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Abstract The spatial partitioning problem of urban
traffic network sub-regions has beenmainly researched
in static mode by considering traffic conditions at a cer-
tain time. Nevertheless, traffic flow has strong dynamic
characteristics running in urban network; it is necessary
to divide the sub-regions according to the correlation
of traffic flow in spatiotemporal dimension. Dynamic
partitioning is of great significance for capturing the
evolutionof traffic sub-region anddesigning the periph-
eral control strategies in real time. In this paper, a large
heterogeneous traffic network is divided into several
uniform sub-regions by analyzing the temporal similar-
ity and spatial heterogeneity of the link characteristics
to reveal the evolution process of traffic flow. Firstly,
a similarity model is defined by the analysis of link
autocorrelation based onMoran’s I index, and the slow
coherency theory combining with α-Cut theory (called
α-SC) is implemented to establish the framework of
static partitioning. Secondly, a fine-tuning procedure
is designed to maintain the homogeneity and compact-
ness of the sub-regions. Finally, the links with high het-
erogeneity in the sub-regions are identified by heuristic
algorithm and then iteratively adjusted, merged and cut
to realize the dynamic updating of sub-regions. A case
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study using the real data set of Farmers Branch city is
conducted to verify the effectiveness of the proposed
method.
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1 Introduction

In urban networks, due to the complexity and unpre-
dictability of people’s travel routes, traffic congestion
increasingly grows inmost cities. The congestion needs
to be better managed through effective traffic control
strategies or other management measures. To reduce
the congestion from a network-wide point of view,
network-wide traffic modeling are needed to better
coordinate the traffic lights of intersections within the
urban networks. Thus, the aggregation level network
modeling of urban traffic has recently gained great
attention. Geroliminis and Daganzo [1] found that the
relationship between the traffic flow and occupancy of
a single detector data is highly discrete through real
traffic statistic data from Yokohama, Japan. However,
when all the detector data of the entire network are
aggregated, the relationship between the traffic flow
and occupancy is fitted into a curve with a small dis-
persion, so the concept of macroscopic fundamental
diagram (MFD) reflecting the state of network traffic
flow is proposed. The impacts of sudden traffic demand,
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signal controlmethods and resource allocation problem
on MFD have been investigated in [2–4].

Recent findings have shown that the spatial distri-
bution of traffic flow is one of the most significant fac-
tors affecting the shape of MFD [5–7]. Buisson et al.
[8] gave a conclusion that heterogeneity of traffic net-
works has a strong impact on the scatter and the shapeof
an MFD. This indicates that a well-defined MFD only
exists for a traffic network when the traffic flows are
homogeneously distributed in the network. This paper
focuses on dividing the heterogeneous urban traffic net-
work into multiple sub-regions with uniform density
distribution based on the similarity of traffic charac-
teristics between road segments, which provides the
premise for MFD-based peripheral control strategies.

There have been several researches on static parti-
tioning of urban traffic network sub-regions recently
[9–15]. For example, Ji and Geroliminis [13] proposed
a three-module continuous algorithm for traffic net-
work partitioning based on the normalized cut algo-
rithm (Ncut) [14]. Ji et al. [15] used the concept ofMax-
imum Connected Component (MCC) to describe the
heterogeneous network as several homogeneous sub-
regions, which visualized the evolution of congestion.
Normally, the traffic network is transformed into a road
graph for static partitioning [16]. Graph partitioning is
a well-studied subject in vast fields such as image seg-
mentation [14], community detection [17] and regional
growth [18]. Based on k-means algorithm, Anwar et
al. [19] treated the road network as a weighted graph
and proposed a k-way α-Cut space partitioningmethod
by applying spectral clustering theory which has good
performance in identifying homogeneous components.
However, the following issue of k-means is remaining
obvious that the selection of the initial clustering center
has a great influence of the cluster quality. It also can
be known that the solution based on spectral clustering
produces good results but reveals high computing com-
plexity [20]. The static partitioning model in this paper
can obtain uniform sub-regions with different satura-
tion levels by incorporating slow coherency theory into
spectral clustering. Slow coherency theory is a cluster-
ing algorithm that theoretically solves the problem of
identifying the weakest correlation between links in
complex networks [21], avoiding the influence of ini-
tial values on the clustering quality.

Due to different traffic volume, number of lanes,
signal timing at intersections, etc., the urban network
shows different heterogeneity at different time-stamps,

which brings challenges to the correlation measure-
ment between links or signal intersections. Research
shows that the traffic flow fluctuation time series
derived fromadjacent links has strongpower-lawcross-
correlation [22], so the challenge stimulates the use of
the concept of localMoran’s I index [23] and the spatial
autocorrelation. The local Moran’s I index quantifies
the linear correlation strength between a link and its
neighbors in the same space. This definition is applied
to the similaritymodel to indirectly implement the con-
nection constraints in this paper.

Although there are many literatures on the partition
of control sub-regions of urban road network, the parti-
tion of control sub-regions is mainly studied in a static
mode. The common static partition is only for the prob-
lem of road network partition at a certain moment. The
static partition at the previous moment is not necessar-
ily valid at the latter moment as the strong time-varying
characteristics of traffic flow, and the complete static
partitioning of each moment is considered as a com-
putationally intensive task. Since the traffic flow has
strong dynamic characteristics in urban road network,
it is necessary to divide the sub-regions according to the
correlation of the traffic flow in space and time dimen-
sions. The traffic network static partitioning research
was extended to thedynamicdomain in [24–27]. Saeed-
manesh et al. [24] developed two heuristic partitioning
algorithms utilizing the defined mixed integer linear
optimization model to find the traffic sub-regions with
uniform traffic level.

In recent years, some scholars have attempted to
use the switched piecewise affine systems modeling
approach to solve the partitioning problem of urban
road networks, which can approximate nonlinear sys-
tems with arbitrary accuracy and is based on partition-
ing the state space into finite polyhedral regions. In
[28], a new class of approximation models for switch-
ing nonlinearities was proposed to regulate the switch-
ing problems between nonlinear subsystems andwithin
each subsystem. In [29], the optimal hybrid control
problem for a regionalMFDnetworkwas formulated as
amixed integer nonlinear optimization problem, which
is reformulated as a mixed integer linear programming
problem using a piecewise affine approximation tech-
nique. Reference [30] investigated the stability and
calming problems of discrete switching systems under
an improved S-any switching strategy, completing the
design of a state feedback controller for the switching
system.
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This paper presents a comprehensive framework to
capture the evolution of traffic flow by updating the
sub-region utilizing static partitioning and dynamic
updating procedures. Among them, we first propose
two steps in the static partitioning, initial partition-
ing and fine tuning of the sub-region boundary. In
the dynamic partitioning model of dynamic updat-
ing procedures, the target links are only a few high-
heterogeneity links, which can improve the partition
efficiency of the road network. In the model, we firstly
utilize a top-down approach to achieve the static par-
titioning of sub-regions. Secondly, the links with large
variance in the sub-region at the previous moment are
taken as the decision objects at the next moment by
the heuristic method, and they are rearranged through
a dynamic updating procedure to minimize the het-
erogeneity of the sub-regions. During the spatiotem-
poral evolution of the sub-regions, spatial proximity
constraints are explicitly integrated into the dynamic
updating model, which can ensure great connectivity
between the links within the sub-regions.

The main contributions of this study include as fol-
lows:

• A Moran’s I index technique is utilized to mea-
sure the spatial autocorrelation statistic of links and
calculate the link similarity from a neighborhood
topology view.

• A Moran’s I index-based sub-region initial parti-
tioning algorithm (α-SC) is proposed to extract
homogeneous sub-regions from the traffic network.

• Based on theα-SC algorithm, aα-SC-FT algorithm
for enforcing the connectivity and uniformity of
sub-regions is proposed.

• A dynamic updating procedure is established by
using heuristics to effectively identify the sub-
regions with different levels of saturation degree.

The rest of the article is organized as follows: Sect. 2
introduces the concept of local Moran’s I index. In
Sect. 3, the Moran’s I index-based traffic sub-region
static partitioning algorithm (α-SC) is developed, and
the α-SC algorithm is extended to optimize the connec-
tivity of sub-regions by the fine tuning process (α-SC-
FT). The static partitioning framework is extended to
dynamic partitioning that tracks the evolution of traf-
fic flow in Sect. 4. Section 5 presents the case study
and experimental results. Finally, a conclusion and the
further research directions are given in Sect. 6.

2 Problem definition and local Moran’s I index

2.1 Mathematical representation of traffic network

To introduce the topological structure of the traffic net-
work, we utilize a mathematical representation of the
weighted undirected graph. Since the traffic condition
of link in the network can reflect the traffic state of the
network and could be easily detected, the focus of par-
titioning of traffic sub-region is on the link, not on the
signalized intersection. The actual network could be
converted to its dual form as illustrated in Fig. 1. The
link is modeled as a vertex while the edge represents
the intersection between two adjacent vertexes [31].

Given a traffic network consisting of n signal-
ized intersections connected by m undirected links, a
weighted undirected graph G = (V, ε,W ) is built in
which V = {v1, . . . , vm} is set of the vertexes (links).
Each vertex vi associates the degree of saturation vi .s
with itself. Any pair of vertexes

(
vi , v j

)
are spatially

adjacent if there exists at least one a common inter-
section, and the edge εi j is existed between vi and v j .
wi j ∈ W represents the weight value of εi j , which
is defined as the correlation of traffic characteristics
between vi and v j . In this paper, the research object

Fig. 1 Actual link map and dual graph
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aims at the traffic state of the entire link, so the direc-
tionality is ignored.

According to the graph theory, the mathematical
model of traffic networks proposed in this paper is
based on a weighted undirected graph which derives
from the topological relationships andweights of actual
road network. In fact, any actual road network can be
formulated as such a mathematical model. So, it is gen-
eral in nature and applicable to a same class of urban
traffic network.

2.2 Local Moran’s I Index

The Moran’s I index is an important measure of spatial
autocorrelation [32], and local univariate Moran statis-
tic quantifies the linear correlation strength between
a sample vertex and sample vertexes in the neighbor-
hood (spatial lag) [23]. Given a traffic network, the
time dimension can be integrated into univariate spatial
autocorrelation according to the time-varying charac-
teristics of traffic flow. Then, the spatiotemporal sam-
ple vertex (link) with time t and space number i can be
denoted as v(t,i). The univariate spatial autocorrelation
statistics T(t,i) and Wt(t,i) at v(t,i) is given by:

Wt(t,i) =
∑m

j=1 a(i, j) · T(t, j)
∑m

j=1 a(i, j)
(1)

T(t,i) =
(
s(t,i) − s̄(t)

)

√
∑m

i=1 (s(t,i)−s̄(t))
2

m−1

(2)

s̄(t) = 1

m

∑m

i=1
s(t,i) (3)

a(i, j) =
{
1, r

(
vi , v j

) = 1
0, r

(
vi , v j

)
> 1

(4)

where T(t,i), Wt(t,i) denote the weighted value of the
normalized attributes of the vertex v(t,i) and the nor-
malized attributes summation of all vertexes which are
neighbors to v(t,i) at time t , respectively. a(i, j) rep-
resents the adjacency relationship between v(t,i) and
v(t, j). r

(
vi , v j

)
denotes the length of the shortest path

between v(t,i) and v(t, j). If r
(
vi , v j

) = 1, a(i, j) is equal
to 1 or vice versa, as shown in Eq. (4). s(t,i), s̄(t) rep-
resent the saturation of v(t,i) and the mean saturation
of all sample vertexes in G at t . Here, the saturation is
defined as the ratio of the actual traffic flow on a link
to its saturation capacity.

Fig. 2 aMoran’s I scatter plot at 93 time-stamps; b contour map
of Moran’s I. (Color figure online)

A Moran’s I scatter plot in 93 time-stamps and the
corresponding contour map are depicted in Fig. 2. The
slope of the regression line could visualize the spatial
autocorrelation statistic with spatial lag (the average
characteristics of the samples in the adjacent position)
on the vertical axis and the standardized characteris-
tics on the horizontal axis (Fig. 2b). The quadrant to
which the scatter is mapped can identify the property
of spatial autocorrelation: two types of positive spatial
correlations (high–high and low–low aggregation) or
two types of negative spatial correlations (high–lowand
low–high heterogeneous). Aggregation and heteroge-
neous states, respectively, reflect the same and different
evolution law of links.

In Fig. 2b, various colored regions denote the auto-
correlation statistics for vertexes on different times.
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Fig. 3 Architecture of the proposed method Framework. (Color figure online)

When the link has the same average characteristics as
its neighborhood, the corresponding point will fall on
the standard line of the function y = x with a slope of 1
(red straight line). If there has a short vertical distance
between the point and the standard line, it indicates
that traffic properties of the link are similar to those in
the neighborhood. During n = 0–60 time intervals, the
dark blue and blue regions are relatively dispersed with
respect to the red line, and it can be deduced that there
is a strong heterogeneity in the traffic network. Rela-
tively, the heterogeneity of the network is small during
n = 61–93 time intervals.

3 Methodology for static partitioning

This section introduces themain steps of the static parti-
tioning of traffic sub-region based on Moran’s I index.
A clustering method is applied to the traffic network
partitioning, which can achieve the following goals:

• Identify the homogeneous sub-regions with high
correlation of link saturation degree and minimize
the cutting cost.

• The coverage of the sub-regions for the network
confined to 100%, and the overlap rate between the
sub-regions is 0%.

• Establish smooth boundaries for the sub-regions to
facilitate the perimeter control strategies.

In fact, the first and third goals are conflicting con-
straints that need to be considered simultaneously. The
approach of this multi-objective problem is to use
homogeneity as the main object and incorporate other
constraints. In the first step, a similarity model between
each pair of links is defined based on the spatial auto-
correlation property, with connectivity being consid-
ered as a constraint; Secondly, a mathematical parti-
tioning framework is implemented by combining the
slow coherency algorithm with α-Cut theory; Finally,
a fine tuning procedure of the sub-region boundary is
applied to rearrange the discrete links to the appropriate
sub-regions layer by layer, and two evaluation indexes
are introduced to judge the partition quality.

Figure 3 displays the proposed static partitioning
framework containing “Initial partitioning scheme”
and “Fine Tuning of cluster boundary”. In Fig. 3, traf-
fic network map shows the Farmers Branch urban road

123



916 F. Yan et al.

network containing n intersections and m links. Dual
graph represents the dual graph of the Farmers Branch
urban road network, and the establishment process is
as follows: firstly, all intersections are abstracted as a
node set V ′ , and all links are abstracted as an arc set S′,
and the attributesW ′ of arc are represented as distance,
capacity, speed, vehicle type information, etc. Thus,
the Farmers Branch road network can be abstracted
as a weighted undirected graph G ′ = (V ′, S′,W ′)
. Secondly, a dual graph G = (V, S,W ) for the
Farmers Branch road network is established, where
V = {v1, . . . , vm} is the link set, Si j is defined as the
intersection between link vi and link v j ; Wi j denotes
the weight of Si j , representing the correlation of traffic
characteristics between the link vi and link v j .

3.1 Spatial autocorrelation-based similarly model

Here, the saturation degree of link is taken as the char-
acteristics of the link,which is similar to the intensity of
the image. The similarity model St(i, j) was constructed
by calculating the increment Dt(i, j) of spatial autocor-
relation of traffic properties before and after the vertex
pair

{
vi , v j

}
fusion at time t , as shown in Eqs. (5)–

(12). The variable σ 2 is a constant with the range of
(0, 1], which is taken as 0.5 here. The parameters used
to describe the model are introduced in Table 1.

St(i, j) =
{
exp

(
− Dt(i, j)

2σ 2

)
, a(i, j) = 1

0 else
(5)

Equation (5) calculates the similarity matrix, which
is a quantitative representationof the similarity between
two links that have an adjacency relationship.

Dt(i, j) = || (T(t,Gu),Wt(t,Gu)

) − (
T(t,i),Wt(t, j)

) ||22+
|| (T(t,Gu),Wt(t,Gu)

) − (
T(t, j),Wt(t, j)

) ||22
(6)

Equation (6) expresses the difference in local corre-
lation before and after combining links vi and v j into
sub-regions Gu , and Dt (i, j) indicates the similarity of
links vi and v j .

Gu = {
vi , v j

}
(7)

Equation (7) represents the merging of links vi and
v j into sub-regions Gu .

Wt(t,Gu) =
∑m̂

z=1 a(Gu ,z) · T(z)
∑m̂

z=1 a(Gu ,z)

(8)

Table 1 Set of parameters for similarity model

Parameters Defination

Wt(t,Gu) Weighted value of standardized traffic
characteristics between Gu and its
neighbors after fusion at time t

T(t,Gu) Standardized characteristic value between
Gu and its neighbors after fusion at time t

m̂ Number of links in network G after fusion

s̄Gu(t) Mean value of the characteristics in Gu
after fusion at time t

s(t,Gu) Characteristic value of Gu after fusion at
time t

Nz Number of elements in set z

Equation (8) denotes theweighted value of standard-
ized traffic characteristics between Gu and its neigh-
bors after fusion at time t .

T(t,Gu) = s(t,Gu) − s̄Gu(t)√
∑m̂

z=1 (s(t,z)−s̄Gu (t))
2

m̂−1

(9)

Equation (9) calculates the standardized character-
istics value between Gu and its neighbors after fusion
at time t .

m̂ = m − 1 (10)

Equation (10) represents the number of links within
the control area after combining the links vi and v j into
sub-regions Gu at time t .

s̄Gu(t) =
∑m

z=1,z �=i, j s(t,z) + s(t,Gu)

m̂
(11)

Equation (11) calculates the mean value of the char-
acteristics in Gu after fusion at time t .

s(t,Gu) = 1

Nz

∑

z=i, j

s(t,z) (12)

Equation (12) represents the characteristic value of
Gu after fusion at time t .

The similarity model considers both the correla-
tion between the characteristics of the two links and
the increments of their characteristics with neighbors
after fusion. The small value of Dt(i, j) indicates that
there has a small increment in autocorrelation between
before and after

{
vi , v j

}
fusion, which further reflects

the high similarity between them.The range for St(i, j) is
(0, 1] . St(i, j) = 1 represents that the characteristics of
the two adjacent links are identical, and vice versa. The
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formula defined above contains the connectivity con-
straints. At time t , the weight matrix W = {

wt(i, j)
}
of

the network can be represented by the similarity matrix
S = {

St(i, j)
}
.

Remark 1 In this section, the Moran’s I index is firstly
used to calculate the spatial autocorrelation statistics of
the links and the link similarity from a neighborhood
topology perspective.

3.2 Theory of α-Cut

The prerequisite for achieving good partition per-
formance is to minimize the cutting cost of inter-
partition while maximizing intra-partition correlation
[14]. However, the two objects are naturally exclu-
sive to one another and there is no guarantee that both
objects can be optimized simultaneously. Here, the α-
Cut theory [19] aims to balance the inter-partition cut-
ting costs and intra-partition correlation. The objective
function minGα − Cut (G) is optimized by Eq. (13).

α − Cut (G) =
∑k

u=1

⎛

⎝αu ×
W

(
Gu , G̃u

)

|Gu | − (1 − αu)

× W (Gu ,Gu)

|Gu |

⎞

⎠

(13)

where k denotes the desired number of extracted
sub-regions. The range of parameter α is (0, 1]. A
small value of α − Cut (G) indicates the high degree
of balance among the several sub-regions. Since αu

expressed by Eq. (14) is closely related to the charac-
teristics of Gu , it is defined as the proportion of the
summation of its weight to the summation of all vertex
weights in G.

αu = W (Gu, V )

W (V, V )
=

W (Gu,Gu) + W
(
Gu, G̃u

)

W (V, V )

(14)

For a graphG = {G1, . . . ,Gu, . . . ,Gk}with k sub-
graphs, the intra-partition correlation Wt(Gu ,Gu) of the
u-th subgraph at t is defined as

Wt(Gu ,Gu) =
∑

vi∈Gu ,v j∈Gu

St(i, j) (15)

where Wt(Gu ,Gu) is the summation of similarity associ-
ated with all vertexes in Gu .

The inter-partition correlationW
t
(
Gu ,G̃u

) of the u-th

subgraph at t is defined as

W
t
(
Gu ,G̃u

)
=

∑

vi∈Gu ,v j /∈Gu

St(i, j) (16)

whereW
t
(
Gu ,G̃u

) is the summation of correlation asso-

ciatedwith all the vertexes at one end inGu and at other
end in subgraphs except Gu .

Theminimizationof theobjective function is obtained
by transforming eigenvalues and eigenvectors. Assum-
ing the graph network G is divided by k connected
subgraphs. Defining 1 ∈ Rm as a vector with each of
its element value is 1. cu denotes the index vector of
Gu . If vi ∈ Gu , cu (i) = 1, and cu (i) = 0 otherwise, as
shown in Eq. (17). The degreematrix at t is represented
by D, which could be given by Eqs. (18–19).

cu (i) =
{
1, vi ∈ Gu

0, vi /∈ Gu
(17)

D = diag {di } (18)

di =
∑m

j=1
St(i, j) (19)

Applying the indicator vectors, the formulation α −
Cut (G) can be simplified by replacing Wt (Gu, V ) by
1T Dcu ,Wt (Gu,Gu) by cuT Scu ,Wt (V, V ) by 1T D1,
and |Gu | by cuT cu . The conversion process can be
expressed by Eq. (20).

α − Cut (G) =
k∑

u=1

(
1T Dcu
1T D1

× 1T Dcu
cuT cu

− cuT Scu
cuT cu

)

=
k∑

u=1

cuT Pcu
cuT cu

(20)

P =
(
1T D

)T (
1T D

)

1T D1
− S (21)

The derived matrix P is defined as the α − Cut
matrix. As the objective function needs to be min-
imized, the optimization problem can be solved by
setting the derivative to 0. The smallest eigenvalues
(Lagrange multiplier) {λ1 ≤ · · · ≤ λk} of P and
corresponding eigenvectors {y1, . . . , yk} are computed.
Thus, the result is given by Eq. (22).

min α−Cut (G)= yT1 P y1+· · ·+yTk P yk = λ1+· · ·+λk

(22)
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Equation (22) arranges all the eigenvalues of the P
matrix in positive order, then extracts the eigenvectors
corresponding to the top smallest eigenvalues to form
the matrix and finally performs the slow coherency
algorithm for partition.

Minimizing the objective function precisely is a
NP-complete problem; however, the discrete value can
be approximated affectively by solving the partition
matrix. Consequently, we apply the slow coherency
theory introduced in the next section.

3.3 α-Cut to slow Coherency theory (α-SC)

Clustering is considered as an effective method to
solve the problem of partitioning of urban traffic sub-
region. In [19], K -means has been found to be a tra-
ditional algorithm in which the location determination
of initial center has great influence on the partition-
ing results. Accordingly, slow coherency theory is a
clustering algorithm that groups variables by solving
the correlation between each row feature vector and
the corresponding reference row according to the fea-
ture matrix [33]. Slow coherency theory theoretically
solves the problem of identifying the weakest correla-
tion between links, avoiding the influence of initializa-
tion values on clustering results. Previous studies have
shown that Gaussian elimination on the feature matrix
can be used to determine sub-regionswith homogeneity
[20]. A traffic sub-region initial partitioning algorithm
(α-SC) based on the slow coherency theory is proposed
here (Algorithm 1). The number of sub-regions can be
artificially set to adapt to the actual application sce-
nario.

Obtaining k smallest eigenvalues {λ1 ≤ · · · ≤ λk}
of matrix P and corresponding set of eigenvectors
{y1, . . . , yk} (lines 1–8). Then, the feature matrix Y
should be row-normalized (lines 9–10). The steps of
initial partitioning are listed as follows (lines 11–24):

1. Several initial variables are set, including ver-
texes V = {v1, . . . , vm} and sub-region set G =
{G1, . . . ,Gk}. The updating status of V and G are
recorded in Gaussian elimination procedure;

2. When the condition l ≤ k is satisfied, a feature sub-
matrix Y (l) = Y (l : m, l : k) is obtained. In other
words, Y (l) is consisting of rows l : m and columns
l : k ofY , i = 1, 2, . . . ,m−l+1, j = 1, 2, . . . , k−
l + 1. Otherwise, it turns to step (4);

Algorithm 1 α−SC Initial Partitioning Procedure

1: S ← similarity matrix of G
2: D ← degree matrix of G at t , where di = ∑m

j=1 St(i, j)
3: V ← set of links
4: k ← number of desired sub-regions

5: P ←
((

1TD
)T (

1TD
)

1TD1
− S

)

6: ∪m
i=1 {(λi , yi )} ← get eigenvalue and eigenvector pairs of P

7: sort eigenvalues λi to have λ1 ≤ · · · ≤ λm
8: select eigenvalues {λ1, . . . , λk} and corresponding eigenvec-

tors {y1, . . . , yk}
9: obtain feature matrix Ym×k = [y1, . . . , yk ]
10: Y ← rows of Y is normalized; // eigenvector of the reference

row
11: for l = 1 → k do
12: Y(l) = Y (l : m, l : k)
13: vr+l−1,Gc+l−1 ← row and column of the max

{
Y(l)

}
in

Y
14: Y (l, :) ↔ Y (r + l − 1, :)
15: Y (:, l) ↔ Y (:, c + l − 1)
16: yi j = yi j − yl j · (yil/yll ) , i = l+1, . . . ,m, j = l, . . . , k;

// Gaussian elimination
17: end for
18: reference variable vl ← vr+l−1, reference matrix

Y1 (l, :) ← Y (vl , :)
19: partition matrix Lp = YY−1

1
20: for i = 1 → m do
21: Lp (i, u) = maxLp (i, :)
22: vi ∈ Gu
23: end for
24: return G = {G1, . . . ,Gu , . . . ,Gk}; // sub-regions when

desired number equals to k

3. Obtaining the row number r and column number c
of the maximum element in Y (l), and the element
vr+l−1 is considered as the reference variable of the
sub-regionGc+l−1. The l−th row is exchangedwith
the (r + l − 1)−th row, and the l−th column is
exchanged with the (c + l − 1)−th column in Y .
Similarly, the l−th element is exchanged with the
(r + l − 1)−th element in V , and the l−th element
is exchanged with the (c + l − 1) −th element in
G. The Gaussian elimination method is applied to
Y (l), yi j = yi j − yl j (yil/yll), i = l + 1, . . . ,m,
j = l, . . . , k. The variable l is updated to l + 1, and
then it turns to step (2);

4. According to the referencevariables {v1, . . . , vl , . . . ,
vk}, the nonsingular reference matrix Y1 is estab-
lished with Y1 (l, :) = Y (yl , :). The partition
matrix is calculated by function L p = YY1

−1;
5. Each column element of the i−th row in L p indi-

cates the correlation of the vertex vi to each sub-
region. The column u corresponding to the max-
imum value is searched in the i−th row in L p,
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L p (i, u) = max L p (i, j), i = 1, . . . ,m, j =
1, . . . , k. Accordingly, there is a maximum corre-
lation between vi and Gu , and vi can be arranged in
Gu .

In the α-Cut algorithm, the eigen-decomposition
task is generally done in O

(
m3

)
time and O

(
m2

)
time

for sparse matrices. The application of Gaussian elim-
ination to slow coherency theory to extract the traffic
sub-regions costs O

(
km3

)
, where k is the number of

desired sub-regions.

Remark 2 In this section, we proposed α-SC algo-
rithm for the initial partition of sub-regions based on
the Moran’s I index to extract the homogeneous sub-
regions in the road network.

3.4 Fine tuning of the sub-region boundary

After the initial partitioning process, the uniform com-
ponents can be extracted from the heterogeneous net-
work; thus, the first two goals (i.e., extraction of the
homogeneous sub-regions and the sub-region coverage
constrain for the network) are achieved. This section
introduces the proposedmethod to establish the smooth
boundary between sub-regions (the 3rd goal). We pro-
pose a slow coherency algorithm aiming at partitioning
the weakest correlative sub-regions based on spectral
graph theory. The sub-region exported from initial par-
titioning may appear disconnected. Here, a fine turning
procedure aiming atminimizing the variance of the link
saturation degree is developed. This procedure defines
a membership degree concept to control the expansion
trend of clustering stable block and reduce the inter-
ference of the boundary links on the partition quality,
which expands the α-SC to the α-SC-FT algorithm.

The fine-tuning procedure is used to update the allo-
cation results for the discrete links that leave the largest
connected area in the sub-region. Clustering after the
initial partitioning is shown in Fig. 4. Vertexes of the
same color represent the same sub-region they belong
to. In order to maintain the compactness inside the sub-
region, the largest connected area in the sub-region can
be regarded as the core without changing the partition-
ing result. The decision variables in this fine-turning
step are only the discrete links within the sub-region.
Here, the discrete links include the isolated links and
the small connected areas away from the core, which
correspond to the links containing the filler in the left

Fig. 4 Schematic diagram for before and after the fine-turning
procedure. (Color figure online)

of Fig. 4. This procedure greatly reduces the compu-
tational complexity. Now, discrete links do not belong
to any sub-region, and the coverage of the sub-regions
for the network is less than 100% at this stage.

Remark 3 Given a graph G = {G1, . . . ,Gk}, the spa-
tial distance from the discrete link vi toGu is measured
by the shortest path length r (vi ,Gu) = l. The parent
link of vi is defined as the adjacent link v j that satisfies
r
(
v j ,Gu

) = l−1. If multiple linksmeet the condition,
the link with the largest wt(i, j) is selected as the parent
link. The children of the discrete link vi is defined as
the set of adjacent links

{
v j |a(i, j) = 1

}
that have vi as

their parent link.

One feature of fine turning step is to explicitly imple-
ment the spatial connection constraint, and this is con-
ducted through a heuristic algorithm. The core within
the sub-regions is identified by the initial partitioning
procedure.Among them, there only haveonemaximum
connected area in each sub-region. For a discrete link
vi , at least one ordered tree is always found to connect
vi to sub-regions. We define a membership function to
measure the probability to which link vi belongs to the
sub-regionGu . The function is affected by two factors:
(i) the weightWt(i,Gu) between vi and Gu ; (ii) the geo-
graphic location of vi and Gu . This step preferentially
reassigns the noise links with highmembership degree.
The membership degree diGu

of vi in Gu is calculated
as follows:

diGu
= 1

|Ni | max
v j∈Gu

{
wt(i, j)

} · a(i, j) (23)

|Ni | =
∑

r(vi ,Gu)=1,Gu∈G
a(i,Gu) (24)
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where |Ni | represents the number of sub-regions adja-
cent to vi . The range for diGu

is [0, 1]. A large member-
ship value indicates that the sub-regions homogeneity
will be enhanced if the link is assigned in the sub-
region. The membership function is only for the dis-
crete link vi that satisfy constraint r (vi ,Gu) = 1 with
at least one sub-region Gu , which explicitly imple-
ments the sub-region connection constraint.

Algorithm 2 Fine Tuning of the Sub-region Boundary
1: G = {G1, . . . ,Gu ,Gb, . . . ,Gk}: initial partitioning results
2: V = {

v1, . . . , vi , v j , . . . , vm
}
: set of vertexes (links)

3: V̂ = {
v1, . . . , vi , v j , . . . , v f

}
: set of discrete vertexes

(links), V̂ ⊂ V
4: s1 = ∅: initialize stack
5: repeat
6: if V̂ �= ∅ then
7: for all vi ∈ V̂ do
8: diGu = 1

|Ni | max
v j∈Gu

{
Wt(i, j)

}·a(i, j);// computemember-

ship degree
9: if diGu

> 0 (Gu ⊂ G) then

10: vi ∈ Gu

(
diGu

> diGb
,Gb ⊂ G&&Gb �= Gu

)
; //

assign the isolated vertexes and the boundary ver-
texes in discrete connected areas

11: V̂ = V̂ ∩ s1;
12: push vi into s1;// update set of discrete vertexes
13: end if
14: end for
15: end if
16: until V̂ = ∅
17: G ← results after fine tuning of the sub-region boundary
18: return G = {G1, . . . ,Gk}

The pseudocode of the fine turning procedure can
be embodied by Algorithm 2. The algorithm utilizes
stack s1 to store and traverse discrete links. For a sin-
gle discrete link vi , it is directly connected to at least
one sub-region. The membership degrees of vi for all
adjacent sub-regions are calculated separately, and vi
is assigned to the sub-region Gu with the constraint

diGu
= max

{
diGb

|b = 1, . . . , k
}
. Similarly, the bound-

ary links of the discrete connected area may first be
assigned to sub-region with the highest membership
degree (lines 1–10). At this moment, all arranged links
are removed from V̂ and then pushed into s1 (lines
11–12). The above steps used repeatedly can traverse
the children links of the boundary links in the discrete
connected area, and further traverse their children (lines
13–15). This iterative process continues until all the dis-
crete links are assigned to the appropriate sub-region

(lines 16–18). This procedure satisfies the third goal by
considering the connectivity constraints when assign-
ing discrete links. How to apply this static partitioning
procedure to the dynamic partitioning framework will
be introduced in details in the next section.

Example 1 The left of Fig. 4 shows two sub-regions
after initial partitioning stage. It can be seen that there
are isolated discrete vertexes (the orange vertex A with
filler) and connected area (the blue vertexes with filler)
in the sub-regions. We assume that the membership
degree of A for blue sub-region is d A

blu = 0.5, and
the membership degree of B for orange sub-region is
dB
ora = 0.6. As the other discrete vertexes are the chil-
dren of B, they are not considered in current iterative
allocation process. The results of the first round of fine
tuning are shown in the right of Fig. 4.

The complexity of the dynamic partitioning algo-
rithm considering the evolution of traffic congestion
proposed in this paper remains O

(
km3

)
, where m

denotes the number of links to be controlled and
adjusted and k denotes the desired number of sub-
regions.

Remark 4 In this section, the α-SC-FT algorithm is
proposed for enforcing the connectivity and uniformity
of sub-regions based on the α-SC algorithm.

3.5 Performance metrics

The partition quality is evaluated from three perspec-
tives. Firstly, the performance of the first goal can be
evaluated by the average sub-region correlation inten-
sity indexC Ia defined by Eq. (25). The absolute differ-
ence in saturation degree of adjacent links is considered
as the distance between the links, and then the average
absolute difference of all the sub-regions is calculated.

C Ia = 1

k

∑

vi ,v j∈Gu

|vi · s − v j · s| · a(i, j)

|vi · s − v j · s| · a(i, j) + Cut(Gu)

(25)

Cut(Gu) =
∑

vi∈Gu ,v j /∈Gu

|vi · s − v j · s| · a(i, j) (26)

where Cut(Gu) represents the sum of the differences
of saturation degree between Gu and its neighborhood.
This index indicates the variances between the link sat-
uration degree of inter-partition and intra-partition. A
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small value of C Ia denotes the superior partition per-
formance.

Secondly, the performance of the homogeneity of
intra-partition and the size of the sub-region can be
evaluated by using a normalized total variance T Vn
[34]. T Vn is defined as the ratio of the total variance of
each sub-region to the entire urban network. A small
value of T Vn denotes a better partitioning.

T Vn =
∑k

u=1 NGu × var (Gu)

m × var (G)
(27)

where G = ∪k
u=1Gu denotes the traffic network to

be researched. NGu , m denote number of links in Gu

and G, respectively. var (Gu) represents the variance
of traffic characteristics in Gu .

Modularity [35] is a criterion defined by Eq. (28) to
verifywhether a particular partition ismeaningful. This
index is by far the most used and best-known quality
function. It is commonly used in community discovery
that takes the connectivity within the community and
communication between vertexes into account.

Q =
k∑

u=1

(wt(u,u) − Au
2) = Tre −

∥∥∥W 2
∥∥∥ (28)

Au =
k∑

u=1

w(u,u) (29)

where Au denotes the summation of the u−th row in
weight matrixW . The range of Q is [0, 1), and it close
to 1 indicates a homogeneous sub-region structure in
the network.

4 Methodology for dynamic updating

Due to the dynamic propagation characteristics of traf-
fic flow in different regions, the complete static parti-
tioning of the traffic network at each time-stamp is a
task with high computation time. The target links of the
dynamic partitioning model proposed in this paper are
only a fewhigh-heterogeneity links,which can improve
the partition efficiency of the network and track the
spatiotemporal evolution of sub-regions. In this sec-
tion, a three-step dynamic updating framework shown
in Algorithm 3 is proposed based on heuristic method,
which considers the evolution of congestion and uti-
lizes the stacks s2, s3 to store the calculated values.
The dynamic updating model mainly includes merg-
ing, cutting and adjusting processes.

When different congested areas need to be merged
during the diffusion of congestion or the congestion
pocket appears inside an unblocked sub-region [18], the
dynamic partitioning method should be able to model
the merging or cutting procedure of the sub-regions.

In order to capture the diffusion of congestion, T Vn
is applied to measure the homogeneity of the network
in the sub-region merging process. Based on the parti-
tioning result at t − 1, T Vn

(
t,Ga,b

)
at time t is calcu-

lated after any adjacent sub-region pairs
{
Gt−1

a ,Gt−1
b

}

merged intoGt
a,b with the largest similarity at t respec-

tively (line 1–6). The adjacent sub-regions correspond-
ing to the minimum T Vn are merged (lines 7–10). The
objective of this step is to find the sub-regions of opti-
mal homogeneity, where the weight between Ga and
Gb is calculated by Eq. (30). The merging process
needs to meet the following conditions:

(i) The size of Gt
a,b needs to be smaller than the size

of the largest traffic sub-region at t − 1. This is to
balance the size of the sub-regions, as shown in
Eq. (31) (line 8);

(ii) T Vn of the network at time t is smaller than that
at time t −1, which is defined by Eq. (32) (line 9);

(iii) Equation (33) insures that the number of sub-
regions is updated from k to k − 1 (line 10).

Wt(Ga ,Gb) =
∑

vi∈Ga
v j∈Gb

Wt(i, j),
(
Ga,Gb ⊂ Gt−1

)

(30)

Nt
Ga,b

< max
(
Nt−1
Gu

)
,Gu =

{
Gt−1

1 , . . . ,Gt−1
k

}

(31)

T Vn (t,G) < T Vn (t − 1,G) (32)

Gt =
{
Gt−1 ∩

{
Gt−1

a ,Gt−1
b

}}
∪ Gt

a,b (33)

The process of forming the congested pocket can be
capturedbyusingα-SC-FTalgorithm inSect. 3 to parti-
tion the target sub-regionGt−1

u intoGt
u1 andG

t
u2 at time

t . Since the variance index calculated by Eq. (34) can
easilymeasure heterogeneity within the sub-region, the
variance is applied to determine whether the original
sub-regions satisfy the dichotomous condition (lines
11–17). This process needs to meet the following con-
straints: (i) the size of the newly generated two sub-
regions must be larger than the size of the original min-
imum sub-region, as defined in Eq. (35) (line 18); (ii)
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the variance indexes of Gt
u1 and Gt

u2 are all smaller
than Gt−1

u (line 19) as defined in Eq. (36), which indi-
cates the different levels of congestion areas within Gu

at t ; (iii) the number of sub-regions is updated from k
to k + 1, as in Eq. (37) (line 20).

var
(
Gt
u
) =

∑

vi ,v j∈Gu

||vi .s − v j .s||22 (34)

min
(
Nt
u1, N

t
u2

)
> min

(
Nt−1
a

)
,Ga =

{
Gt−1
1 , . . . ,Gt−1

k

}

(35)

max
{
var

(
Gt
u1

)
, var

(
Gt
u2

)}
< var

(
Gt−1
u

)
(36)

Gt =
(
Gt−1 ∩ Gt−1

u

)
∪ (

Gt
u1,G

t
u2

)
(37)

Over a short period of time, the traffic characteristics
of the link do not change significantly; thus, it is able to
realize clustering with high homogeneity at t by adjust-
ing the highly heterogeneous links at t − 1. Firstly, the
link with the closest degree of saturation to the aver-
age value within the sub-region is determined as the
clustering seed at t , reflecting the overall traffic state
of the sub-region. We apply the improved depth-first
search algorithm (DFS) to iteratively capture the clus-
tering seed and control the expansion order of the stable
blocks within sub-regions (the block is highly homo-
geneous at time t) (lines 21–24). It is worth noting that
the block can only be in the sub-region where the seed
vertex is located at t − 1. Specially, each sub-region
contains only one stable block. Because the variance
in block has a nonlinear trend with increasing of the
number of iterations, further improvement is carried
out with a threshold δ artificially set so that the stable
block is cut off when it reaches a certain coverage δ

and the running time is reduced. The impacts of θ on
the partition quality can be found in Sect. 5.

At time t , the evolution process of the DFS-based
stable block in Gu is as follows:

1. Given a set of vertexes V =
{
vt−1
u,1 , vt−1

u,2 , . . . , vt−1
u,r

}

in Gu at t − 1 where r is the number of vertexes in
Gu . The stable block Bt

u ofGu is initialized to empty
set at t ;

2. Calculate the distance between the degree of satura-
tion and the average value in Gu separately, and the
similarity between vertexes can be derived from the
model in Sect. 3.1. The vertex vi corresponding to
the minimum distance is treated as the seed vertex,

and then, Bt
u = Bt

u ∪ vt−1
u,i . The cycle-index n is set

to 1;
3. When n ≤ r , the vertex with the maximum sim-

ilarity S_max to Bt
u can be searched in Gu . If

there exists a vertex set that satisfies the condition
A j

max = {
v j |v j ∈ {v1, . . . , vh} ,

(
St(i,1) = · · · =

St(i,h) = S_max
)}
, an arbitrary link v j is selected;

otherwise, jumps to (5);
4. If S_max > δ, Bt

u is updated to Bt
u ∪ v j . Returns

to (3); otherwise, jumps to (5);
5. Bt

u is treated as a constant stable block at t and the
identification of the stable block is ended.

The elements in the k stable blocks
{
Bt
1, . . . , B

t
u, . . . ,

Bt
k

}
are retained as the original allocation results, and

the remaining vertexes that exclude the blocks are con-
sidered as unallocated vertexes. Due to the set thresh-
old δ, the extracted k stable blocks have the coverage of
0%–100% for G at t . The fine-tuning algorithm men-
tioned in Sect. 3.4 can be easily adapted to partition
unallocated vertexes with the following modifications
(lines 25–31):

(i) “discrete vertex (link)” is changed to “unallocated
vertex (link)”;

(ii) “discrete connected area (link set)” is changed to
“unallocated connected area (link set).

The coverage of the sub-regions is 100% when the dis-
crete vertexes are allocated, which satisfies the second
criteria mentioned in Sect. 3. The DFS algorithm is
applied to identify the stable block abovementioned by
constraining the connectivity and homogeneity of the
sub-region.

The decision variables in the dynamic updating pro-
cedure are the unallocated links excluding the stable
blocks (including the isolated links and connected areas
away from the block). Thus, the computational com-
plexity of dynamic partitioning is lower than that of
static partitioning according to the time correlation of
the traffic flow.

Remark 5 In this section, a dynamic partition algo-
rithm of traffic network control sub-regions is pro-
posed, which can effectively identify different sub-
regions with different saturation.

5 Case study and results

To evaluate the effectiveness of the proposed dynamic
partitioning algorithm, we carried out a case study with

123



Dynamic partitioning of urban traffic network sub-regions 923

Algorithm 3 Dynamic Updating Procedure
1: Gt−1 = {G1, . . . ,Ga,Gb,Gu ,Gx , . . . ,Gk}: static parti-

tioning
2: V = {

v1, . . . , vi , v j , . . . , vm
}
: set of vertexes (links)

3: s2 = ∅, s3 = ∅: initialize stacks
4: for all Gt−1

a

(
Wt(Ga,Gb) = max

(
Wt(Ga,Gu)

))
, Gu ⊂ Gt−1

do
5: push T Vn

(
t,Ga,b

)
into s2

6: end for
7: Gt

c ←
{
Gt−1

a ,Gt−1
b

}
(T Vn

(
t,Ga,b

) = min {s2});// the two
sub-regions {Ga,Gb} corresponding to the minimum value
in s2 are merged into Gc

8: if Nt
Ga,b < max

(
Nt−1
Gu

)
,Gu =

{
Gt−1

1 , . . . ,Gt−1
k

}
then

9: if T Vn (t,G) < T Vn (t − 1,G) then

10: Gt =
{
Gt−1 ∩

{
Gt−1

a ,Gt−1
b

}}
∪Gt

c; //Merging proce-

dure
11: else
12: Gt = Gt−1

13: for all Gu ⊂ Gt−1 do
14: var

(
Gt

u

) = ∑

vi ,v j∈Gu
||vi .s − v j .s||22

15: push var
(
Gt

u

)
into s3

16: end for
17: Gt

u1,G
t
u2 ← Gt

u

(
var

(
Gt

u

) = max (s3)
)
is divided by

α-SC-FT
18: if min

(
Nt
u1, N

t
u2

)
> min

(
Nt−1
x

)
, Gx ={

Gt−1
1 , . . . ,Gt−1

k

}
then

19: if max
{
var

(
Gt

u1

)
, var

(
Gt

u2

)}
< var

(
Gt−1

u

)
then

20: Gt = (
Gt−1 ∩ Gt−1

u

)∪(
Gt

u1,G
t
u2

)
; // Cutting pro-

cedure
21: else
22: Gt = Gt−1

23: for all Gt−1
u ⊂ Gt−1 do

24: identifies stable blocks at time t
25: uses fine tuning process to allocate remaining

vertexes
26: end for; // Adjustment process
27: end if
28: end if
29: end if
30: end if ;
31: return Gt

amedium-sized real traffic network. Section 5.2 reports
the comparative analysis of the performance of the pro-
posed algorithm with k-way α-Cut [19], spectral clus-
tering and symmetric nonnegative matrix factorization
(SNMF) [18]. Section 5.3 presents the performance of
dynamic partitioning and the sensitivity analysis of the
parameter δ to the stable block.

Fig. 5 Traffic network of farmers branch. (Color figure online)

5.1 Data preparation

In order to verify the effectiveness of the proposed
dynamic partitioningmethod of the traffic network sub-
region, several experiments are conducted by using
a real-world urban network data set. The traffic net-
work (Fig. 5) is extracted from the Regional Travel
Demand Model of Farmers Branch (North Central
TexasCouncil ofGovernments, TransportationDepart-
ment 2014).1 The network does not have a clear grid
structure and the adjacent relationship between road
segments is different, which makes the application of
the method challenging. The data set includes the aver-
age degree of link saturation in Farmers Branch for
each working day from October 1, 2014 to October 31,
2014. In the data set, the degree of saturation is taken
as the characteristics of the link, which can embody
the traffic capacity of the link. In this study, 211 links
(including arterial roads and minor arterial roads) of
the Farmers Branch are analyzed to make the degree of
saturation data be estimated more reliable.

The time period of 00:00–23:15 is divided into 93
time-stamps for 15min intervals, andn denotes the time
intervals. Figure 6 illustrates the spatiotemporal distri-
bution of saturation degree revealing the morning peak
(n = 28) and evening peak (n = 69) clearly. More-
over, different saturation degree values reflect different
congestion levels of the network.

To verify the performance of dynamic partitioning,
the difference between independent partitioning and
static partitioning in terms ofC Ia and T Vn is discussed.
Independent partitioning is to divide the sub-region at
each time stamp, and static partitioning is to divide
the sub-region only at the initial moment. In Fig. 7, the

1 It can be accessed through https://www.nctcog.org/.
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Fig. 6 Space-time distribution of the degree of saturation. (Color
figure online)

Fig. 7 Efficiency of independent partitioning and static parti-
tioning. (Color figure online)

blue curve describes the independent partitioning qual-
ity, while the red curve indicates the static partitioning
quality. It is worth noting that the network has better
partition performance at each time-stamp by continu-
ously updating partitioning results, which reflects the
importance of dynamic partitioning. Since the indepen-
dent partitioning is executed at each time-stamp to track
the development trend of sub-regions and has a high
computational complexity, it is necessary to capture
the evolution of sub-regions by the proposed dynamic
partitioning method.

5.2 Quality of static partitioning

The partitioning quality of α-SC and α-SC-FT applied
in the traffic network at n = 69 is displayed in Fig. 8.
From Fig. 6, it can be seen that the traffic network
presents different congestion levels at this time. The
main purpose of the fine tuning is to ensure the con-
nectivity within the sub-regions. Since C Ia and T Vn

Fig. 8 Partitioning quality comparison of α-SC and α-SC-FT.
(Color figure online)

indicators focus on analyzing the homogeneity of sub-
regions, the connectivity performance of α-SC and α-
SC-FT is compared using the modularity metrics.

In Fig. 8, the horizontal and vertical axis indicate
2–12 different sub-region number k and modularity
Q, respectively. In terms of modularity, the Q value
after the fine tuning stage is significantly higher than
the initial partitioning under different k, and it can
be concluded that this procedure greatly improves the
compactness of the sub-regions. This is because the α-
SC-FT algorithm fine tunes the sub-region boundaries
to alleviate the interference of noise links to the sub-
regions. Moreover, as the parameter k increases, the
sub-regions become more homogenous.

The T Vn indicator is used as the baseline, which
describes the comparative result from k-way α-Cut,
Spectral cluster, SNMF and α-SC-FT with sub-region
numbers 2–12 in Fig. 9. The sub-regions correspond-
ing to the minimum T Vn are regarded as the optimal
results. The performance of the four algorithms shows
an upward trend with the increase of k. The α-SC-
FT partitioning scheme outperforms Spectral cluster
in most sub-regions except k = 4, 7 and 10. And both
them are better than the k-way α-Cut and SNMF algo-
rithm, while k-way α-Cut and SNMF have the similar
partition performance.

The T Vn values for the four algorithms in the case
of the optimal number of traffic sub-regions are shown
in Table 2. It can be seen that the optimal sub-region
number of k-way α-Cut, Spectral cluster, SNMF and
α-SC-FT algorithms are 10, 12, 12 and 8, respectively.
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Fig. 9 Quality comparison of different static algorithms. (Color
figure online)

Table 2 Overall performance of partition

k-way α-cut Spectral cluster SNMF α-SC-FT

TVn 0.860 0.734 0.921 0.718

k 10 12 12 8

The T Vn of α-SC-FT algorithm is the smallest, which
indicates that a good partition result is guaranteed of
the network.

The optimal partitioning result of α-SC-FT algo-
rithm and frequency distribution of saturation degree
at n = 69 are shown in Fig. 9. The dotted lines in
Fig. 10b mark the saturation degree levels where each
sub-region has the maximum number of links. The
curves of the same color have a high peak at the dotted
line, and the number of links corresponding to other
degree of saturation is less than the peak value. Thus,
it can be seen that the sub-region is relatively homoge-
neous. In Fig. 10a, due to the connectivity constraints,
the algorithm partitions two sub-regions with similar
degree of saturation but not geographically adjacent,
such as the 5th and 7th sub-region. The links within
each sub-region remain connected, so the α-SC-FT
algorithm is considered to be superior and can ensure
the boundary smoothness of the sub-region.

5.3 Quality of dynamic partitioning

Due to the strong spatiotemporal correlation of traf-
fic flow, independent partitioning does not need to be

Fig. 10 a The partitioning results of α-SC-FT algorithm at n =
69; b The frequency distribution of degree of saturation. (Color
figure online)

performed separately at each time-stamp if the method
developed in Sect. 4 runs well. In this section, we will
study the dynamic partitioning of the road network dur-
ing the appearance of congestion pocket at n = 66–78.
Figure 11a, b, respectively, depicts the dynamic parti-
tion performance at different update interval Δ from
n = 66 to 78. The threshold δ is set to be 0.3. It can be
seen that C Ia and T Vn decrease with the shortening of
the update interval, which reflects the effectiveness of
the dynamic partitioning.

The threshold δ is a key parameter of dynamic updat-
ing that directly affects the coverage θ of the stable
blocks and the partition quality of the network. As the
result of the dynamic partitioning is convincing at the
small update interval length Δ (Fig. 11a, b), the sen-
sitivity analysis on different values of δ is performed
when Δ = 1 (see Fig. 11c, d). Here, the test values
of δ are 0.3, 0.4 and 0.5, respectively, with the hope to
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Fig. 11 Sensitivity of the dynamic partitioning to Δ (a, b) and to δ (c, d). (Color figure online)

Table 3 Merging, cutting
and adjusting of sub-regions

Cycle 66 67 68 69 70 71 72

Evolution – C A A C C A

k 9 10 10 10 11 12 12

Overlap rate – – 0.611 0.512 0.616

Cycle 73 74 75 76 77 78

Evolution C A A A A C

k 13 13 13 13 13 14

Overlap rate – 0.768 0.825 0.839 0.853

Fig. 12 Dynamic partitioning of sub-regions at time-stamps (n = 66, 68, 70 and 72). (Color figure online)

provide an optimal value for solving the dynamic parti-
tioning model. All the weights between the links in the
stable block are greater than 0.3 when δ = 0.3. In other
words, the area with higher homogeneity within the
sub-region is preserved. It can be seen that the optimal
result can be obtainedwith δ = 0.4, andwhen the value
of δ is increased or decreased, the result becomes less
well. The coverage θ and dynamic partitioning quality
will vary with different values of δ. The flexible set-
tings of parameters in this method can be applied to
different application scenarios.

We operate dynamic partitioning from n = 66, and
the optimal number of sub-regions is 9. Three differ-
ent strategies merging, cutting and adjusting (M, C, A)
are performed, respectively, and the smallest objective

functions C Ia and T Vn are applied in dynamic parti-
tioning. Since the strategy of Δ = 1 and δ = 0.4 are
convincing for the algorithm, Table 3 shows the evolu-
tion results of the sub-regions in this strategy. The cov-
erage θ of the stable blocks for the network is 61.1%
at n = 68 and shows an increasing trend as the time
passes. This result indicates that a congestion pocket
appears in the evolution process, and the difference of
saturation degree of each area in the network is rela-
tively reduced.

In order to further reveal the evolution of the sub-
regions, Fig. 12 visualizes the dynamic partitioning
results of n = 66, 68, 70 and 72. The average degree
of saturation values within the sub-regions is presented
in Table 4. During the dynamic partitioning process,
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Table 4 Average value of
saturation degree in
different sub-regions at
n = 66, 68, 70 and 72

n Light green Orange Light blue Yellow Brown Blue

66 0.758 0.295 0.299 0.556

68 0.783 0.383 0.360 0.757 0.757

70 0.518 0.395 0.476 0.860 0.907

72 0.446 0.760 0.308 0.760 1.259

n Gray Yellow-green Dark green C Ia TVn

66 0.672 0.760

68 0.657 0.746

70 1.116 0.687 0.782

72 0.923 0.241 0.566 0.588 0.678

Fig. 13 Spatiotemporal evolution of sub-regions (n = 66, 68,
70 and 72). (Color figure online)

the algorithm starts with 9 sub-regions at n = 66,
and the number of sub-regions increases or does not
change over time. At n = 67, due to the presence of
a congestion pocket in the light green mid-saturated
sub-region, it is divided into light green (congested)
and brown (medium saturated) regions. The adjustment
process is performed in the traffic network at n = 68.
The algorithm partitions the light green sub-region into
light green and blue sub-regions at n = 70 and then
increases the number of sub-regions to 11. It can be
observed in Table 4 that the light green region is com-
pletely unblocked while the blue one is congested. The
C Ia and T Vn are decreased over time, which verify the
effectiveness of the dynamic updating algorithm. Fig-
ure 13 depicts the spatiotemporal evolution process of
sub-regions. The square represents the sub-region that
has been generated at the previous time-stamp, and the

triangle represents the newly generated sub-region at
that time-stamp.

6 Conclusions

This paper proposes a dynamic partitioning frame-
work for urban traffic network sub-regions based on
Moran’s I index and heuristic algorithm. The method-
ology achieves the spatial partitioning of the network
and reveals the evolution of traffic flow on the basis of
spatiotemporal correlation.A similaritymodel between
links is constructed, and the spatial autocorrelation
characteristics are analyzed based on Moran’s I index.
Then, the slow coherency theory is applied to the static
partitioning framework (α-SC-FT) to solve the identifi-
cation problem of theweakest correlation between sub-
regions. The experiments carried out on the data set of
Farmers Branch city show that the algorithm is superior
to the existing spatial partitioningmethod k-wayα-Cut.
The dynamic updating procedure effectively updates
the sub-regions according to time dependence of con-
gestion. This procedure reserves the stable block with
higher homogeneity in the original sub-region, and the
discrete links are iteratively re-assigned to identify the
spatiotemporal propagation of congested pockets. The
unique advantages of the proposed two-step dynamic
partitioning framework are: (i) a well identification of
the sub-region evolution in real traffic network; (ii)
the number of traffic sub-regions can be artificially set
according to the dynamic characteristics of traffic flow,
which can adapt to the actual application scenarios.
The numerical analysis of this study shows satisfac-
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tory results, including the mean correlation intensity,
normalized variance and modularity.

The results of the proposed approach indicate that
the critical borders of congestion pockets are properly
tracked over time by changing a small percentage of
links. When the urban networks with variant demand
profiles, a dynamic partitioning coupled with perime-
ter control strategies might be necessary. Therefore,
integrating dynamic partitioning with perimeter con-
trol strategies should be a challenging and worthwhile
research direction.
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