
A— 400

9 (Sa, @)

(14)

Equation (16) means that with regularization parameter
A large enough, the update ||da; || will be small enough

and the trust-region constraint (15) will always be sat-
isfied, that is, the approximate linear objective function
will become back into the original nonlinear objective
function again. This indicates that there is a critical
regularization parameter A, such that the agreement
condition is satisfied as long as A > A... Above all,
the response sensitivity approach with the trust-region
constraint can be named as the enhanced response sen-
sitivity approach (ERSA). Moreover, the algorithm is
proved to have weak convergence [19]

lim Va4 (@®, 1)) =0 17)

Finally, the algorithm procedure of the parameter iden-
tification of ERSA is outlined in Table 1.

4 Numerical examples

In this section, two numerical examples concerning a
van der Pol-Duffing (vdPD) system and an energy har-
vesting (EH) system are studied to verify the feasibility
and accuracy of the proposed approach. The measured
data are simulated by the numerical results with the
addition of the random noise in the following way:

R = Real + Nievel * Randn s std(Rea) (18)

where R is the measured quantity contaminated by ran-
dom noise, Req is the corresponding numerical data,
std(Rca1) means the standard deviation of Real, Nievel
denotes the measurement noise level, and Randn is
the random noise with the standard normal distribu-
tion. Furthermore, the relative error is introduced in the
following way to quantify the identification accuracy

id ex
a;” —a

Relative error = x 100% (19)

a;
where ;¢ is the identified value and a;%* corresponds
to the exact value. The parameters of the enhanced
response sensitivity approach in Table 1 are set as tol =
1071° 6 =+/2, 6, =0.5, Nmax =1000, Ntr =20.

4.1 van der Pol-Duffing system

The vdPD oscillator is one of the most extensively stud-
ied nonlinear systems with various engineering science
applications. It is composed of a Duffing system with a
cubic nonlinear restoring force term and a van der Pol
system with a nonlinear damping term. Due to the vdPD
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Table 1 The flow chart of the ERSA

1: Input: initial parameters ¢©), maximum iterations steps Nmax, maximum trust-region steps N1r,

error tolerance tol for convergence criterion.

2: Load the measurement data R, fix trust-region parameters ¥ € [0.25, 0.75] and the amplification factor o > 1

3:Fork =1: Nmax

4: Calculate the numerical response R(a(k*])) of the nonlinear time-delay system based on the

current parameters (a (k=1) ) R

5: Calculate the response sensitivity matrix S(a(k‘l)) according to Eqgs. (4) and (6), and calculate the

residual SR = R — R(a(kfb)’

6: Use L-curve method to get the regularization parameters A7 (a®~1),

7:Fori=1:Ntr

8: Fix the regularization parameters A = A (@*=Dygi=1 |

9: Calculate the update Sa according to (13), if (@*~1 + sa) ¢ A continue.

10: Calculate the new response R(a*~1 + 8a) and the new residual § R,y = R- R(a®*=V + sa),

11: Calculate the agreement indicator ¥ (da, a®=D) if 9 Sa,a®* D) > 9., break.

12: End for
13: Update the parameters a® = a%*~=D 4 sq ,
14:1f ||8al|/|a®]| < tol, break.
15: End for

system containing complex nonlinear characteristics, it
is a challenging task to estimate its parameters accu-
rately and quickly, especially when the system con-
tains time-delay feedback. Most of the existing work
is based on meta-heuristics algorithms, and there is no
time-delay in the system. For example, Quaranta et al.
[33] have used particle swarm algorithm and differen-
tial evolution algorithm to identify the vdPD oscilla-
tors; Gao et al. [34] identified the uncertain parameters
of the vdPD oscillators by a novel artificial bee colony
algorithm with differential evolution operators. Goha-
roodi et al. [35] have identified the parameters of a real
nonlinear Duffing oscillator by the alternating direc-
tion method. Different from the above work, this paper
focuses on the parameter identification of vdPD system
with time-delay.

A general form of vdPD system with the initial con-
ditions can be described by the following equation:

X4 (yx? — @)k + wix + x> = fcos(Qr), >

o * 20)
x(0) = x0, x(0) = xo

where y, a, wg and B are the control parameters of the
vdPD system, f and 2 are the parameters of the exter-
nal excitation, x(0) and x(0) are the initial displace-
ment and velocity, respectively. The closed-loop vdPD
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system can be obtained by adding the time-delay feed-
back to the original equation, and there is [36]

P+ xt—a)i+ ng + B3
= fcos(Q) + Ax(t — 7)) + BX(t — ), >0 (21)
x(t) = xp, x(t) =x9, t<0

where 71 and 1, are the delay parameters, and A, B
are the corresponding feedback gains. The time-delay
is named the negative feedback with A, B < 0 and
positive feedback with A, B > 0. System (21) will
reduce to system (20) with 7y = 0 and 7 = 0. For sub-
sequent analysis, the system’s parameters are fixed at
y=02,0a =02,00=05,=03,A=0.3,B =
0.2, 71 = 0.5, 7o = 0.8, suppose the unknown param-
eters are a = (y, o, wy, B, A, B, 11, 72), so there is
a = (0.2,0.2,0.5,0.3,0.3,0.2,0.5, 0.8). The other
parameters are fixed at f = 1, 2 = 0.3. In order to
verify the performance of the proposed approach, six
cases named Case I-VI were selected to evaluate the
effects of using different measurement data, different
noise levels and different initial values. As shown in
Table 2, the identification results of cases I-VI are pre-
sented in Table 3, where ‘Iter # represents the number
of iterations.
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Table 2 Parameter

identification cases for Case Initial parameters a© Measurement data Noise level e,
time-delay vdPD system I [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] i 0%
11 [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] X 2%
I [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] X 5%
v [0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4] X 5%
v [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] X 5%
VI [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] x, % 2%,5%
Table 3 Identification results and relative errors (% in brackets) of time-delay vdPD system
vdP system y o wo B A B 7] 153 Tter #
Exact values 0.2 0.2 0.5 0.3 0.3 0.2 0.5 0.8 /
Case 1 0.2001 0.1978 0.4902 0.3001 0.2903 0.2001 0.5090 0.7998 31
(0.037) (—=1.125)  (—-1.952) (0.021) (=3.216)  (0.026) (1.809) (—0.026)
Case II 0.1994 0.1987 0.4897 0.2996 0.2907 0.1998 0.5102 0.7995 50
(—0.288)  (—0.665)  (—2.060) (—=0.139)  (=3.095) (—0.101)  (2.304) (—0.068)
Case III 0.1983 0.2049 0.5102 0.2988 0.3096 0.1993 0.5063 0.7995 32
(—0.855)  (2.432) (2.039) (—0.404)  (3.203) (—=0.334)  (1.260) (—0.067)
Case IV 0.1983 0.2048 0.5103 0.2988 0.3097 0.1993 0.5059 0.7995 9
(—0.863)  (2.413) (2.065) (—0.399)  (3.249) (=0.329)  (1.177) (—0.066)
Case V 0.1867 0.1811 0.5905 0.3083 0.3963 0.2086 0.3060 0.7918 23
(—6.664)  (—9.443)  (18.107) (2.753) (32.099) (4.323) (=38.797)  (—1.026)
Case VI 0.1997 0.2036 0.5002 0.2992 0.2999 0.1994 0.5201 0.7996 30
(—0.143)  (1.780) (0.035) (—=0.277)  (—0.041)  (—0.292)  (4.024) (—0.047)

The displacement and acceleration response are
depicted in Fig. 1, which are obtained from numerical
simulation during 30s with a sampling rate of 100Hz.
Figure la displays the measured data without noise,
and measured data with 5% noise level are shown in
Fig. 1b. The response sensitivity with respect to a can
be calculated according to Egs. (4) and (5), and it is
depicted in Fig. 2.

Firstly, as shown in Table 3, different noise levels are
considered in cases I-III. Three cases have the same ini-
tialparameters,a(o) =[0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5]. Noiseless response data were used for identifica-
tion in Case I. In cases I-III, all parameters are well
identified and parameter A has the highest relative error.
Meanwhile, the maximum relative error of cases II and
IITis only 3.095% and 3.203%, respectively. The results
show that the identification approach proposed in this
paper seems insensitive to measurement noise. Even at
the noise level of 5%, the relative error does not exceed
3.3% and identified results are quite gratifying.

Secondly, the effect of initial values on the iden-
tification is also investigated. The initial values of the
unknown parameter are altered to a © = [0.4,0.4,0.4,
0.4,0.4,0.4,0.4,0.4] in case 1V, and the acceleration
response with 5% random noise is still selected as the
measurement data. As can be seen from Table 3, case
IV has almost the same identification accuracy as case
IIT and has less iteration steps. This indicates that the
proposed approach is insensitive to the choice of the
initial values.

Thirdly, different types of measurement data have
been taken into account. Different from cases -1V, the
displacement response of the system is chosen as the
measurement data in case V, which also contains 5%
random noise, and the initial values are consistent with
case III. It can be found from the results in Table 3 that
although case V can also get the identification results,
the accuracy is much lower than that of case III. More
specifically, in case V 11 has a maximum relative error
of 38.797%, but in case III the maximum relative error
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Fig. 1 The response of time-delay vdPD system: a without noise and b with noise
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Fig. 2 The sensitivity response with respect to a of time-delay vdPD system: a displacement and b acceleration

is only 3.203%. This further shows that acceleration
data has better anti-noise performance than displace-
ment data. For case VI, the hybrid data are selected as
the measurement data. Generally, more data can lead to
a better result. The identification results of most param-
eters in case VI are better than those in case III, expect
for 7;. The maximum relative error is 4.024% in ;.
Although the amount of the measurement data in case
VI is more than that in case III, the number of itera-
tions is of the same level. Such results prove that the
proposed approach has good robustness for parameter
identification of time-delay vdPD systems.

@ Springer

Finally, all iterations in cases I-VI are less than 50
steps. In order to observe the convergence procedure
more intuitively, the evolution of identification param-
eters in cases [-VI are plotted in Fig. 3. It can be seen
that all parameters converge very quickly, which further
indicates that the proposed approach has good conver-
gence. The final identification results of all cases are
exhibited in Fig. 4.
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Fig.3 Evolution of the parameters during iterations (cases [-VI)
of time-delay vdPD system
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32030 3095%
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Fig.4 The final identification results of cases I-VI of time-delay
vdPD system

4.2 Energy harvesting system

Next, we consider an energy harvesting system with
displacement delay. Vibration energy as the object of
energy harvesting has broad development potential.
Various forms of EH systems have been investigated
to obtain energy from the vibration systems. Even in
some applications, EH systems are also used in place of
conventional shock absorbers [37]. The most common
transducers are either types of piezoelectric or elec-
tromagnetic [38—40]. Moreover, recent studies have
shown that quasi-periodic vibration can have a benefi-

cial effect on the performance of time-delay EH system
[41]. By the way, the evidence shows that the time-
delay can enhance the performance of energy harvest-
ing for Duffing-type nonlinear attachment [42].

As shown in Fig. 5, the EH device consists of an
excited Duffing oscillator which is coupled with the
circuit through piezoelectric ceramic layers. Such EH
system can be described by a second-order and a first-
order ordinary differential equation [43]

jc'+6)'c+a)(2)x+yx3—xv
=ax(t —1)+ fcos(Q2), t>0

v+ pv+kx =0

x@)=1v@#)=0,%1)=0,0¢)=0, t<0

(22)

Further, Eq. (22) can be rewritten as state-space
form:

X 0o 1 0 X
¥l=|-0} -8 x x
D) 0 —«k —pB v

0 (23)
+ —yx3+ozx(t—t)+fcos($2t) , t>0

0
x@®)=1v(@)=0,x()=0,0)=0, t<0

where x is the displacement of the mass m, the dot over
the variables represents the derivative with respect to
the time ¢, § is the damping ratio, wy is the linear fre-
quency, y is the nonlinear stiffness, x is the piezoelec-
tric coupling coefficient, v is the voltage at the resis-
tance, S is the piezoelectric coefficient,  is the damp-
ing ratio of piezoelectric ceramic layers, T and « are
the time-delay parameter and the corresponding feed-
back gain, respectively. f and €2 are the amplitude and
frequency of the external excitation, respectively. The

feos(Q)

Piezoceramic
layers

v(t)

Nonlinear
restoring force

Fig. 5 Sketch of the EH system
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above parameters are fixed at § = 0.1, w9 = 1,y =
0.25,x = 0.05,¢ =02, f =02,8 = 0.05,« =
0.5, T = 4.8, Q = 1.25. Further, suppose the unknown
parameters are a = (8, wo, ¥, X, &, f, B, Kk, T),s0a =
(0.1, 1,0.25, 0.05,0.2, 0.2, 0.05, 0.5, 4.8).

The numerical response is also obtained by the
‘dde23’ function in MATLAB, and the measured data
are simulated according to Eq. (18) during the time
T = [0s,30s] with a sampling rate of 100 Hz. Six
cases named as Case I*-VI* listed in Table 4, are
taken into account to evaluate the feasibility of the
proposed approach for time-delay EH system. The
identification results of all caves also are summa-
rized in Table 5. The displacement of x and v with-
out noise and with 5% random noise is depicted in
Fig. 6. The sensitivity response with respect to the
unknown parameters also can be calculated by Eq. (4)
in each iteration. As shown in Fig. 7, it is the dis-
placement sensitivity response of the EH system with
a = (0.1,1,0.25,0.05,0.2,0.2,0.05, 0.5, 4.8).

Firstly, different types of measurement data with-
out noise are considered in cases [*-II*, as depicted in
Fig. 6a. The measurement data of case [* only contain
the voltage at the resistance v, while case IT* contains
both x. It can be seen from the identification results in
Table 5 that both cases have obtained accurate param-
eters. Case I* shows that for time-delay EH system,
even if only voltage data, the unknown parameters can
be accurately identified, which is obviously of great sig-
nificance for practical engineering. Because the voltage
data can be obtained only through the voltage measur-
ing device inside the circuit, but the displacement data
of mass m usually need additional laser rangefinder.
However, since the amount of measurement data con-
tained in case IT* is twice as much as that of the case
I*, case IT* has fewer iteration steps.

The measurement data x with 3% noise, v with
5% noise are used for identification in case IIT*.
Cases I*—III* keep the same initial values a® =
[0.4,0.4,0.4,0.4,0.4,0.4,0.4, 0.4, 4], and then iden-

Table 4 Parameter

identification cases for EH Case Initial parameters a® Measurement data  Noise level e,  Weight matrix
system I [0.4,0.4,0.4,0.4,0.4,0.4,04,044] v 0% I
r* [0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.44] x,v 0%, 0% 1
ik [0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.44] x,v 3%, 5% 1
v+ 10.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,5] x,v 3%, 5% 1
(fl Zir?‘f;(ﬁ)iﬁntinfytr}?atrix V¥ [0.5,0.5,0.5,0.5,0.50.5,0.5,055] x,v 3%, 5% wopt
2pdmal Weigliamztrii VI*  [0.5.0.5,0.5.0.505,0.50.5055] x,v 10%, 10% wopt
Table 5 Identified results and relative errors (% in brackets) of EH system
EH system ) wo y X o f B K T Iter #
Exact values 0.1 1 0.25 0.05 0.2 0.2 0.05 0.5 4.8 /
Case I* 0.1000  0.9999 0.2501 0.0504 0.1999 0.2000 0.0500  0.5001  4.7999 93
(0.001) (=0.010) (0.029)  (0.765)  (=0.011) (0.002)  (0.021) (0.017) (—0.001)
Case IT* 0.1003 1.0002 0.2499 0.0495 0.2002 0.2002 0.0500  0.5000  4.7989 57
(0279) (0.017)  (=0.022) (—1.070) (0.087)  (0.094)  (0.008) (0.001) (—0.022)
Case IIT* 0.1006  1.0005 0.2510 0.0464 0.2016 0.1996 0.0502  0.5001  4.7982 50
(0.629) (0.049)  (0.392)  (—=7.119) (0.814)  (=0.197) (0.302) (0.024) (—0.037)
Case [V* 0.1006  1.0005 0.2510 0.0465 0.2016 0.1996 0.0502  0.5001  4.7983 64
(0.613) (0.048)  (0.394)  (=7.053) (0.808)  (—0.203) (0.302) (0.024) (—0.036)
Case V* 0.1006  1.0004 0.2507 0.0470 0.2012 0.1998 0.0501  0.5001  4.7982 101
(0.607) (0.046)  (0.278)  (—=5.968) (0.621)  (—0.091) (0.288) (0.023) (—0.038)
Case VI* 0.1010  1.0008 0.2508 0.0453 0.2014 0.2000 0.0503  0.5002 4.7972 66
(0.954) (0.081) (0.317) (—9.427)  (0.688) (0.002) (0.533) (0.041) (—0.059)
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Fig. 6 The displacements of EH system: a without noise and b with random noise
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Fig. 7 The displacement sensitivity response with respect to a of EH system

tification results were well obtained and the maximum
relative errors are 0.765%, 1.070% and 7.119% in y,
respectively. This indicates that although the measure-
ment noise will reduce the accuracy of the identified
results, the proposed approach can obtain the usable
results from the noisy data.

Similar to previous vdPD system, we will also dis-
cuss the influence of different initial values on identifi-
cation. The initial values of the parameters are changed
into a® = [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5, 5] in
case IV*. It is seen that the maximum relative error
arising at x is 7.053%, so for case IV*, the maximum

relative error and the number of iteration steps are at
the same level as case III*. These two initial parame-
ters can lead to convergent and satisfactory results. This
shows that the ERSA has good convergence even for
relatively complex systems.

Next, we will focus on the influence of the weight
matrix on the parameter identification of the time-delay
EH system. As described in Sect. 3, a good weight
matrix can lead to better identification accuracy. In case
V*, the initial parameter and noise level are set as the
same with those in case IV*. And the optimal weight
matrix WPt is chosen as the reciprocal of the covari-
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ance of measurement data error. From Table 5 we can
find that the maximum relative error x is reduced form
7.053% to 5.968%. This is because the optimal weight
matrix selected in this paper can make the measurement
data with higher noise level occupy a smaller weight in
the identification process. In case VI*, when the mea-
surement noise level reaches 10% in x and v, the maxi-
mum relative error arrives at x is 9.427%. Nevertheless,
the absolute error of x is merely 0.0047. The robust-
ness of the proposed method has been verified by this
case. Finally, the evolution of the parameters during
the iterations of the time-delay EH system is plotted
in Fig. 8. The identification results begin to converge
after about 40 steps. Indeed, the identification results
show that the approach can converge fast and achieve
high accuracy. Figure 9 presents the relative errors of
the identification results for these six cases.

5 Experimental verification

In this section, the Mackey-Glass time-delay system
was investigated to verify the effectiveness of the pro-
posed approach by the numerical simulation and circuit
experiments. In 1977, the Mackey-Glass system was
first proposed by Mackey and Glass to illustrate the
dynamics diseases in the physiological system (respira-
tory and hematopoietic diseases) [44]. For some phys-
iological diseases, the physiological variables are usu-
ally closely related to medicine intake. However, due to

6WU'YXafﬁK“T

Logarithmic relative error

Iteration No.

40 v+ Case V* Case VI*

Case I
Case IIT*
Case II*
Case [*

Fig. 8 Evolution of the parameters during iterations (cases [*—
VI*) of EH system
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Fig. 9 The final identification results of cases I*-VI* of EH
system

the lag of drug absorption in the physiological system,
the physiological system with relation to the environ-
mental changes is a typical nonlinear time-delay sys-
tem [45]. Over the years, the Mackey-Glass model has
been investigated frequently, and it has widely arisen
in hematology, cardiology, neurology and psychiatry
[46]. The Mackey-Glass system can be described by
the following nonlinear time-delay differential equa-
tion:
_ Bxt-1
14X —1)

x(t)=0.5, t<0
where B, y, n and 7 are the control parameters. Assumed
that these parameters are all unknown, ie., a =
(B, v, n, t),and the parameters are fixedat § = 2, y =
1,n =7, t = 2 in the simulations, soa = (2, 1,7, 2).
The numerical response is exhibited in Fig. 10 with the
sampling duration 150s, and the sampling frequency
100 Hz. The time histories without noise were shown
on the left, and the right was the phase diagram.

Besides, the Mackey-Glass model can also be imple-
mented by an electronic circuit. The main parts of the
electronic implementation are the following: two pas-
sive elements, Resistance (R) and Capacitance (C); the
delay block, which produces a time offset between the
input and the output; and the nonlinear function F(v).
A schematic view of the electronic circuit is shown
in Fig.11, and a detailed description can be found in
[47,48]. The control parameters a of the experimental
circuit are setas 8 = 3.73, Yy = 1, n = 4. As shown in
Fig. 12 are the steady-state response curves of system

yx, v,B,n,t>0 24)
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Fig. 11 Circuit schematic of the nonlinear Mackey-Glass time-delay system [47]

(24) with different delay 7. It should be noted that in
the real experiment, it is difficult to measure the initial
transient response data, and usually only the steady-
state response of the system can be measured. There-
fore, the measured steady-state response data will be
directly used in this experimental example. It can be
seen from the figure that whether 7 = 5 (Fig. 12a) or
t = 7 (Fig. 12b), the experimental results of electronic
circuits and the numerical results show a great deal of
concordance. It can be further found that the period of
the system increases with the increase in the time-delay
7. However, the analytical curves do not completely
coincide with the experimental curves at the peak. This
may be due to the measurement error of the experiment.

Different types of measured data and initial param-
eters of simulated and experimental cases are listed in
Table 6. The expressions of the response sensitivity 37’“1
with respect to the parameters are obtained as below:

3% B+ —n)xt) ax, ax Xr

8- ey ap Vo T+af

9% _ﬁ(1+(1 —n)x!) dx, 9x
e L
ax ,B(l—i—(l—n—xflogloxr)x;’) 0x; dx

on 1+ x1)? o Von

ax B+ —nx}) (ox: ax

3t (1+am)2 (81’ _XI) Vo

where x (¢t — 7) is abbreviated as x;. The response sen-
sitivity in time-domain can be calculated according to
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Fig. 12 The numerical (black lines) and experimental (red dotted lines) displacement response. a t = 5, b t = 7 [47]

Table 6 Parameter
identification cases of the

Case Exact parameters a Initial parameters a(®’. Measurement data Noise level e, Weight matrix

nonlinear Mackey-Glass

: I [2,1,7,2] [3.3.3.3] x, % 0%, 0% I
time-delay system
I+ [2,1,7,2] [3,3.3,3] x, X 3%, 5% weopt
(1) means identify matrix 1r=* [3.73,1,4,5] [3;1.5;4.5;4.5] x experimental [
t
anq (Wop ).means th.e IV#* [3.73,1,4,7] [3:1.5:4.5;7.5] X experimental [
optimal weight matrix
Table 7 Identified
parameters and relative Mackey-Glass system B y n T Iter #
errors (% in brackets) of the Case T+ 1.9998 0.9999 7.0005  1.9999 41
nonlinear Mackey-Glass
time-delay system (—0.009) (—0.009) (0.007) (—0.002)
Case IT** 2.0006 1.0003 7.0027 2.0002 41
(0.029) (0.027) (0.039) 0.011)
Case IIT*#* 3.6081 0.9513 4.0348 4.9641 10
(—3.268) (—4.867) (0.870) (=0.717)
Case [V** 3.6087 0.9583 4.0328 6.9710 37
(—3.253) (—4.172) (0.819) (—0.414)

Eq. (24) and (25). The identified results and the rela-
tive errors of this system were obtained by ERSA, and
they are shown in Table 7. Moreover, Fig. 13 shows the
identification process of all cases, and the final identi-
fication results are summarily exhibited in Fig. 14.
Firstly, case I** and case II** were the numer-
ical cases with the same initial parameters a© =
[3, 3, 3,3]. Two cases are intended to consider the
effect of the measurement noise. The case [** has the

@ Springer

accurate identified results and its relative errors almost
equal to 0. The measured data in case II** are x with
3% noise, x with 5% noise, and the optimal weight
matrix WP are taken for this case because WPt gives
superior identification results in the previous example.
Obviously, the unknown parameters are also precisely
identified from the noisy time-domain data. In case
I**, parameters B and n have a lager relative error
of 0.009%, and the maximum relative error of case
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Fig.13 Evolution of the parameters during iterations (cases I*#—
IV##) of the nonlinear Mackey-Glass time-delay system
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Fig. 14 The final identification results of cases I**~IV** of the
nonlinear Mackey-Glass time-delay system

II** is 0.039% appearing in 8. The iteration converges
quicker, and the relative error is also slight. All identifi-
cations are all convergent in around 40 iterations which
indicates that the proposed approach is rather quickly
efficient.

There are different control parameters in the real
experimental circuit. Only response data x were mea-
sured to test whether it is compatible with parameter
identification. The real experimental parameters in case
III** are a = [3.73,1,4,5], while T = 7 in case
IV*#*_ In case IIT*, the identification procedure of the
parameters is rapidly identified within 10 iterations,
and the highest relative error is 4.867% in y, which is
much higher than the numerical cases. The difference

between the peak shown in Fig. 12 may cause this situa-
tion. The highest relative error 4.172% in the identified
results of case IV** appears in y, and the identification
process needs 37 iterations. Finally, we can find that
the ERSA can still identify the system parameters pre-
cisely even from the real noisy time-domain data, espe-
cially the delay parameter t and its coefficient 8. The
experimental cases proved that the proposed approach
is competent for nonlinear time-delay systems in engi-
neering.

6 Conclusions

In this paper, an enhanced response sensitivity approach
(ERSA) has been established to identify the parameters
of various nonlinear time-delay systems from the time-
domain data. Such a parameter identification problem
is modeled as a typical nonlinear least-square optimiza-
tion problem and solved iteratively by a gradient-based
method. For the further sensitivity analysis, we take a
general nonlinear time-delay system as an example to
derive the sensitivity equations of delay terms and other
parameters, and the ill-posed problems in the iterative
process also tackled by the Tikhonov regularization.
Furthermore, the trust-region constraint is proposed to
make the ERSA suitable for strongly nonlinear sys-
tems. Two numerical examples and an experimental
test are studied, and results conclude as

— The proposed approach can identify the parame-
ters of nonlinear time-delay system from the time-
domain response data accurately and rapidly.

— The proposed approach has a good anti-noise per-
formance, even if the measured data contain 10%
random noise, and it can also obtain good identifi-
cation results.

— The proposed approach is insensitive to the choice
of initial values.

— Numerical examples show that the hybrid data can
lead to a better identification, and the influence of
measurement noise can be reduced by the optimal
weight matrix.

— The experimental tests show that the proposed
approach can obtain satisfactory identification
results even with steady-state measurement data
with measurement errors, especially for the delay
terms and its coefficients.
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Thus, it is believed that the present ERSA will be a
reliable and efficient tool for parameter identification
of general nonlinear time-delay systems.
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